HV9912 Switch-Mode LED Driver IC With High Current Accuracy and Hiccup Mode Protection Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005583A-html.html
background image

 2016 Microchip Technology Inc.

DS20005583A-page  1

HV9912

Features

• Switch-mode Controller for Single-switch Drivers:

- Buck
- Boost
- Buck-boost
- SEPIC

• Works with High-side Current Sensors
• Closed-loop Control of Output Current
• High Pulse-Width Modulation (PWM) Dimming 

Ratio

• Internal 90V Linear Regulator (can be extended 

using external Zener Diodes)

• Internal 2% Voltage Reference (0°C < T

A

 < 85°C)

• Constant Frequency or Constant Off-time 

Operation

• Programmable Slope Compensation
• Linear and PWM Dimming
• +0.2A/–0.4A Gate Driver
• Hiccup Mode Protection for both Short-circuit and 

Open-circuit Conditions

• Output Overvoltage Protection
• Synchronization Capability
• Pin Compatible with HV9911

Applications

• RGB Backlight Applications
• General LED Lighting Applications
• Battery-powered LED Lamps

General Description

HV9912 is an LED driver IC designed to control 
single-switch PWM converters (buck, boost, 
buck-boost and SEPIC) in a Constant Frequency or 
Constant Off-time mode. The controller uses a peak 
Current Mode control scheme with programmable 
slope compensation and includes an internal 
transconductance amplifier to control the output current 
in closed loop, enabling high output current accuracy. 
In the case of buck and buck-boost converters, the 
output current can be sensed using a high-side current 
sensor like the HV7800. In the Constant Frequency 
mode, multiple HV9912 ICs can be synchronized with 
each other or with an external clock, using the SYNC 
pin. Programmable MOSFET current limit enables 
current limiting during Input Undervoltage and Output 
Overload conditions. The IC also includes a 0.2A 
source and 0.4A sink gate driver that makes the 
HV9912 suitable for high-power applications. An 
internal 90V linear regulator powers the IC, eliminating 
the need for a separate power supply for the IC. The IC 
also provides a FAULT output, which can be used to 
disconnect the LEDs in case of a Fault condition using 
an external disconnect FET. HV9912 also provides a 
TTL-compatible, low-frequency PWM dimming input 
that can accept an external control signal with a duty 
ratio of 0-100% and a frequency of up to a few kilohertz. 
The HV9912 includes hiccup protection from both short 
and open circuits, with automatic recovery after the 
Fault condition is cleared.

The  HV9912 is a pin-compatible replacement for 
HV9911. It can be used with existing HV9911 designs, 
which have input voltages of less than 90V, by 
changing R

OVP1

, R

OVP

, and R

T

.

Package Type

VIN

VDD

GATE

GND

CS

SC

RT

SYNC

FDBK

IREF

COMP

PWMD

OVP

FAULT

REF

CLIM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

16-lead SOIC

(Top View)

See 

Table 2-1

 for pin information.

Switch-Mode LED Driver IC with High Current Accuracy 

and Hiccup Mode Protection 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005583A-html.html
background image

HV9912

DS20005583A-page  2

 2016 Microchip Technology Inc.

Functional Block Diagram

V

bg 

VIN

VDD

REF

GATE

FDBK

IREF

COMP

GND

PWMD

POR 

RT

SYNC

Blanking 

CS

SC

ramp 

1:2 

OVPD 

OVP

FAULT

SS 

SS 

SCD 

CLIM

Linear Regulator 

One Shot 

Hiccup/Dimming 

Block 

POR 

OVD 

SCD 

PWMD 

SS 

G

M

5V rising 
4.5V falling 

PWMD 

13R 

5.60/6.10V 

T

BLANK 

T

BLANK,SC 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005583A-html.html
background image

 2016 Microchip Technology Inc.

DS20005583A-page  3

HV9912

Typical Application Circuit 

10 

15 

13 

14 

16 

11 

12 

C

IN 

C

DD 

C

REF 

R

R2 

R

R1 

R

L1 

R

L2 

R

R

SLOPE 

R

SC 

R

CS 

R

OVP1 

R

OVP2 

C

D1 

Q1 

L1 

Q2 

C

R

VIN

VDD

GND

SC

RT 

REF

CLIM

IREF

SYNC

PWMD

COMP

FDBK

FAULT

OVP

CS

GATE

HV9912 

D2 

V

IN 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005583A-html.html
background image

HV9912

DS20005583A-page  4

 2016 Microchip Technology Inc.

1.0

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

V

IN

 to GND  ............................................................................................................................................... –0.5 to +100V

V

DD

 to GND............................................................................................................................................–0.3V to +13.5V

CS to GND ........................................................................................................................................ –0.3V to V

DD

+0.3V

PWMD to GND.................................................................................................................................. –0.3V to V

DD

+0.3V

GATE to GND.................................................................................................................................... –0.3V to V

DD

+0.3V

All Other Pins to GND ....................................................................................................................... –0.3V to V

DD

+0.3V

Continuous Power Dissipation (T

A

= +25°C)..................................................................................................... 1200 mW

Operating Junction Temperature Range .............................................................................................. –40°C to +125°C
Storage Temperature Range ................................................................................................................ –65°C to +150°C

 Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the 
device. This is a stress rating only, and functional operation of the device at those or any other conditions above those 
indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for 
extended periods may affect device reliability. 

ELECTRICAL CHARACTERISTICS 

Electrical Specifications: T

A

 = 25°C and V

IN

 = 12V unless otherwise specified. 

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions 

INPUT
Input DC Supply Voltage Range

V

INDC

Note 1

90

V

DC input voltage (

Note 2

)

Shutdown Mode Supply Current

I

INSD

1.5

mA

PWMD connected to GND 
(

Note 2

)

INTERNAL REGULATOR

Internally Regulated Voltage

V

DD

7.25

7.75

8.25

V

V

IN

 = 9V–90V; PWMD con-

nected to GND (

Note 2

)

V

DD

 Undervoltage Lockout       

Threshold

UVLO

RISE

6.5

7

V

V

DD

 rising

V

DD

 Undervoltage Lockout               

Hysteresis

UVLO

HYST

500

mV

V

DD

 falling

REFERENCE

REF Pin Voltage 

V

REF

1.225

1.25

1.285

V

REF bypassed with a 0.1 µF 
capacitor to GND; I

REF

 = 0; 

PWMD = GND;                      
0°C < T

A

 < +85°C

1.225

1.25

1.29

REF bypassed with a 0.1 µF 
capacitor to GND; I

REF

 = 0; 

PWMD = GND;                 
–40°C < T

A

 < 125°C

Line Regulation of Reference Voltage

V

REFLINE

0

20

mV

REF bypassed with a 0.1 µF 
capacitor to GND; I

REF

 = 0; 

V

DD

 = 7.25V–12V; 

PWMD = GND

Note 1: See 

Section 3.3 “Minimum Input Voltage at VIN Pin”

 for the minimum input voltage.

2: The specifications which apply over the full operating temperature range at

–40°C < T

A

 < +85°C are guaranteed by design and characterization.

3: For design guidance only

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005583A-html.html
background image

 2016 Microchip Technology Inc.

DS20005583A-page  5

HV9912

Load Regulation of Reference           
Voltage

V

REFLOAD

0

10

mV

REF bypassed with a 0.1 µF 
capacitor to GND; 

I

REF

 = 0 µA–500 µA; 

PWMD = GND

PWM DIMMING
PWMD Input Low Voltage

V

PWMD(LO)

0.8

V

Note 2

PWMD Input High Voltage

V

PWMD(HI)

2

V

Note 2

PWMD Pull-down Resistance

R

PWMD

50

100

150

kΩ

V

PWMD

 = 5V

GATE
GATE Short-circuit Current

I

SOURCE

0.2

A

V

GATE

 = 0V

GATE Sinking Current

I

SINK

0.4

A

V

GATE 

= V

DD

GATE Output Rise Time

T

RISE

50

85

ns

C

GATE

 = 1 nF

GATE Output Fall Time

T

FALL

25

45

ns

C

GATE

 = 1 nF

OVERVOLTAGE PROTECTION
Overvoltage Rising Trip Point

V

OVP,RISING

4.75

5

5.25

V

OVP rising 

Overvoltage Hysteresis

V

OVP,HYST

0.5

V

OVP falling

CURRENT SENSE

Leading Edge Blanking

T

BLANK

100

280

ns

0°C < T

< +85°C

100

330

–40°C < T

< +125°C

Delay to Output of C

OMP

 Comparator

T

DELAY1

200

ns

COMP = V

DD

; C

LIM 

= REF;

C

SENSE 

= 0 mV to 600 mV 

(step up)

Delay to Output of C

LIMIT

 Comparator

T

DELAY2

200

ns

COMP = V

DD

; C

LIM 

= 300 mV; 

C

SENSE

 = 0 mV to 400 mV 

(step up)

Comparator Offset Voltage

V

OFFSET

–10

10

mV

INTERNAL TRANSCONDUCTANCE OPAMP

Gain Bandwidth Product

GBW

1

MHz

75 pF capacitance at OP pin 
(

Note 3

)

Open-loop DC Gain

A

V

60

dB

Output open

Input Common Mode Range

V

CM

–0.3

3

V

Note 3

Output Voltage Range

V

O

0.7

6.75

V

Note 3

Transconductance

g

M

450

550

650

µA/V

Input Offset Voltage

V

OFFSET

–5

5

mV

Input Bias Current

I

BIAS

0.5

1

nA

Note 3

OSCILLATOR

Oscillator Frequency

f

OSC1

99

106

118

kHz

R

T

 = 500 kΩ (

Note 2

)

f

OSC2

510

580

650

kHz

R

= 96 kΩ (

Note 2

)

Maximum Duty Cycle

D

MAX

87

93

%

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications: T

A

 = 25°C and V

IN

 = 12V unless otherwise specified. 

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions 

Note 1: See 

Section 3.3 “Minimum Input Voltage at VIN Pin”

 for the minimum input voltage.

2: The specifications which apply over the full operating temperature range at

–40°C < T

A

 < +85°C are guaranteed by design and characterization.

3: For design guidance only

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005583A-html.html
background image

HV9912

DS20005583A-page  6

 2016 Microchip Technology Inc.

SYNC Input High

V

SYNCH

2

V

SYNC Input Low

V

SYNCL

0.8

V

SYNC Output Current

I

OUTSYNC

18

µA

OUTPUT SHORT-CIRCUIT
Gain for Short-circuit Comparator

G

SC

1.9

2

2.1

V

Minimum Output Voltage of the Gain 
Stage

V

OMIN

0.125

0.25

V

0°C < T

A

 < +85°C;               

I

REF

 = GND

0.125

0.26

–40°C < T

A

 < +125°C;         

I

REF 

= GND


Propagation Time for Short-circuit 
Detection

T

OFF

250

ns

PWMD = V

DD

; I

REF 

= 400 mA; 

FDBK step from                         
0 mV to 900 mV; FAULT goes 
from high to low

Fault Output Rise Time

T

RISE,FAULT

300

ns

330 pF capacitor at FAULT pin

Fault Output Fall Time

T

FALL,FAULT

300

ns

330 pF capacitor at FAULT pin

Blanking Time

T

BLANK,SC

480

900

ns

Current Source at COMP Pin used for 
Hiccup Mode Protection

I

HICCUP

5

µA

SLOPE COMPENSATION
Current Sourced Out of SC Pin

I

SLOPE

0

100

µA

Note 2

Internal Current Mirror Ratio

G

SLOPE

1.8

2

2.26

I

SLOPE

 = 50 µA; 

R

SC 

= 1 kΩ

TEMPERATURE SPECIFICATIONS

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

TEMPERATURE RANGES
Operating Junction Temperature

T

J

–40

+125

°C

Storage Temperature

Ts

–65

+150

°C

PACKAGE THERMAL RESISTANCE
16-lead SOIC 

JA

83

°C/W

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications: T

A

 = 25°C and V

IN

 = 12V unless otherwise specified. 

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions 

Note 1: See 

Section 3.3 “Minimum Input Voltage at VIN Pin”

 for the minimum input voltage.

2: The specifications which apply over the full operating temperature range at

–40°C < T

A

 < +85°C are guaranteed by design and characterization.

3: For design guidance only

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005583A-html.html
background image

 2016 Microchip Technology Inc.

DS20005583A-page  7

HV9912

2.0

PIN DESCRIPTION

Table 2-1

 shows the pin description details of HV9912. 

TABLE 2-1:

PIN DESCRIPTION TABLE 

Pin Number

Name

Description

1

VIN

This pin is the input of a 90V high-voltage regulator.

2

VDD

This is a power supply pin for all internal circuits. It must be bypassed with a 
low-ESR capacitor to GND (at least 0.1 µF).

3

GATE

This pin is the output gate driver for an external N-channel power MOSFET.

4

GND

This is the ground return for all the low-power analog internal circuitry. This pin must 
be connected to the return path from the input.

5

CS

This pin is used to sense the source current of the external power FET. It includes a 
built-in 100 ns (minimum) blanking time.

6

SC

This pin is used to set the slope compensation.

7

RT

This pin sets the frequency of the power circuit. A resistor between RT and GND will 
program the circuit in Constant Frequency mode.

8

SYNC

This I/O pin may be connected to the SYNC pin of other HV9912 circuits and will 
cause the oscillators to lock to the highest frequency oscillator.

9

CLIM

This pin provides a programmable input current limit for the converter. The current 
limit can be set using a resistor divider from the REF pin.

10

REF

This pin provides 2% accurate reference voltage. It must be bypassed with a         
0.01 μF–0.1 μF capacitor to GND.

11

FAULT

This pin is pulled to ground when there is an Output Short-circuit condition or Output 
Overvoltage condition. This pin can be used to drive an external MOSFET (in the 
case of boost converters) to disconnect the load from the source.

12

OVP

This pin provides the overvoltage protection for the converter. When the voltage at 
this pin exceeds 5V, the GATE output of the HV9912 is turned off, and the FAULT 
goes low. The IC will turn on when the voltage at the pin goes below 4.5V.

13

PWMD

When this pin is pulled to GND (or left open), switching of the HV9912 is disabled. 
When an external TTL high level is applied to it, switching will resume.

14

COMP

Stable Closed-loop control can be accomplished by connecting a compensation net-
work between COMP and GND. This capacitor also controls the hiccup time.

15

IREF

The voltage at this pin sets the output current level. The current reference can be set 
using a resistor divider from the REF pin.

16

FDBK

This pin provides output current feedback to the HV9912 by using a current sense 
resistor.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005583A-html.html
background image

HV9912

DS20005583A-page  8

 2016 Microchip Technology Inc.

3.0

DETAILED DESCRIPTION

3.1

Power Topology

The  HV9912 is a Switch-mode converter LED driver 
designed to control a Continuous Conduction mode 
buck or boost in a Constant Frequency or Constant 
Off-time mode. The IC includes an internal linear 
regulator, which operates from input voltages up to 
90V, eliminating the need for an external power supply 
for the IC. The IC includes features typically required in 
LED drivers, such as open LED protection, output 
short-circuit protection, linear and PWM dimming, 
programmable input current limiting and accurate 
control of the LED current. A high-current gate drive 
output enables the controller to be used in high-power 
converters.
The  HV9912 is an enhanced version of the HV9911 
with hysteretic overvoltage protection and Hiccup 
mode short-circuit protection. The IC includes a 
blanking network controlled by the PWMD input to 
prevent the short-circuit protection from triggering 
prematurely during PWM dimming due to the parasitic 
capacitance of the LED string. It also allows the I

REF

pin to be pulled all the way down to GND without 
triggering the short-circuit protection. It is a 
pin-compatible replacement for the HV9911.

3.2

Linear Regulator

The HV9912 can be powered directly from its V

IN

 pin 

that withstands a voltage of up to 90V. When a voltage 
is applied to the V

IN 

pin, the HV9912 tries to maintain a 

constant 7.75V (typical) at the V

DD

 pin. The regulator 

also has a built-in undervoltage lockout which shuts off 
the IC if the voltage at the V

DD 

pin falls below the UVLO 

threshold.
The V

DD

 pin must be bypassed by a low-ESR capacitor 

(≥0.1 µF) to provide a low-impedance path for the 
high-frequency current of the output gate driver.
The input current drawn from the V

IN

 pin is the sum of 

the 1.5 mA current drawn by the internal circuit and the 
current drawn by the gate driver, which in turn depends 
on the switching frequency and the gate charge of the 
external FET. See 

Equation 3-1

.

EQUATION 3-1:

I

IN

1.5mA

Q

G

f

S

+

=

In the above equation, f

S

 is the switching frequency, 

and Q

G

 is the external FET’s gate charge, which can be 

obtained from the data sheet of the FET.

3.3

Minimum Input Voltage at V

IN

 Pin

The minimum input voltage at which the converter will 
start and stop depends on the minimum voltage drop 
required for the linear regulator. The internal linear 
regulator will control the voltage at the V

DD

 pin when 

V

IN

 is between 9V and 90V. However, when V

IN

 is less 

than 9V, the converter will still function as long as V

DD

is greater than the undervoltage lockout. Thus, the 
converter might be able to start at input voltages lower 
than 9V. The start/stop voltages at the V

IN

 pin can be 

determined using the minimum voltage drop across the 
linear regulator as a function of the current drawn. This 
data is shown in 

Figure 3-1

 for ambient temperatures of 

25°C and 85°C.
Assume an ambient temperature of 85°C. Provided 
that the IC is driving a 15 nC gate charge FET at 
200 kHz, the total input current is estimated to be 
4.5 mA when 

Equation 3-1

 is used. At this input 

current, the minimum voltage drop from 

Figure 3-1

 

would be around V

DROP

 = 1.25V. However, before the 

IC starts switching, the current drawn would have been 
1.5 mA. At this current level, the voltage drop would be 
approximately    V

DROP1

 = 0.3V. Thus, the start/stop V

IN

voltages could be computed as demonstrated in 

Equation 3-2

 and 

Equation 3-3

 below: 

EQUATION 3-2:

V

IN START

UVLO

MAX

V

DROP1

+

=

70.3V

+

=

7.3V

=

EQUATION 3-3:

V

IN STOP

UVLO

MAX

UVLO

V

DROP

+

=

70.5V

1.25V

+

=

7.75V

=

Minimum Voltage Drop vs. I

IN

0.5 

1.5 

2.5 

0 2 4 6 8 10 

I

IN 

(mA)

M

in

im

u

m V

o

lt

a

g

e D

ro

p (

V

)

T

= 25

O

T

= 85

O

FIGURE 3-1:

Headroom vs. Input Current. 

In this case, the gate driver draws too much current and 
V

INSTART

 is less than V

INSTOP

. When this happens, the 

IC will oscillate between ON and OFF if the input 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005583A-html.html
background image

 2016 Microchip Technology Inc.

DS20005583A-page  9

HV9912

voltage is between the start and stop voltages. 
Therefore, it is recommended that the input voltage be 
kept higher than V

INSTOP

.

3.4

Reference

HV9912 includes a 2% accurate 1.25V reference, 
which can be used as the reference for the output 
current as well as to set the switch current limit. The 
reference is buffered so that it can deliver a maximum 
of 500 µA external current to drive the external circuitry. 
The reference should be bypassed with at least a 10 nF 
low-ESR capacitor.

Note:

To avoid abnormal Startup conditions, the 
bypass capacitor at the REF pin should 
not exceed 0.1 µF.

3.5

Oscillator

Connecting the resistor between R

T

 and GND will 

program the time period.
In both cases, resistor R

T

 sets the current, which 

charges an internal oscillator capacitor. The capacitor 
voltage ramps up linearly. When the voltage increases 
beyond the internal set voltage, a comparator triggers 
the set input of the internal SR flip-flop. This starts the 
next switching cycle. The time period of the oscillator 
can be computed as shown in 

Equation 3-4

.

EQUATION 3-4:

T

S

R

T

18pF

3.6

Synchronization

The SYNC pin is an input/output (I/O) port to a 
fault-tolerant peer-to-peer and/or master clock 
synchronization circuit. For synchronization, the SYNC 
pins of multiple HV9912-based converters can be 
connected together and may also be connected to the 
open drain output of a master clock. When connected 
in this manner, the oscillators will lock to the device with 
the highest operating frequency. When synchronizing 
multiple ICs, it is recommended that the same timing 
resistor (corresponding to the switching frequency) be 
used in all the HV9912 circuits.
On rare occasions, given the length of the connecting 
lines for the SYNC pins, a resistor between SYNC and 
GND may be required to damp any ringing due to 
parasitic capacitances. It is recommended that the 
resistor chosen be greater than 300 kΩ.
When synchronized in this manner, a permanent High 
or Low condition on the SYNC pin will result in a loss of 
synchronization, but the HV9912-based converters will 
continue to operate at their individually set operating 
frequencies. Since loss of synchronization will not 
result in total system failure, the SYNC pin is 
considered fault tolerant.

3.7

Slope Compensation

For Continuous Conduction mode converters operating 
in the Constant Frequency mode, slope compensation 
becomes necessary to ensure stability of the Peak 
Current mode controller if the operating duty cycle is 
greater than 50%. Choosing a slope compensation 
which is one half of the down slope of the inductor 
current ensures that the converter will be stable for all 
duty cycles.
Slope compensation can be programmed by two 
resistors R

SLOPE

 and R

SC

. Assuming a down slope of 

DS (A/µs) for the inductor current, the slope 
compensation resistors can be computed as illustrated 
in 

Equation 3-5

.

EQUATION 3-5:

R

SC

R

SLOPE

DS 10

6

T

S

R

CS

10

--------------------------------------------------------------------------

=

Where R

CS

 is the current sense resistor which 

senses the switching FET current

Note:

The maximum current that can be sourced 
out of the SC pin is 100 µA. This limits the 
minimum value of the R

SLOPE

 resistor to 

25 kΩ. If the equation for slope 
compensation produces a R

SLOPE

 less 

than this value, then R

SC

 would have to be 

reduced accordingly. It is recommended 
that R

SLOPE

 be chosen within the range of 

25 kΩ to 50 kΩ.

3.8

Current Sense

The current sense input of the HV9912 includes a 
built-in 100 ns (minimum) blanking time to prevent 
spurious turn-off due to the initial current spike when 
the FET turns on.
The  HV9912 includes two high-speed comparators— 
one is used during normal operation and the other is 
used to limit the maximum input current during Input 
Undervoltage or Overload conditions.
The IC includes an internal resistor divider network, 
which steps down the voltage at the COMP pin by a 
factor of 15. This stepped-down voltage is given to one 
of the comparators as the current reference. The 
reference to the other comparator, which acts to limit 
the maximum inductor current, is given externally.
It is recommended that the sense resistor R

CS

 be 

chosen so as to provide about 250 mV current sense 
signal.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005583A-html.html
background image

HV9912

DS20005583A-page  10

 2016 Microchip Technology Inc.

3.9

Current Limit

Current limit has to be set by a resistor divider from the 
1.25V reference available on the IC. Assuming a 
maximum operating inductor current I

pk 

(including 

ripple current), the maximum voltage at the C

LIM

 pin 

can be set as shown in 

Equation 3-6

.

EQUATION 3-6:

V

CLIM

1.2 I

PK

R

CS

R

CS

R

SLOPE

+

0.9

Note that this equation assumes a current limit at 120% 
of the maximum input current. Also, if V

CLIM

 is greater 

than 450 mV, the saturation of the internal opamp will 
determine the limit on the input current rather than the 
C

LIM

 pin. In such a case, the sense resistor R

CS

 should 

be reduced until V

CLIM

 reduces below 550 mV.

It is recommended that no capacitor be connected 
between C

LIM

 and GND.

3.10

Internal 1 MHz Transconductance 
Amplifier

HV9912 includes a built-in 1 MHz transconductance 
amplifier with tri-state output, which can be used to 
close the feedback loop. The output current sense 
signal is connected to the FDBK pin and the current 
reference is connected to the I

REF

 pin.

The output of the opamp is controlled by the signal 
applied to the PWMD pin. When PWMD is high, the 
output of the opamp is connected to the COMP pin. 
When PWMD is low, the output is left open. This 
enables the integrating capacitor to hold the charge 
when the PWMD signal has turned off the gate drive. 
When the IC is enabled, the voltage on the integrating 
capacitor will force the converter into Steady state 
almost instantaneously.
The output of the opamp is buffered and connected to 
the current sense comparator using a 15:1 divider. The 
buffer helps to prevent the integrator capacitor from 
discharging during the PWM Dimming state.

3.11

PWM Dimming

PWM dimming can be achieved by driving the PWMD 
pin with a TTL-compatible square wave source. The 
PWM signal is connected internally to three different 
nodes—the transconductance amplifier, the FAULT
output and the GATE output.
When the PWMD signal is high, the GATE and FAULT
pins are enabled and the transconductance opamp’s 
output is connected to the external compensation 
network. Thus, the internal amplifier controls the output 
current. When the PWMD signal goes low, the output of 
the transconductance amplifier is disconnected from 
the compensation network. Therefore the integrating 

capacitor maintains the voltage across it. The GATE is 
disabled, so the converter stops switching and the 
FAULT pin goes low, turning off the disconnect switch.
The output capacitor of the converter determines the 
converter’s PWM dimming response because the 
capacitor has to get charged and discharged whenever 
the PWMD signal goes high or low. In the case of a 
buck converter, since the inductor current is 
continuous, a very small capacitor is used across the 
LEDs. This minimizes the effect of the capacitor on the 
converter’s PWM dimming response. However, in the 
case of a boost converter, the output current is 
discontinuous, and a very large output capacitor is 
required to reduce the ripple in the LED current. Thus, 
this capacitor will have a significant impact on the PWM 
dimming response. By turning off the disconnect switch 
when PWMD goes low, the output capacitor is 
prevented from being discharged. This dramatically 
improves the boost converter’s PWM dimming 
response.

Note:

In case of Continuous Conduction mode 
boost converters, disconnecting the 
capacitor might cause a sudden spike in 
the capacitor voltage as the energy in the 
inductor is dumped into the capacitor. This 
increase in the capacitor voltage might 
cause the OVP comparator to trip if the 
OVP point is set too close to the maximum 
operating voltage. Thus, either the capac-
itor has to be larger to absorb this energy 
without increasing the capacitor voltage 
significantly or the OVP set point has to be 
increased.

3.12

False Triggering of the 
Short-Circuit Comparator During 
PWM Dimming

During PWM dimming, the parasitic capacitance of the 
LED string causes a spike in the output current when 
the disconnect FET is turned on. With the HV9911, this 
parasitic spike in the output current makes the IC 
falsely detect an Overcurrent condition and shut down. 
To prevent this false shutdown, an R-C filter is used at 
the FDBK pin to filter this spike.

To prevent false triggering in the HV9912, there is a 
built-in 500 ns blanking network for the short-circuit 
comparator, which eliminates the need for the external 
R-C low-pass filter. This blanking network is activated 
when the PWMD input goes high. Thus, the 
short-circuit comparator will not see the spike in the 
LED current during the PWM Dimming turn-on 
transition. Once the blanking timer is completed, the 
short-circuit comparator will start monitoring the output 
current. Thus, the total delay time for detecting a 
short-circuit will depend on the condition of the PWMD 
input.

Maker
Microchip Technology Inc.