HV9801A Switch-Dimmable LED Driver Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005692A-html.html
background image

 2017 Microchip Technology Inc.

DS20005692A-page  1

HV9801A

Features

• Four-level Switch Dimming
• Highly Accurate Current Regulator
• Output Overcurrent or Short-circuit Protection
• IC Overtemperature Protection

Applications

• Switch-dimmable LED Bulbs and Fixtures

General Description

The  HV9801A LED driver is ideally suited for 
switch-dimmable applications using LED bulbs and 
fixtures.
Through switch dimming, the lamp can be adjusted to 
four discrete brightness levels by rapid cycling of the 
light switch. The brightness levels are traversed in an 
up-and-down manner. Brightness resumes at the 
highest level when power is removed for more than a 
second.
The device can be powered directly from rectified AC 
through an internal V

DD

 regulator rated at 450V.

Package Type

See 

Table 2-1

 for pin information.

8-lead SOIC

(Top view)

16-lead SOIC

(Top view)

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

8

7

6

5

1

2

3

4

VIN

CS

GND

GATE

RT

DNC

VDD

DNC

VIN

DNC

DNC

CS

GND

DNC

DNC

GATE

DNC

DNC

RT

DNC

VDD

DNC

DNC

DNC

s

Switch-Dimmable LED Driver

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005692A-html.html
background image

VIN

VDD

CS

RT

GATE

HV9801A

250mV

440mV

VDD Regulator

Current Mirror from VDD Rail

Leading

Edge

Blanking

S      Q

R      Q

OR 

Average

Current

Regulator

OFF

Time

Generator

OTP

AND

UVLO

GND

Hiccup

HV9801A

DS20005692A-page  2

 2017 Microchip Technology Inc.

Functional Block Diagram

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005692A-html.html
background image

 2017 Microchip Technology Inc.

DS20005692A-page  3

HV9801A

Typical Application Circuit

VIN

GATE

CS

GND           VDD              RT

HV9801A

C

DD

R

T

R

CS

L

AC

VIN

BUS

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005692A-html.html
background image

HV9801A

DS20005692A-page  4

 2017 Microchip Technology Inc.

1.0

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

V

IN 

.......................................................................................................................................................................... 470V

V

DD 

........................................................................................................................................................................... 12V

V

CS

, V

GATE 

....................................................................................................................................–0.3V to (V

DD

 +0.3V)

Junction Temperature Range, T

......................................................................................................... –40°C to +150°C

Storage Temperature Range, T

S

 ......................................................................................................... –65°C to +150°C

Power Dissipation (T

A

 = 25 °C): 

8-lead SOIC

 

............................................................................................................................................ 650 mW

16-lead SOIC

 

........................................................................................................................................ 1000 mW

 Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the 
device. This is a stress rating only, and functional operation of the device at those or any other conditions above those 
indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for 
extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS 

Electrical Specifications: Specifications are at T

= 25°C, V

IN

 = 15V unless otherwise noted. 

Parameter

Sym.

Min.

Typ.

Max. Unit

Conditions 

INPUT
Input Voltage

V

IN

15

450

V

Note 2

Input Current

I

IN

1

2

mA

Supply Current, OTP Shutdown

I

IN, OT

500

μA

Note 1

V

DD

 REGULATOR

Undervoltage Lockout Threshold

V

UVLO

6.45

6.7

7.1

V

V

IN

 rising (

Note 2

)

Undervoltage Lockout Hysteresis

∆V

UVLO

500

mV V

IN

 falling

Maximum Input Current, Limited by UVLO

I

UVLO

3.5

mA T

= 25°C (

Note 1

)

1.5

mA T

= 125°C (

Note 1

)

Output Voltage

V

DD

7.25

7.5

7.75

V

C

GATE

 = 500 pF, R

T

 = 226 kΩ

Line Regulation

∆V

DD, LINE

1

V

V

IN 

= 15V to 450V,             

C

GATE

 = 500 pF, R

T

 = 226 kΩ

V

DD

 Voltage Margin

∆V

DD(UV)

500

mV

∆V

DD(UV)

 = V

DD

–V

UVLO, FALL

 

(

Note 2

)

Load Regulation

∆V

DD, LOAD

100

mV

I

VDD 

= 0 mA to 1 mA,         

C

GATE

 = 500 pF, R

T

 = 226 kΩ

SWITCH DIMMING
Supply Current after Power Loss 

I

VDDX

700

μA

Note 2

Undervoltage Lockout during V

IN

       

Power Loss

V

UVLO, DIM

3.5

V

V

IN

 falling 

Power Loss, Qualification Time

T

PL1

60

ms V

IN 

falling below V

UVLO 

(

Note 1

)

Power Loss, Time to Reset 

T

PL2

1

s

PWM Dimming Frequency

F

PWM

1.2

kHz

LED CURRENT REGULATOR
Current Sense Threshold

V

CST

236

250

256

mV

Note 2

Note 1: Determined by characterization; not production tested

2: Specifications apply over the full operating ambient temperature range of –40°C < T

A

 < +125°C.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005692A-html.html
background image

 2017 Microchip Technology Inc.

DS20005692A-page  5

HV9801A

Leading Edge Blanking Time

T

LEB

110

260

ns

Note 2

Minimum On-time

T

ONX

760

ns

V

CS

 = V

CST

 + 30 mV

Maximum Duty Cycle Maintaining        
Regulation

D

MAX

80

%

LED current falls beyond this 
duty cycle

SHORT-CIRCUIT PROTECTION
Hiccup Threshold

V

CSH

440

mV

V

CS

 High to Gate Low Delay

T

DLY

180

ns

V

CS 

= V

CSH

 + 30 mV

Hiccup Time

T

SCH

750

μs

Minimum On-time

T

ONXSC

430

ns

V

CS

 = V

DD

T

OFF 

TIMER

Off-time

T

OFF

32

40

48

μs

R

= 1 MΩ

8

10

12

R

T

 = 226 kΩ

GATE DRIVER
Sourcing Current

I

SRC

165

mA V

GATE

 = 0V

Sinking Current

I

SINK

165

mA V

GATE

 = V

DD

Rise Time

t

r

30

50

ns

C

GATE

 = 500 pF

Fall Time

t

f

30

50

ns

C

GATE

 = 500 pF

OVERTEMPERATURE PROTECTION
Trip Temperature

T

TRIP

140

°C

Note 1

Hysteresis

∆T

TRIP

20

°C

Note 1

TEMPERATURE SPECIFICATIONS

Parameter

Sym.

Min.

Typ.

Max.

Unit

Conditions

TEMPERATURE RANGE
Operating Ambient Temperature

T

A

–40

+125

°C

Maximum Junction Temperature

T

J

–40

+150

°C

Storage Temperature

T

S

–65

+150

°C

PACKAGE THERMAL RESISTANCE
8-lead SOIC

JA

101

°C/W

16-lead SOIC 

JA

83

°C/W

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications: Specifications are at T

= 25°C, V

IN

 = 15V unless otherwise noted. 

Parameter

Sym.

Min.

Typ.

Max. Unit

Conditions 

Note 1: Determined by characterization; not production tested

2: Specifications apply over the full operating ambient temperature range of –40°C < T

A

 < +125°C.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005692A-html.html
background image

HV9801A

DS20005692A-page  6

 2017 Microchip Technology Inc.

2.0

PIN DESCRIPTION

The details on the pins of HV9801A are listed on 

Table 2-1

. See location of pins in 

Package Types

.

TABLE 2-1:

PIN FUNCTION TABLE 

Pin Name

8-lead SOIC
Pin Number

16-lead SOIC

Pin Number

Description

VIN

1

1

Connect to bridge rectifier output. Supplies power to the V

DD

        

regulator. Detects light switch power-off event through loss of 
bridge rectifier output voltage. Do not connect excessive capaci-
tance before or after the bridge to allow V

IN

 to drop rapidly after 

loss of power.

CS

2

4

Current sense input

GND

3

5

Ground

GATE

4

8

Gate driver output

VDD

6

12

V

DD

 regulator output. Connect a high-frequency bypass and a 

hold-up capacitor at V

DD

. Bypass capacitor to be 100 nF minimum. 

See 

Section 3.0 “Application Information”

 for hold-up capaci-

tance.

RT

8

14

Off-time programming input. Connect programming resistor to 
GND.

DNC

5, 7

2, 3, 6, 7, 9, 10, 

11, 13, 15, 16

Stands for “Do Not Connect.”

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005692A-html.html
background image

 2017 Microchip Technology Inc.

DS20005692A-page  7

HV9801A

3.0

APPLICATION INFORMATION

3.1

Current Control 

3.1.1

CONTINUOUS CONDUCTION 
MODE (CCM)

The HV9801A is designed to control a buck converter 
operating in CCM.
Continuous Conduction Mode operation is 
characterized by converter operation with non-zero 
inductor current throughout the switching cycle. Such 
operation can be achieved by proper selection of the 
inductance.

3.1.2

LED CURRENT

The HV9801A regulates the LED current with an 
accuracy far superior to that of competing Peak Current 
mode controllers.
Average LED current is set by the current sense 
resistor R

CS

 and the current regulator reference 

voltage. See 

Equation 3-1

 and 

Equation 3-2

.

EQUATION 3-1:

V

I R

=

EQUATION 3-2:

250mV

I

LED

R

CS

=

For example, a 2Ω resistor corresponds to a 125 mA 
(average) LED current.

3.1.3

CURRENT CONTROL 
PERFORMANCE

The control method of the HV9801A virtually eliminates 
the regulation errors associated with Peak Current 
mode controllers, such as errors caused by inductor 
tolerance, propagation delay of the current sense 
comparator, tolerance in the oscillator frequency or 
off-timer and changes in line and load voltage.

Figure 3-1

 compares the load regulation of the 

HV9801A and that of a device with peak current 
control. The graph clearly shows the difference in load 
regulation between the HV9801A and the HV9910B, 
which is a peak current regulator.

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0                  10                20                 30                 40                50                 60

HV9910B

HV9801A

V

IN 

= 170VDC

Output Voltage, V

LED Current, 

A

FIGURE 3-1:

Output Characteristics of the 

HV9801A LED Driver. 

3.2

Duty Cycle, Off-time, On-time and 
Inductor

3.2.1

DUTY CYCLE

The duty cycle (D) is related to the load voltage (V

LED

and input voltage (V

BUS

) by the simple relation shown 

in 

Equation 3-3

 and 

Equation 3-4

EQUATION 3-3:

V

OUT

D V

IN

=

EQUATION 3-4:

V

LED

D V

BUS

=

3.2.2

OFF-TIME

The HV9801A operates with constant off-time control, 
which avoids subharmonic oscillation.
Switching period and switching frequency are related to 
on-time and off-time as shown in 

Equation 3-5

 and 

Equation 3-6

EQUATION 3-5:

T

SW

T

ON

T

OFF

+

=

EQUATION 3-6:

F

SW

1

T

SW

----------

=

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005692A-html.html
background image

HV9801A

DS20005692A-page  8

 2017 Microchip Technology Inc.

On-time is related to off-time and duty cycle. See 

Equation 3-7

.

EQUATION 3-7:

D

T

ON

T

ON

T

OFF

+

-----------------------------------

=

T

ON

D

 T

OFF

=

With a given T

OFF

, the HV9801A dynamically adjusts 

T

ON

 to regulate the LED current. Specifically, T

ON

adapts to the duty cycle associated with the given V

BUS

and V

LED

.

3.2.3

OFF-TIME PROGRAMMING

Off-time is programmed by the R

T

 resistor as illustrated 

in 

Equation 3-8

EQUATION 3-8:

T

OFF

A R

T

 B

+

=

Where: A = 40 ps / Ω and B = 300 ns

For instance, a 200 kΩ resistor corresponds to 8.3 μs 
off-time.
An acceptable range for R

T

  is  30  kΩ to 1 MΩ, 

corresponding to an off-time range between 1.5 µs and 
40.3 µs. 

3.2.4

INDUCTOR

Because the converter should operate in CCM, the 
inductor current should not fall to zero within a 
switching cycle and the inductor current ripple should 
be sized accordingly.
A common choice for peak-to-peak inductor current 
ripple (PPR) is 30% to 40% of nominal LED current.
Inductance can be calculated from the current drop 
during off-time as shown in 

Equation 3-9

 and 

Equation 3-10

EQUATION 3-9:

L

I

V

T

=

EQUATION 3-10:

L PPR I

LED

V

LED

T

OFF

=

For example, 30% PPR on 350 mA average current 
equates to 105 mA ripple, which together with 5 µs 
off-time and 30V LED string voltage corresponds to 
1.43 mH inductance.
A design with 30V LED voltage and 150V bus voltage 
corresponds to a 20% duty cycle, while a 120V bus 
voltage coincides with a 25% duty cycle. A 20% duty 
cycle corresponds to 1.25 µs on-time, and a 25% duty 

cycle corresponds to 1.67 µs on-time. Hence, the 
switching frequency is 160 kHz at 150V bus voltage 
and 150 kHz at 120V bus voltage.

3.2.5

MAXIMUM DUTY CYCLE

Duty cycle should be limited to the specified maximum 
of 80%. Accordingly, the targeted LED string voltage 
and the bus voltage are limited to the same ratio. 
Operation at a larger desired duty cycle than the 
maximum duty cycle results in an LED current lower 
than programmed.

3.2.6

MINIMUM DUTY CYCLE

Duty cycle is limited on the low side by the minimum 
on-time specification (760 ns). Operation at a smaller 
desired on-time than the minimum causes the LED 
current to exceed the programmed value.
LED string voltage cannot be made arbitrarily low. 
Minimum LED string voltage can be determined with 

Equation 3-11

EQUATION 3-11:

D

MIN

T

ONX

T

OFF

T

ONX

+

--------------------------------------

=

V

LED

D

MIN

V

BUS

=

For instance, with 5 µs off-time, the duty cycle should 
be kept above 13%. Such a duty cycle corresponds to 
an LED string voltage of 19.5V at 150V bus voltage.
A design that needs a lower LED string voltage 
requires a longer off-time.

3.2.7

SHORT-CIRCUIT PROTECTION

An increase in the LED current sense signal above 
440 mV (176% of nominal) trips the short-circuit 
comparator, thereby causing the converter to switch to 
Hiccup mode. In Hiccup mode, off-time is lengthened to 
about 750 µs to allow the inductor current to drop to a 
safe level.
Without the extended off-time, the inductor current 
increases with every switching cycle, causing an 
overcurrent damage to the converter.
The off-time extension can be observed in 

Figure 3-2

 

below. 

~750µs 

440mV/R

CS

S

FIGURE 3-2:

Short-circuit Inductor 

Current.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005692A-html.html
background image

 2017 Microchip Technology Inc.

DS20005692A-page  9

HV9801A

3.2.8

LEADING EDGE BLANKING

The MOSFET drain current and the current sense 
signal exhibit a spike at the start of a switching cycle, 
which arises from the MOSFET gate charging current 
and the current required for discharging the MOSFET 
drain node. These two currents typically exceed the 
inductor by quite a margin.
The current sense signal is blanked at the start of the 
switching cycle in order to avoid a premature trigger of 
the current sense and the short-circuit protection 
comparators.

3.2.9

V

DD 

REGULATOR

The V

DD

 regulator generates a source of regulated 

voltage for operation of internal and external circuits 
from the power applied at the V

IN

 pin. Alternatively, the 

V

DD 

voltage can be supplied from a source directly 

connected to the V

DD

 pin. 

3.3

Switch Dimming

3.3.1

GENERAL

Lamp brightness can be adjusted to one of four 
discrete levels by rapidly cycling power with the light 
switch. The brightness levels are traversed in an 
up-and-down manner, the four levels being 100%, 
50%, 25% and 12.5%. Brightness resumes at the 
highest level when power is removed for more than a 
second.
Reduction of LED current is accomplished through 
PWM dimming with a PWM dimming frequency of 
about 1 kHz. The PWM frequency is generated by an 
internal oscillator, and the PWM duty cycle is controlled 
by digital logic.
Turning the light switch off and on within one second 
adjusts LED current to the next level in each dimming 
step. The direction of dimming depends on the existing 
position in the dimming sequence. The illustration in 

Figure 3-3

 shows more details. The sequence starts at 

100% and adjusts to the next lower level by the first 
dimming step and then adjusts to the next lower level 
by the next dimming step. Upon reaching the lowest or 
highest level, the direction of the sequence reverses. 
Therefore, the actual overall dimming sequence is 
100%, 50%, 25%, 12.5%, 25%, 50%, 100%, and the 
sequence repeats as the dimming steps continue. 
When power is removed for more than one second, the 
dimming sequence is terminated and the brightness is 
reset to 100% upon turn-on of the light switch.

OFF/ON cycle time 1second (max.) 

100%

50%

25% 12.5% 25%

100%

Brightness

AC Line Power

ON

FIGURE 3-3:

LED Brightness and AC 

Line Power.

3.3.2

V

DD

 CAPACITOR

The V

DD

 voltage should be maintained for at least one 

second and above the 3.5V level after loss of V

IN

 power 

to allow certain timing circuits to function.
The minimum V

DD 

capacitance required can be 

calculated with 

Equation 3-12

EQUATION 3-12:

C

V

I

T

=

C

DD

7.53.5V

I

VDDX

1s

=

With 700 µA of I

VDDX

 the bypass capacitance should be 

175 µF.

3.3.3

DETECTION OF POWER CYCLING

The presence of AC line power is detected at the V

IN

pin. To this end, loss of AC power should result in a 
rapidly falling voltage at the output of the bridge 
rectifier.
The V

IN

 voltage drops due to the current draw from the 

V

DD

 regulator. In order to facilitate a quick drop in 

voltage, a diode should be added to isolate the bus 
capacitor from the V

IN

 pin as shown in the 

Typical 

Application Circuit

.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005692A-html.html
background image

HV9801A

DS20005692A-page  10

 2017 Microchip Technology Inc.

4.0

PACKAGING INFORMATION

4.1

Package Marking Information

Legend: XX...X

Product Code or Customer-specific information

Y

Year code (last digit of calendar year)

YY

Year code (last 2 digits of calendar year)

WW

Week code (week of January 1 is week ‘01’)

NNN

Alphanumeric traceability code

  

Pb-free JEDEC

®

 designator for Matte Tin (Sn)

*

This package is Pb-free. The Pb-free JEDEC designator (     )

can be found on the outer packaging for this package.

Note:

In the event the full Microchip part number cannot be marked on one line, it will 
be carried over to the next line, thus limiting the number of available 
characters for product code or customer-specific information. Package may or 
not include the corporate logo.

3

e

3

e

8-lead SOIC

Example

NNN

XXXXXXXX

YYWW

e3

991

HV9801A

1727

LG

XX

e3

16-lead SOIC

XXXXXXXX

YYWWNNN

e3

Example

HV9801ANG
1711541

e3

Maker
Microchip Technology Inc.