HV9911 Switch-Mode LED Driver IC with High Current Accuracy Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005580A-html.html
background image

 2017 Microchip Technology Inc.

DS20005580A-page  1

HV9911

Features

• Switch-mode Controller for Single-switch Drivers:

- Buck
- Boost
- Buck-boost
- SEPIC

• Works with High-side Current Sensing
• Closed-loop Control of Output Current
• High Pulse-Width Modulation (PWM) Dimming 

Ratio

• Internal 250V Linear Regulator (can be extended 

using external Zener Diodes)

• Internal 2% Voltage Reference (0°C < T

A

 < 85°C)

• Constant Frequency or Constant Off-time 

Operation

• Programmable Slope Compensation
• Logic Input for Enable and PWM Dimming
• +0.2A/-0.4A Gate Driver
• Output Short-circuit Protection
• Output Overvoltage Protection
• Synchronization Capability
• Programmable Metal-Oxide Semiconductor 

Field-Effect Transistor (MOSFET) Current Limit

Applications

• RGB Backlight Applications
• Battery-powered LED Lamps
• Other DC/DC LED Drivers

General Description

The  HV9911 is an LED driver IC designed to control 
single-switch PWM converters (buck, boost, 
buck-boost and SEPIC) in a Constant Frequency or 
Constant Off-time mode. The controller uses a peak 
current control scheme with programmable slope 
compensation and includes an internal 
transconductance amplifier to control the output current 
in closed loop, enabling high output current accuracy. 
In the Constant Frequency mode, multiple HV9911s 
can be synchronized with each other or with an 
external clock using the sync pin. Programmable 
MOSFET current limit enables current limiting during 
Input Undervoltage and Output Overload conditions. 
The IC also includes a 0.2A source and 0.4A sink gate 
driver for high-power applications. An internal 
9V–250V linear regulator powers the IC, eliminating the 
need for a separate power supply. The HV9911 
provides a TTL-compatible PWM dimming input that 
can accept an external control signal with a duty ratio 
of 0%–100% and a frequency of up to a few kilohertz. 
The IC also provides a FAULT output which, can be 
used to disconnect the LEDs in case of a Fault 
condition, using an external disconnect FET.
The  HV9911-based LED driver is ideal for RGB 
backlight applications with DC inputs. HV9911-based 
LED lamp drivers can achieve efficiency in excess of 
90% for buck and boost applications.

Package Type

VIN

VDD

GATE

GND

CS

SC

RT

SYNC

FDBK

IREF

COMP

PWMD

OVP

FAULT

REF

CLIM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

16-lead SOIC

(Top view)

 See 

Table 2-1

 for pin information.

Switch-Mode LED Driver IC with High Current Accuracy

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005580A-html.html
background image

HV9911

DS20005580A-page  2

 2017 Microchip Technology Inc.

Functional Block Diagram

V

bg 

VIN

VDD

 REF

 GATE

13R 

FDBK

IREF

COMP

GND 

PWMD 

POR 

RT

SYNC

G

CLIM

100ns 

Blanking 

CS

DIS 

 SC

ramp 

1:2 

DIS 

V

BG 

OVP

FAULT

POR 

DIS 

One Shot 

Linear 

Regulator 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005580A-html.html
background image

 2017 Microchip Technology Inc.

DS20005580A-page  3

HV9911

Typical Application Circuit

10 

15 

13 

14 

16 

11 

12 

C

IN 

C

DD 

C

REF 

R

R2 

R

R1 

R

L1 

R

L2 

R

R

SLOPE 

R

SC 

SC 

R

CS 

R

OVP1 

R

OVP2 

C

D1 

Q1 

L1 

Q2 

C

R

VIN

VDD

GND

SC

RT

REF

CLIM

IREF

SYNC

PWMD

COMP

FDBK

FAULT

OVP

CS

GATE

HV9911 

 (Boost)

Typical Application Circuit

L1 

10 

15 

13 

16 

14 

11 

12 

CC 

C

IN 

C

DD 

C

REF 

R

R2 

R

R1 

R

L1 

R

L2 

R

R

SLOPE 

R

SC 

R

CS 

C

D1 

Q1 

R

HV7800 

VIN

VDD

GND

SC

RT

REF

CLIM

IREF

SYNC

PWMD

COMP

FDBK

FAULT

GATE

CS

OVP

HV9911 

 (Buck)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005580A-html.html
background image

HV9911

DS20005580A-page  4

 2017 Microchip Technology Inc.

Typical Application Circuit

10 

15 

13 

14 

16 

11 

12 

C

IN 

C

DD 

C

REF 

R

R2 

R

R1 

R

L1 

R

L2 

R

R

SLOPE 

R

SC 

R

CS 

R

OVP1 

R

OVP2 

C

D1 

Q1 

L1 

Q2 

C

R

L2 

C1 

VIN

VDD

GND

SC

RT

REF

CLIM

IREF

SYNC

PWMD

COMP

FDBK

FAULT

OVP

CS

GATE

HV9911 

 (SEPIC)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005580A-html.html
background image

 2017 Microchip Technology Inc.

DS20005580A-page  5

HV9911

1.0

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

V

IN

 to GND................................................................................................................................................ –0.5 to +250V

V

DD

 to GND............................................................................................................................................–0.3V to +13.5V

CS to GND ...................................................................................................................................... –0.3V to (V

DD

+0.3V)

PWMD to GND................................................................................................................................ –0.3V to (V

DD

+0.3V)

Gate to GND ................................................................................................................................... –0.3V to (V

DD

+0.3V)

All Other Pins to GND ..................................................................................................................... –0.3V to (V

DD

+0.3V)

Continuous Power Dissipation (T

A

= +25°C; Derate 10 mW/°C above +25°C) ................................................ 1000 mW

Operating Ambient Temperature, T

A

.......................................................................................................–40°C to +85°C

Maximum Junction Temperature, T

J(MAX) 

...........................................................................................................+125°C

Storage Temperature, T

S

......................................................................................................................–65°C to +150°C

 Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the 
device. This is a stress rating only, and functional operation of the device at those or any other conditions above those 
indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for 
extended periods may affect device reliability. 

ELECTRICAL CHARACTERISTICS 

Electrical Specifications: T

A

 = 25°C and V

IN

 = 24V unless otherwise specified. 

Parameter

Sym.

Min.

Typ.

Max.

Unit

Conditions 

INPUT
Input DC Supply Voltage Range

V

INDC

Note 2

250

V

DC input voltage (

Note 1

)

Shutdown Mode Supply Current

I

INSD

1

1.5

mA

PWMD connected to GND, 
V

IN

 = 24V (

Note 1

)

INTERNAL REGULATOR

Internally Regulated Voltage

V

DD

7.25

7.75

8.25

V

V

IN

 = 9V–250V, I

DD(EXT)

 = 0, 

PWMD connected to GND 
(

Note 1

)

V

DD

 Undervoltage Lockout       

Threshold

UVLO

6.65

6.9

7.2

V

V

DD

 Rising

V

DD

 Undervoltage Lockout            

Hysteresis

∆UVLO

500

mV

Steady State External Voltage that 
can be applied at the V

DD 

Pin

V

DD(EXT)

12

V

Note 3

REFERENCE

REF Pin Voltage 

V

REF

1.225

1.25

1.275

V

REF bypassed with a 0.1 µF 
capacitor to GND, I

REF

 = 0, 

V

DD 

= 7.75V, PWMD = GND 

(

Note 1

)

Line Regulation of Reference         
Voltage

V

REFLINE

0

20

mV

REF bypassed with a 0.1 µF 
capacitor to GND, I

REF

 = 0, 

V

DD

 = 7.25V–12V, 

PWMD = GND

Note 1: Denotes specifications which apply over the full operating ambient temperature range of 

–40°C < T

A

 < +85°C

2: See 

Section 3.3 “Minimum Input Voltage at VIN Pin”

 for minimum input voltage.

3: Parameters might not be within specifications if the external V

DD

 voltage is greater than V

DD(EXT) 

or if V

DD

 

is less than 7.25V.

4: For design guidance only 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005580A-html.html
background image

HV9911

DS20005580A-page  6

 2017 Microchip Technology Inc.

Load Regulation of Reference           
Voltage

V

REFLOAD

0

10

mV

REF bypassed with a 0.1 µF 
capacitor to GND, 

I

REF

 = 0µ–500µ, 

PWMD = GND

PMW DIMMING
PWMD Input Low Voltage

V

PWMD(LO)

0.8

V

V

DD

 = 7.25V–12V (

Note 1

)

PWMD Input High Voltage

V

PWMD(HI)

2

V

V

DD

 = 7.25V–12V (

Note 1

)

PWMD Pull-down Resistance

R

PWMD

50

100

150

kΩ

V

PWMD

 = 5V

GATE
Gate Short-circuit Current

I

SOURCE

0.2

A

V

GATE

 = 0V, V

DD

 = 7.75V

Gate Sinking Current

I

SINK

0.4

A

V

GATE 

= 7.75V, V

DD 

= 7.75V

Gate Output Rise Time

T

RISE

50

85

ns

C

GATE

 = 1 nF, V

DD

 = 7.75V

Gate Output Fall Time

T

FALL

25

45

ns

C

GATE

 = 1 nF, V

DD

 = 7.75V

OVERVOLTAGE PROTECTION

IC Shutdown Voltage

V

OVP

1.215

1.25

1.285

V

V

DD 

= 7.25V–12V, 

OVP rising (

Note 1

)

CURRENT SENSE
Leading Edge Blanking

T

BLANK

100

375

ns

Delay to Output of COMP Compara-
tor

T

DELAY1

180

ns

COMP = V

DD

, C

LIM 

= REF,

V

CS 

= 0 mV to 600 mV 

(step up)

Delay to Output of C

LIMIT

 Compara-

tor

T

DELAY2

180

ns

COMP = V

DD

,                      

C

LIM

 = 300 mV, V

CS 

= 0 mV to 

400 mV (step up)

Comparator Offset Voltage

V

OFFSET

–10

10

mV

INTERNAL TRANSCONDUCTANCE OPAMP

Gain Bandwidth Product

GB

1

MHz

75 pF capacitance at COMP 
pin (

Note 4

)

Open-loop DC Gain

A

V

66

dB

Output open

Input Common Mode Range

V

CM

–0.3

3

V

Note 4

Output Voltage Range

V

O

0.7

6.75

V

DD 

= 7.75V (

Note 4

)

Transconductance

g

m

340

435

530

µA/V

Input Offset Voltage

V

OFFSET

–2

4

mV

Input Bias Current

I

BIAS

0.5

1

nA

Note 4

OSCILLATOR

Oscillator Frequency

f

OSC1

88

100

112

kHz

R

T

 = 909 kΩ (

Note 1

)

f

OSC2

308

350

392

kHz

R

= 261 kΩ (

Note 1

)

Maximum Duty Cycle

D

MAX

90

%

Sync Output Current

I

OUTSYNC

10

20

µA

Sync Input Current

I

INSYNC

0

200

µA

V

SYNC 

< 0.1V

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications: T

A

 = 25°C and V

IN

 = 24V unless otherwise specified. 

Parameter

Sym.

Min.

Typ.

Max.

Unit

Conditions 

Note 1: Denotes specifications which apply over the full operating ambient temperature range of 

–40°C < T

A

 < +85°C

2: See 

Section 3.3 “Minimum Input Voltage at VIN Pin”

 for minimum input voltage.

3: Parameters might not be within specifications if the external V

DD

 voltage is greater than V

DD(EXT) 

or if V

DD

 

is less than 7.25V.

4: For design guidance only 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005580A-html.html
background image

 2017 Microchip Technology Inc.

DS20005580A-page  7

HV9911

OUTPUT SHORT CIRCUIT

Propagation Time for Short-circuit 
Detection

T

OFF

250

ns

I

REF 

= 200 mV, 

FDBK = 450 mV, FAULT goes 
from high to low 

Fault Output Rise Time

T

RISE, FAULT

300

ns

1 nF capacitor at FAULT pin

Fault Output Fall Time

T

FALL, FAULT

200

ns

1 nF capacitor at FAULT pin

Amplifier Gain at I

REF

 Pin

G

FAULT

1.8

2

2.2

I

REF 

= 200 mV

SLOPE COMPENSATION
Current sourced out of SC Pin

I

SLOPE

0

100

µA

Internal Current Mirror Ratio

G

SLOPE

1.8

2

2.2

I

SLOPE

 = 50 µA, 

RC

SENSE

= 1 kΩ

TEMPERATURE SPECIFICATIONS

Temperature Characteristics: Unless otherwise noted, for all specifications T

A

 =T

J

 = +25°C.

Parameter

Sym.

Min.

Typ.

Max.

Unit

Conditions

TEMPERATURE RANGE
Operating Ambient Temperature

T

A

–40

+85

°C

Maximum Junction Temperature

T

J(MAX)

+125

°C

Storage Temperature

Ts

–65

+150

°C

PACKAGE THERMAL RESISTANCE
16-lead SOIC 

JA

83

°C/W

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications: T

A

 = 25°C and V

IN

 = 24V unless otherwise specified. 

Parameter

Sym.

Min.

Typ.

Max.

Unit

Conditions 

Note 1: Denotes specifications which apply over the full operating ambient temperature range of 

–40°C < T

A

 < +85°C

2: See 

Section 3.3 “Minimum Input Voltage at VIN Pin”

 for minimum input voltage.

3: Parameters might not be within specifications if the external V

DD

 voltage is greater than V

DD(EXT) 

or if V

DD

 

is less than 7.25V.

4: For design guidance only 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005580A-html.html
background image

HV9911

DS20005580A-page  8

 2017 Microchip Technology Inc.

2.0

PIN DESCRIPTION

Table 2-1

 shows the description of pins in HV9911. 

Refer to 

Package Type

 for the location of pins. 

TABLE 2-1:

PIN DESCRIPTION TABLE 

Pin Number

Pin Name

Description

1

VIN

This pin is the input of a 250V high-voltage regulator.

2

VDD

This is a power supply pin for all internal circuits. It must be bypassed with a low 
ESR capacitor to GND (at least 0.1 uF).

3

Gate

This pin is the output gate driver for an external N-channel power MOSFET.

4

GND

This is the ground return for all circuits. This pin must be connected to the return 
path from the input.

5

CS

This pin is used to sense the drain current of the external power FET. It includes a 
built-in 100 ns (minimum) blanking time.

6

SC

This is slope compensation for current sense. A resistor between SC and GND will 
program the slope compensation. In case of constant Off-time mode of operation, 
slope compensation is unnecessary and the pin can be left open.

7

RT

This pin sets the frequency or the off-time of the power circuit. A resistor between 
RT and GND will program the circuit in Constant Frequency mode. A resistor 
between RT and gate will program the circuit in a constant Off-time mode.

8

Sync

This I/O pin may be connected to the sync pin of other HV9911 circuits and will 
cause the oscillators to lock to the highest frequency oscillator.

9

CLIM

This pin provides a programmable input current limit for the converter. The current 
limit can be set by using a resistor divider from the REF pin.

10

REF

This pin provides 2% accurate reference voltage. It must be bypassed with at least a 
10 nF–0.22 µF capacitor to GND.

11

FAULT

This pin is pulled to ground when there is an Output Short-circuit condition or Output 
Overvoltage condition. This pin can be used to drive an external MOSFET in the 
case of boost converters to disconnect the load from the source.

12

OVP

This pin provides the overvoltage protection for the converter. When the voltage at 
this pin exceeds 1.25V, the gate output of the HV9911 is turned off and FAULT goes 
low. The IC will turn on when the power is recycled.

13

PWMD

When this pin is pulled to GND (or left open), switching of the HV9911 is disabled. 
When an external TTL high level is applied to it, switching will resume.

14

COMP

Stable closed-loop control can be accomplished by connecting a compensation net-
work between COMP and GND.

15

IREF

The voltage at this pin sets the output current level. The current reference can be set 
using a resistor divider from the REF pin.

16

FDBK

This pin provides output current feedback to the HV9911 by using a current sense 
resistor.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005580A-html.html
background image

 2017 Microchip Technology Inc.

DS20005580A-page  9

HV9911

3.0

DETAILED DESCRIPTION

3.1

Power Topology

The built-in linear regulator of the HV9911 can operate 
up to 250V at the V

IN

 pin. The linear regulator provides 

an internally regulated voltage of 7.75V (typical) at V

DD

if the input voltage is within 9V to 250V. This voltage is 
used to power the IC and also provide the power to 
external circuits connected at the V

DD

 and V

REF

 pins. 

This linear regulator can be turned off by overdriving 
the V

DD

 pin using an external bootstrap circuit at 

voltages higher than 8.25V (up to 12V).
In practice, the input voltage range of the IC is limited 
by the current drawn by the IC. Thus, it becomes 
important to determine the current drawn by the IC to 
find out the maximum and minimum operating voltages 
at the V

IN

 pin. The main component of the current 

drawn by the IC is the current drawn by the switching 
FET driver at the gate pin. To estimate this current, we 
need to know a few parameters of the FET being used 
in the design and the switching frequency.

The typical waveform of the current being sourced out 
of gate is illustrated in 

Figure 3-1

Figure 3-2

 shows the 

equivalent circuit of the gate driver and the external 
FET. The values of V

DD

 and R

GATE

 for the HV9911 are 

7.75V and 40Ω, respectively.

Note:

The equations given below are approxima-

tions and are to be used for estimation pur-
poses only. The actual values will likely differ 
from the computed values.

Consider the case when the external FET is FDS3692 
and the switching frequency is f

S

 = 200 kHz with an 

LED string voltage V

O

 = 80V. With the FET’s 

specifications, the following parameters can be 
determined:

C

ISS

746pF

=

C

GD

C

RSS

27pF

=

=

C

GS

C

ISS

C

GD

=

719pF

=

V

TH

3V

=

I

PK

I

1

I

avg

t

1

t

2

t

3

0

FIGURE 3-1:

Current Sourced Out of Gate at FET Turn-on Driver.

HV9911 

C

GD 

C

GS 

V

DD 

R

GATE 

FIGURE 3-2:

Equivalent Circuit of the Gate Driver.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005580A-html.html
background image

HV9911

DS20005580A-page  10

 2017 Microchip Technology Inc.

When the external FET is being turned on, current is 
being sourced out of the gate, and that current is being 
drawn from the input. Thus, the average current drawn 
from V

DD

 (and from V

IN

) needs to be computed. 

Without going into the details of the FET operation, the 
various values in the graph in 

Figure 3-1

 can be 

computed as specified in 

Table 3-1

.

TABLE 3-1:

Parameter

Formula

Value

(for a given 

example)

I

PK

V

DD

/R

GATE

193.75 mA

I

1

(V

DD 

– V

TH

)/R

GATE

118.75 mA

t

1

–R

GATE

 x C

ISS

 x In (I

1

/I

PK

)

14.61 ns

t

2

[(V

– V

TH

) x C

GD

]/I

1

 (

 1

)

17.5 ns

[(V

IN

 – V

TH

) x 

GD

]/I

(

 2

)

t

3

2.3 x R

GATE 

x C

GS

66 ns

I

avg

[I

1

 x (t

1

 + t

2

) + 0.5 x (I

PK 

– I

1

) x 

t

1

 + 0.5 x I

1

 x t

3

] x f

S

1.66 mA

Note 1:

For a boost converter

2:

For a buck converter

The total current being drawn from the linear regulator 
for a typical HV9911 circuit can be computed as shown 
in 

Table 3-2

.

TABLE 3-2:

Current

Formula

Typical 

Value (

 2

)

Quiescent Current

1000 µA

1000 µA

Current sourced 
out of REF pin

(V

REF

/R

L1

 + R

L2

) + 

(V

REF

/R

R1

 + R

R2

)

100 µA

Current sourced 
out of RT pin

6V/R

T

13.25 µA

Current sourced 
out of SC pin (

 1

)

(1/2) x (2.5V/R

SLOPE

)

30.8 µA

Current sourced 
out of CS pin (

 1

)

2.5V/R

SLOPE

61.6 µA

Current drawn by 
FET Gate Driver

I

AVG

1660 µA

Total Current 
drawn from the 
Linear Regulator

2.865 mA

Note 1:

For a Discontinuous mode converter, the       
currents sourced out of the SC and CS pins will 
be zero.

2:

The values provided are based on the           
Continuous Conduction mode boost design in 
the Microchip application note, “AN-H55 Boost 
Converter LED Drivers Using the HV9911.”
 

3.2

Maximum Input Voltage at V

IN

 Pin 

Computed using the Power 
Dissipation Limit

When the regulator is drawing about 2.8 mA, the 
maximum input voltage that the HV9911 can withstand 
without damage will depend on the ambient 
temperature. If we consider an ambient temperature of 
40°C, the power dissipation in the package cannot 
exceed the P

MAX 

in 

Equation 3-1

:

EQUATION 3-1:

P

MAX

1000mW 10mW

40

25C

=

850mW

=

The above equation is based on package power 
dissipation limits as indicated in the 

Absolute 

Maximum Ratings †

 of this data sheet.

To dissipate a maximum power of 850 mW in the 
package, the maximum input voltage cannot exceed 
the value in 

Equation 3-2

:

EQUATION 3-2:

V

INMAX

P

MAX

I

TOTAL

=

296V

=

Since the maximum voltage is far greater than the 
actual input voltage of 24V, power dissipation will not 
be a problem for this design.
For this design, at 24V input, the increase in the 
junction temperature of the IC (over ambient) is 
determined as show in 

Equation 3-3

EQUATION 3-3:

 V

IN

I

TOTAL

ja

=

5.64

C

=

Where: 
       θ

ja

 is the junction to ambient thermal impedance 

of HV9911’s 16-lead SOIC package.

Maker
Microchip Technology Inc.