HV9961 LED Driver with Average-Current Mode Constant-Current Control Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005588A-html.html
background image

 2017 Microchip Technology Inc.

DS20005588A-page  1

HV9961

Features

• Fast Average Current Control
• Programmable Constant Off-time Switching
• Linear Dimming Input
• PWM Dimming Input
• Output Short-circuit Protection with Skip Mode
•  –40°C to +125°C Ambient Operating 

Temperature

• Pin-compatible with HV9910B

Applications

• DC/DC or AC/DC LED Driver Applications
• LED Backlight Driver for LCD Displays
• General Purpose Constant-current Source
• LED Signage and Displays
• Architectural and Decorative LED Lighting
• LED Street Lighting

General Description

The 

HV9961 is an Average-Current mode 

constant-current control LED driver IC operating in a 
constant Off-time mode. Unlike the HV9910B, this 
control IC does not produce a peak-to-average error. 
This greatly improves accuracy as well as the line and 
load regulations of the LED current without any need 
for loop compensation or high-side current sensing. Its 
output LED current accuracy is ±3%.
The IC is equipped with a current limit comparator for 
Hiccup mode output short-circuit protection.
The HV9961 can be powered from an 8V–450V supply. 
It has a PWM dimming input that accepts an external 
control TTL-compatible signal. In addition, the output 
current can be programmed by an internal 275 mV 
reference or controlled externally through a 0V–1.5V 
linear dimming input.
The  HV9961 is pin-to-pin compatible with HV9910B, 
and it can be used as a drop-in replacement for many 
applications to improve LED current accuracy and 
regulation.

Package Type

16-lead SOIC

(Top view)

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

8

7

6

5

1

2

3

4

VIN

CS

GND

GATE

RT

LD

VDD

PWMD

VIN

NC

NC

CS

GND

NC

NC

GATE

NC

NC

RT

LD

VDD

NC

NC

PWMD

8-lead SOIC

(Top view)

See 

Table 2-1

 for pin information.

s

LED Driver with Average-Current Mode Constant-Current Control

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005588A-html.html
background image

HV9961

DS20005588A-page  2

 2017 Microchip Technology Inc.

Functional Block Diagram

CS

R

S

Q

Q

T

OFF

Timer 

L/E

Blanking

GATE

0.44V

MIN (V

LD 

• 0.185, 0.275V)

LD

400µs

PWMD

RT

GND

Current

Mirror

i

Regulator

VIN

VDD

UVLO

POR

0.15/0.20V

Average Current

Control Logic 

OUT

Auto-REF

HV9961

CLK

IN

Hiccup

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005588A-html.html
background image

 2017 Microchip Technology Inc.

DS20005588A-page  3

HV9961

Typical Application Circuit

1

4

2

8

5

6

7

3

HV9961

VIN

GATE

PWMD

LD

VDD

RT

CS

GND

LED

Load

Sets
LED
Current

8V–450V

R

CS

R

T

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005588A-html.html
background image

HV9961

DS20005588A-page  4

 2017 Microchip Technology Inc.

1.0

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

V

IN

 to GND  ............................................................................................................................................ –0.5V to +470V

V

DD

 to GND ............................................................................................................................................................ +12V

CS, LD, PWMD, Gate, RT to GND.................................................................................................... –0.3V to V

DD

+0.3V

Junction Temperature, T

J

 .................................................................................................................... –40°C to +150°C

Storage Temperature, T

S

 ..................................................................................................................... –65°C to +150°C

Continuous Power Dissipation (T

= +25°C):

8-lead SOIC ............................................................................................................................................ 650 mW

16-lead SOIC ........................................................................................................................................ 1000 mW

 Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the 
device. This is a stress rating only, and functional operation of the device at those or any other conditions above those 
indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for 
extended periods may affect device reliability. 

ELECTRICAL CHARACTERISTICS 

Electrical Specifications: T

A

 = 25°C, V

IN

 = 12V, V

LD

 = V

DD

, and V

PWMD

 = V

DD

 unless otherwise specified. 

Parameter

Sym.

Min.

Typ.

Max.

Unit

Conditions 

INPUT

Input DC Supply Voltage Range

V

INDC

8

450

V

DC input voltage 

(

Note 1

 and 

Note 2

)

Shutdown Mode Supply Current

I

INSD

0.5

1

mA

Pin PWMD connected to 
GND (

Note 2

)

INTERNAL REGULATOR

Internally Regulated Voltage

V

DD

7.25

7.5

7.75

V

V

IN

 = 8V, I

DD(EXT)

 = 0 mA,            

500 pF at gate, R

T

 = 226 kΩ

Line Regulation of V

DD

∆V

DD, line

0

1

V

V

IN

 = 8V–450V,                 

I

DD(EXT)

 = 0 mA,                        

500 pF at gate, R

T

 = 226 kΩ

Load Regulation of V

DD

∆V

DD, load

0

100

mV

I

DD(EXT)

 = 0 mA–1 mA,        

500 pF at gate, R

T

 = 226 kΩ

V

DD

 Undervoltage Lockout Upper       

Threshold

V

UVLO

6.45

6.7

6.95

V

V

IN

 rising (

Note 2

)

V

DD

 Undervoltage Lockout            

Hysteresis

∆V

UVLO

500

mV

V

IN

 falling 

Maximum Input Current                    
(Limited by UVLO)

I

IN, MAX

3.5

mA

V

IN

 = 8V, T

= 25°C (

Note 3

)

1.5

V

IN 

= 8V, T

A

 = 125°C (

Note 3

)

PWM DIMMING
PWMD Input Low Voltage

V

PWMD(LO)

0.8

V

V

IN

 = 8V–450V (

Note 2

)

PWMD Input High Voltage

V

PWMD(HI)

2.2

V

V

IN

 = 8V–450V (

Note 2

)

PWMD Pull-down Resistance

R

PWMD

50

100

150

kΩ

V

PWMD

 = 5V

AVERAGE-CURRENT SENSE LOGIC
Current Sense Reference Voltage

V

CST

268

275

286

mV

V

LD

 = 1.5V

LD-to-CS Voltage Ratio

A

V(LD)

0.182 0.185 0.188

V

LD

 = 1.2V

LD-to-CS Voltage Offset

A

V

 x V

LD(OFFSET)

0

10

mV

Offset = V

CS

– A

V(LD)

 x V

LD

,

V

LD

 = 1.2V

Note 1: Also limited by package power dissipation limit, whichever is lower

2: Denotes specifications which apply over the full operating ambient temperature range of 

–40°C < T

A

 < +125°C

3: Specification is obtained by characterization and is not 100% tested. 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005588A-html.html
background image

 2017 Microchip Technology Inc.

DS20005588A-page  5

HV9961

CS Threshold Temperature 
Regulation

∆V

CST(TEMP)

5

mV

(

Note 2

)

LD Input Shutdown Threshold 
Voltage 

V

LD(OFF)

150

mV

V

LD 

falling

LD Input Enable Threshold Voltage 

V

LD(EN)

200

mV

V

LD 

rising

Current Sense Blanking Interval

T

BLANK

150

320

ns

(

Note 2

)

Minimum On-time

T

ON(MIN)

1000

ns

V

CS

 = V

CST

 + 30 mV

Maximum Steady-state Duty Cycle

D

MAX

75

%

Reduction in output LED      
current may occur beyond 
this duty cycle

SHORT-CIRCUIT PROTECTION
Hiccup Threshold Voltage

V

CSH

410

440

470

mV

Current Limit Delay CS-to-Gate

T

DELAY

150

ns

V

CS

 = V

CSH

 + 30 mV

Short-circuit Hiccup Time

T

HICCUP

350

400

550

μs

Minimum On-time (Short-circuit)

T

ON(MIN),SC

430

ns

V

CS

 = V

DD

T

OFF

 TIMER

Off-time

T

OFF

32

40

48

μs

R

T

 = 1 MΩ

8

10

12

R

T

 = 226 kΩ

GATE DRIVER
Gate Sourcing Current

I

SOURCE

0.165

A

V

GATE

 = 0V, V

DD

 = 7.5V

Gate Sinking Current

I

SINK

0.165

A

V

GATE 

= V

DD

, V

DD 

= 7.5V

Gate Output Rise Time

t

r

30

50

ns

C

GATE

 = 500 pF, V

DD

 = 7.5V

Gate Output Fall Time

t

f

30

50

ns

C

GATE

 = 500 pF, V

DD

 = 7.5V

TEMPERATURE SPECIFICATIONS

Parameter

Sym.

Min.

Typ.

Max.

Unit

Conditions

TEMPERATURE RANGES
Operating Ambient Temperature

T

A

–40

+125

°C

Maximum Junction Temperature

T

J(MAX)

+150

°C

Storage Temperature

T

S

–65

+150

°C

PACKAGE THERMAL RESISTANCE
8-lead SOIC 

JA

101

°C/W

16-lead SOIC 

JA

83

°C/W

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications: T

A

 = 25°C, V

IN

 = 12V, V

LD

 = V

DD

, and V

PWMD

 = V

DD

 unless otherwise specified. 

Parameter

Sym.

Min.

Typ.

Max.

Unit

Conditions 

Note 1: Also limited by package power dissipation limit, whichever is lower

2: Denotes specifications which apply over the full operating ambient temperature range of 

–40°C < T

A

 < +125°C

3: Specification is obtained by characterization and is not 100% tested. 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005588A-html.html
background image

HV9961

DS20005588A-page  6

 2017 Microchip Technology Inc.

2.0

PIN DESCRIPTION

The details on the pins of HV9961 are listed on 

Table 2-1

. Refer to 

Package Types

 for the location of 

pins. 
 

TABLE 2-1:

PIN FUNCTION TABLE 

Pin Number

Pin Name

Description

8-lead SOIC 16-lead SOIC

1

1

VIN

This pin is the input of an 8V–450V linear regulator.

2

4

CS

This pin is the current sense pin used to sense the FET current with 
an external sense resistor.

3

5

GND

Ground return for all internal circuitry. This pin must be electrically 
connected to the ground of the power train.

4

8

Gate

This pin is the output of gate driver for driving an external N-chan-
nel power MOSFET.

5

9

PWMD

This is the PWM dimming input of the IC. When this pin is pulled to 
GND, the gate driver is turned off. When the pin is pulled high, the 
gate driver operates normally.

6

12

V

DD

This is the power supply pin for all internal circuits. It must be 
bypassed with a low ESR capacitor to GND (at least 0.1 μF).

7

13

LD

This pin is the linear dimming input, and it sets the current sense 
threshold as long as the voltage at this pin is less than 1.5V. If volt-
age at LD falls below 150 mV, the gate output is disabled. The gate 
signal recovers at 200 mV at LD.

8

14

RT

A resistor connected between this pin and GND programs the gate 
off-time.

2, 3, 6, 7, 10, 

11, 15 and16

NC

No connection

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005588A-html.html
background image

 2017 Microchip Technology Inc.

DS20005588A-page  7

HV9961

3.0

APPLICATION INFORMATION

3.1

General Description

Peak current control (as in HV9910B) is the simplest 
and the most economical way to regulate a buck 
converter's output current. However, it suffers accuracy 
and regulation problems that arise from 
peak-to-average current error, contributed by the 
current ripple in the output inductor and the 
propagation delay in the current sense comparator. 
The full inductor current signal is unavailable for direct 
switch current sensing across the sense resistor at the 
ground path in this low-side switch buck converter 
when the control switch is at the ground potential 
because the switch is turned off. While it is very simple 
to detect the peak current in the switch, controlling the 
average inductor current is usually implemented by 
level translating the sense signal from +V

IN

. Although 

this is practical for a relatively low-input voltage, V

IN

this type of average-current control may become 
excessively complex and expensive in the offline AC or 
other high-voltage DC applications.
The HV9961 uses a proprietary control scheme that 
allows fast and accurate control of the average current 
in the buck inductor by sensing the switch current only. 
No compensation of the current control loop is 
required. The output LED current’s response to PWMD 
input is similar to that of the HV9910B. The effect of 
inductor current ripple amplitude on this control 
scheme is insignificant. Therefore, the LED current is 
independent of the variation in inductance, switching 
frequency or output voltage. Constant off-time control 
of the buck converter is used for stability and improving 
the LED current regulation over a wide range of input 
voltages. Unlike HV9910B, the HV9961 does not 
support Constant Frequency mode.

3.2

Off Timer

The timing resistor connected between RT and GND 
determines the off-time of the gate driver. Wiring this 
resistor between RT and Gate as with HV9910B is no 
longer supported. Refer to 

Equation 3-1

 for the 

computation of the gate output’s off-time. 

EQUATION 3-1:

T

OFF

s

 

R

T

k

25

------------------- 0.3

+

=

within the range of 30 kΩ ≤ R

T

 ≤ 1 MΩ

3.3

Average-Current Control 
Feedback and Output Short-circuit 
Protection

The current through the switching Metal-oxide 
Semiconductor Field-effect Transistor (MOSFET) 
source is averaged and used to give constant-current 
feedback. This current is detected with a sense resistor 
at the CS pin. The feedback operates in a fast 
Open-loop mode. No compensation is required. Output 
current is programmed as seen in 

Equation 3-2

EQUATION 3-2:

I

LED

0.275V

R

CS

-----------------

=

When the voltage at the LD input V

LD

 ≥ 1.5V

If the voltage at the LD input is less than 1.5V, the 
output current is computed as specified in 

Equation 3-3

.

EQUATION 3-3:

I

LED

V

LD

0.185

R

CS

------------------------------

=

When the voltage at the LD input 0.2V ≤ V

LD

 < 1.5V

The above equations are only valid for continuous 
conduction of the output inductor. It is good design 
practice to choose the inductance of the inductor such 
that the peak-to-peak inductor current is 30% to 40% of 
the average DC full-load current. Hence, the 
recommended inductance can be calculated as shown 
in 

Equation 3-4

.

EQUATION 3-4:

L

O

V

O MAX

T

OFF

0.4 I

O

-----------------------------------------

=

The duty-cycle range of the current control feedback is 
limited to D ≤ 0.75. A reduction in the LED current may 
occur when the desired LED string voltage V

O

 is 

greater than 75% of the input voltage V

IN

 of the 

HV9961 LED driver.
Reducing the targeted output LED string voltage V

O

below V

O(MIN)

 = V

IN 

x D

MIN

, where D

MIN

 = 1 µs/(T

OFF

+1 µs), may also result in the loss of regulation of the 
LED current. This condition, however, causes an 
increase in the LED current and can potentially trip the 
short-circuit protection comparator.
The typical output characteristic of the HV9961 LED 
driver is shown in 

Figure 3-1

. The corresponding 

HV9910B characteristic is given for the comparison.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005588A-html.html
background image

HV9961

DS20005588A-page  8

 2017 Microchip Technology Inc.

FIGURE 3-1:

Typical Output 

Characteristic of an HV9961 LED Driver.

V

IN

 = 170VDC

HV9961

HV9910B

0  10 20 30 40 50 60

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

LED Current (A)

Output Voltage (V)

Output Characteristics 

The short-circuit protection comparator trips when the 
voltage at CS exceeds 0.44V. When this occurs, the 
short-circuit gate off-time T

HICCUP

 = 400 µs is 

generated to prevent the staircasing of the inductor 
current and, potentially, its saturation due to insufficient 
output voltage. The typical short-circuit inductor current 
is shown in the waveform of 

Figure 3-2

.

400µs

0.44V/R

CS

FIGURE 3-2:

Short-circuit Inductor 

Current.

A leading-edge blanking delay is provided at CS to 
prevent false triggering of the current feedback and the 
short-circuit protection.

3.4

Linear Dimming

When the voltage at LD falls below 1.5V, the internal 
275 mV reference to the constant-current feedback 
becomes overridden by V

LD

 x 0.185. As long as the 

current in the inductor remains continuous, the LED 
current is given by 

Equation 3-3

. However, when V

LD

falls below 150 mV, the gate output becomes disabled. 
The gate signal recovers when V

LD

 exceeds 200 mV. It 

is required in some applications to use the same 
brightness control signal input to shut off the lamp. The 
typical linear dimming response is shown in 

Figure 3-3

.

FIGURE 3-3:

0             0.2            0.4           0.6            0.8           1.0            1.2            1.4            1.6

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0

LED Current (A)

LD (V)

LD Response Characteristics 

Typical Linear Dimming 

Response of an HV9961 LED Driver.

The linear dimming input could also be used for 
“mixed-mode” dimming to expand the dimming ratio. In 
such case, a pulse-width modulated signal with an 
amplitude below 1.5V should be applied to LD.

3.5

Input Voltage Regulator

The  HV9961 can be powered directly from an 
8 V

DC

–450 V

DC

 supply through its V

IN

 input. When this 

voltage is applied at the V

IN

 pin, the HV9961 maintains 

a constant 7.5V level at V

DD

. This voltage can be used 

to power the IC and external circuitry connected to V

DD

within the rated maximum current or within the thermal 
ratings of the package, whichever limit is lower. The 
V

DD

 pin must be bypassed by a low ESR capacitor to 

provide a low-impedance path for the high-frequency 
current of the gate output. The HV9961 can also be 
powered through the V

DD

 pin directly with a voltage 

greater than the internally regulated 7.5V, but less than 
12V.
Despite the instantaneous voltage rating of 450V, 
continuous voltage at V

IN

 is limited by the power 

dissipation in the package. For example, when HV9961 
draws I

IN 

= 2.5 mA from the V

IN

 input, and the 8-pin 

SOIC package is used, the maximum continuous 
voltage at V

IN

 is limited to the value shown in 

Equation 3-5

EQUATION 3-5:

V

IN MAX

T

J MAX

T

A

R

 JA

I

IN

--------------------------------

=

396V

=

Where: 
Ambient temperature: T

A

 = 25°C

Maximum working junction temperature: T

J(MAX)

 = 125°C

Junction-to-ambient thermal resistance:                            
R

θ,JA

 = 101°C/W                 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005588A-html.html
background image

 2017 Microchip Technology Inc.

DS20005588A-page  9

HV9961

In such cases, when it is needed to operate the 
HV9961 from a higher voltage, a resistor or a Zener 
diode can be added in series with the V

IN

 input to divert 

some of the power loss from the HV9961. In the above 
example, using a 100V Zener diode will allow the circuit 
to work up to 490V. The input current drawn from the 
V

IN

 pin is represented by 

Equation 3-6

.

EQUATION 3-6:

I

IN

1mA Q

G

f

S

+

Where: 

f

   = Switching frequency

Q

G  

 = Gate charge of the external FET (obtained from 

the manufacturer’s data sheet)

3.6

Gate Output

The gate output of the HV9961 is used to drive an 
external MOSFET. It is recommended that the gate 
charge Q

G

 of the external MOSFET be less than 25 nC 

for switching frequencies ≤100 kHz and less than 
15 nC for switching frequencies >100 kHz.

3.7

PWM Dimming

Due to the fast open-loop response of the 
average-current control loop of the HV9961, its PWM 
dimming performance nearly matches that of the 
HV9910B. The inductor current waveform comparison 
is shown in 

Figure 3-4

.

CH4 = Inductor Current 

CH3 = Inductor Current  
           of HV9910B 
           for comparison

CH2 = V

PWMD

 

FIGURE 3-4:

Typical PWM Dimming 

Response of an HV9961 LED Driver.

The rising and falling edges are limited by the current 
slew rate in the inductor. The first switching cycle is 
terminated upon reaching the 275 mV or V

LD

 x 0.185 

level at CS. The circuit is further reaching its 
steady-state within 3–4 switching cycles regardless of 
the switching frequency.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005588A-html.html
background image

HV9961

DS20005588A-page  10

 2017 Microchip Technology Inc.

4.0

PACKAGING INFORMATION

4.1

Package Marking Information

Legend: XX...X

Product Code or Customer-specific information

Y

Year code (last digit of calendar year)

YY

Year code (last 2 digits of calendar year)

WW

Week code (week of January 1 is week ‘01’)

NNN

Alphanumeric traceability code

  

Pb-free JEDEC

®

 designator for Matte Tin (Sn)

*

This package is Pb-free. The Pb-free JEDEC designator (     )

can be found on the outer packaging for this package.

Note:

In the event the full Microchip part number cannot be marked on one line, it will 
be carried over to the next line, thus limiting the number of available 
characters for product code or customer-specific information. Package may or 
not include the corporate logo.

3

e

3

e

8-lead SOIC

Example

NNN

XXXXXXXX

YYWW

e3

888

HV9961LG

1725

e3

16-lead SOIC

XXXXXXXXX
YYWWNNN

Example

HV9961NG
1714789

e3

e3

Maker
Microchip Technology Inc.