HV9150 High-Voltage Output Hysteretic-Mode Step-Up DC/DC Controller Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005689A-html.html
background image

 2017 Microchip Technology Inc.

DS20005689A-page  1

HV9150

Features

• 6V to 500V Wide Output Voltage Range 
• 2.7V Low Input Voltage 
• 5W Maximum Output Power with External 

MOSFET Driver

• Built-in Charge Pump Converter for the Gate 

Driver

• Programmable Switching Frequency from 40 kHz 

to 400 kHz

• Four Programmable Duty Cycles from 50% to 

87.5%

• FB Return Ground Switch for Power Saving 

Applications

• Built-in Delay Timer for Internal Protection
• Non-isolated DC/DC Converter

Applications

• Portable Electronic Equipment
• MEMS
• Printers

General Description

The HV9150 is a high output voltage Hysteretic mode 
step-up DC/DC controller that has a built-in charge 
pump converter and a linear regulator for a wide range 
of input voltage. The Charge Pump Converter mode is 
ideal for battery-powered applications. The internal 
converter can provide a minimum of 5V gate driver 
output voltage (at V

IN

 = 2.7V) to the external N-channel 

MOSFET. The range of 2.7V to 4.5V input supply 
voltage is ideal for battery-powered applications, such 
as portable electronic equipment. The internal linear 
regulator is selected when a higher supply voltage rail 
is available in the system.
A feedback return ground path switch is also integrated 
into the device to minimize the quiescent current during 
the controller shutdown. This feature provides power 
savings for energy-critical applications.
In addition, a built-in timer is available to protect the 
internal circuit and help dissipate the energy from the 
external high-voltage storage capacitor. This device is 
designed for systems requiring high-voltage and 
low-current applications such as MEMS devices.

Package Type

Pads are at the bottom of the package. Center heat slug is at ground potential. See 

Table 3-1

 for pin information. 

16-lead QFN

(Top View)

VDD

GATE

FB_RTN

FB

VCONTROL 

FREQ_ADJ

EXT_REF

CT

VLL

GND

EN

CP_EN

CCP1-

CCP1+

CCP2-

CCP2+

1

16

High-Voltage Output Hysteretic-Mode Step-Up DC/DC Controller

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005689A-html.html
background image

Delay

OSC

3x Charge Pump

Converter

LDO

VREF

-      +

Hysteretic Mode

Controller

V

DD

V

DD

V

LL

V

LL

V

LL

V

LL

CCP1+/-

CCP2+/-

VDD

VLL

GND

CT

EN

FREQ_ADJ

VCONTROL

(Duty Cycle Adj)

CP_EN

GATE

EXT_REF

FP_RTN

FB

LDO
Mode

CP

Mode

HV9150

DS20005689A-page  2

 2017 Microchip Technology Inc.

Functional Block Diagram

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005689A-html.html
background image

 2017 Microchip Technology Inc.

DS20005689A-page  3

HV9150

Typical Application Circuits 

CCP2±

0.22μF

R

FREQ

V

OUT

6.0 - 500V

V

IN

2.7 - 4.5V

GND

R

1

R

2

L

CT

Delay

OSC

VREF

3x Charge Pump

Converter

LDO

CCP1±

0.22μF

VDD

0.22μF

VLL

1.0μF

CP_EN

-  +

V

LL

V

LL

V

LL

V

DD

GATE

EXT_REF

FB_RTN

FB

EN

FREQ_ADJ

VCONTROL

0V/3.3V

V

DD

LDO
Mode

CP

Mode

Charge Pump (CP) Mode

Linear Regulator (LDO) Mode

CCP2±

R

FREQ

V

OUT

15 - 500V

V

IN

5.0 - 12V

GND

R

1

R

2

L

CT

Delay

OSC

VREF

3x Charge Pump

Converter

LDO

CCP1±

VDD

VLL

CP_EN

-  +

V

LL

V

LL

V

LL

V

DD

GATE

EXT_REF

FB_RTN

FB

EN

FREQ_ADJ

VCONTROL

0V/3.3V

V

DD

1.0μF

LDO
Mode

CP

Mode

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005689A-html.html
background image

HV9150

DS20005689A-page  4

 2017 Microchip Technology Inc.

1.0

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

Input Voltage Supply, V

LL

........................................................................................................................... –0.5V to +5V

Charge Pump Output Voltage, V

DD

....................................................................................................... –0.5V to +13.6V

Logic Input Levels ............................................................................................................................. –0.5V to V

LL

 +0.5V

Operating Ambient Temperature, T

................................................................................................... –25°C to +125°C

Storage Temperature, T

S

...................................................................................................................... –65°C to +150°C

Continuous Power Dissipation (On a 3 x 4-inch FR4 PCB at T

A

= 25°C): 

16-lead QFN .......................................................................................................................................... 3000 mW

 Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the 
device. This is a stress rating only, and functional operation of the device at those or any other conditions above those 
indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for 
extended periods may affect device reliability. 

RECOMMENDED OPERATING CONDITIONS

Parameter

Sym.

Min.

Typ.

Max.

Unit

Conditions

Input Voltage (CP Mode)

V

LL

2.7

4.5

V

High-level Input Voltage

V

IH

0.8 V

LL

V

LL

V

Low-level Input Voltage

V

IL

0

0.2 V

LL

V

DC ELECTRICAL CHARACTERISTICS 

Electrical Specifications: Over recommended operating supply voltages and temperatures; unless otherwise noted, 
T

= 25°C. 

Parameter

Sym.

Min.

Typ.

Max.

Unit

Conditions 

POWER SUPPLY
Quiescent V

LL

 Supply Current        

(EN = ‘0’)

I

LLQ(off)

2

μA

VLL Supply Current

(EN = ‘1’)

GATE = NC

I

LL(on)

1.5

mA

f

OSC

 = 100 kHz, V

LL 

= 4.5V

GATE = 300 pF

4

VDD Supply Current

(EN = ‘1’)

GATE = NC

I

DD(on)

1

mA

f

OSC 

= 100 kHz, V

DD

 = 12.6V

GATE = 300 pF

2.5

Quiescent VDD Supply Current         
(EN = ‘0’)

I

DDQ(off)

2

μA

High-level Logic Input Current

I

IH

1

μA

V

IH

 = V

LL

Low-level Logic Input Current

I

IL

–1

μA

V

IL

 = 0V

Gate Driver Output 
Voltage

V

LL

 = 4.5V

GATE = NC

GATE

10.2

12.3

V

V

LL

 = 2.7V

GATE = NC

5

6.9

Linear Regulator Output Voltage

V

LL(LDO)

3

3.6

V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005689A-html.html
background image

 2017 Microchip Technology Inc.

DS20005689A-page  5

HV9150

AC ELECTRICAL CHARACTERISTICS 

Electrical Specifications: Over recommended operating supply voltages and temperatures; unless otherwise noted 
T

= 25°C. 

Parameter

Sym.

Min.

Typ.

Max.

Unit

Conditions 

FEEDBACK (FB)
Internal Feed-
back Reference 
Voltage

Accuracy

V

REF

1.22

1.25

1.28

V

Range

1.2

1.25

1.3

T

= –25 to 85°C

Input Bias Current

I

BIAS

1

μA

EXT_REF is selected.

External 

Reference 

Voltage

Range

EXT_REF

0

V

LL

–1.4

V

Trigger INT

Reference

0

0.12

V

During EN positive triggering

Trigger EXT

Reference

0.5

V

LL

–1.4

V

On-resistance, R

DS

FB_RTN

500

I

O

= 2 mA

Breakdown Voltage, BV

13.5

V

GATE DRIVER OUTPUT (GATE)
Rise Time

t

r

36

ns

C

L

 = 300 pF, V

DD

 = 12V

Fall Time

t

f

12

ns

Pull-up          
Resistance

V

DD

 = 5V

R

UP

45

I

O

 = 20 mA

V

DD

 = 12V

30

I

O

 = 50 mA

Pull-down     
Resistance

V

DD

 = 5V

R

DOWN

15

I

O

 = 20 mA

V

DD

 = 12V

12

I

O

 = 50 mA

Oscillator Frequency

f

GATE

½ f

OSC

kHz

CHARGE PUMP CONVERTER

Charge Pump Output Voltage

V

DD

5

3 V

LL

–1.8

12.6

V

2.7V ≤ V

LL

 ≤ 4.5V

C

CP1

 = 220 nF 

C

CP2

 = 220 nF

C

CP3

 = 220 nF

Oscillator 

Frequency

Accuracy

f

OSC

170

195

220

kHz

R

FREQ

 = 270 kΩ, V

LL

= 3.3V

Range

40

400

Over R

FREQ

 range

Oscillator Frequency Tolerance

∆f

15

%

50 kHz ≤ f

OSC

 ≤ 250 kHz

Duty Cycle

Accuracy

DC

86

87.5

9

%

R

FREQ

 = 270 kΩ

Range

0

%

0 < V

CNTL

 ≤ 0.18 V

LL

50

%

0.22 V

LL

 < V

CNTL

 ≤ 0.38 V

LL

62.5

%

0.42 V

LL

 < V

CNTL

 ≤ 0.58 V

LL

75

%

0.62 V

LL 

< V

CNTL

 ≤ 0.78 V

LL

87.5

%

0.82 V

LL

 < V

CNTL 

≤ V

LL

Duty Cycle Adjustment

V

CONTROL

0

V

LL

V

See 

Table 4-2

.

Frequency Adjustment Resistor

R

FREQ

120k

1.2M

Maximum Charge 
Pump Output 
Resistance

Pull-up

R

CP

20

V

LL

 = 2.7V, I

O

 = 10 mA

Pull-down

20

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005689A-html.html
background image

HV9150

DS20005689A-page  6

 2017 Microchip Technology Inc.

FIGURE 1-1:

Duty Cycle Selection Hysteresis at V

CONTROL 

Pin at 25°C.

Output Ripple at V

DD

V

RIPPLE

100

mV

2.7V ≤ V

LL

 ≤ 4.5V

f

OSC

 = 200 kHz

C

CP1

 = 220 nF

C

CP2

 = 220 nF

C

CP3

 = 220 nF

C

GATE

 = 300 pF

BW = 20 MHz

DELAY TIMER
Shutdown Delay Timer

t

DELAY

240

ms

C

T

 = 1 μF

TEMPERATURE SPECIFICATIONS

Parameter

Sym.

Min.

Typ.

Max.

Unit

Conditions

TEMPERATURE RANGE
Operating Ambient Temperature

T

A

–25

+125

°C

 

Storage Temperature

T

S

–65

+150

°C

PACKAGE THERMAL RESISTANCE
16-lead QFN

JA

33

°C/W

100

90

80

70

60

50

40

30

20

10

0

V

CONTROL

 from Max to Min

V

CONTROL

  from Min to Max

P

e

rc

e

nt

a

ge

 of

 V

LL

82%

62%

42%

22%

78%

58%

38%

18%

87.5% Duty Cycle

75% Duty Cycle

62.5% Duty Cycle

50% Duty Cycle

0% Duty Cycle

87.5% Duty Cycle

75% Duty Cycle

62.5% Duty Cycle

50% Duty Cycle

0% Duty Cycle

AC ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications: Over recommended operating supply voltages and temperatures; unless otherwise noted 
T

= 25°C. 

Parameter

Sym.

Min.

Typ.

Max.

Unit

Conditions 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005689A-html.html
background image

 2017 Microchip Technology Inc.

DS20005689A-page  7

HV9150

Timing Waveforms

Initial power up

X

QWV

"*GZVaTGH+

X

QWV

"*KPVaTGH+

2X

X

KJ

X

KN

XQWV

GP

FIGURE 1-2:

Enabling to use the External Voltage Reference. 

t

DELAY

2X

2X

X

KJ

X

KN

XQWV

HDaTVP

GP

FIGURE 1-3:

Delay Time at FB_RTN.

V

IN 

= 4.5V

V

IN 

= 2.7V

FIGURE 1-4:

VCP Noise. 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005689A-html.html
background image

HV9150

DS20005689A-page  8

 2017 Microchip Technology Inc.

2.0

TYPICAL PERFORMANCE CURVES

35

30

25

20

15

10

5

0

0                        50                      100                     150                     200                     250                     300                     350

T

ime (ns)

Load Capacitance (pF)

Rise time t

r

, V

DD 

= 11V

(CP mode)

Fall time t

f

, V

DD 

= 11V

(CP mode)

Rise time t

r

, V

DD 

= 5V

(LDO mode)

Fall time t

f

, V

DD 

= 5V

(LDO mode)

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of 
samples and are provided for informational purposes only. The performance characteristics listed herein 
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified 
operating range (e.g. outside specified power supply range) and therefore outside the warranted range.

FIGURE 2-1:

Gate Driver Rise Time (t

r

and    Fall Time (t

f

) vs. Load Capacitance at 

25°C.

1000

100

10

10   

                                                                                                                 

100 

                                                                                                            

    1000

Frequency (kHz)

R

FREQ

 (kΩ)

(V

IN 

= 3.3V at 25

O

C)

                                                                            

FIGURE 2-2:

f

GATE

 vs. R

FREQ

100

10

1

0.1

10

                                                                           

  100   

                                                                      

1000 

                                                                   

   10000

Capacitance (µF) 

Delay (ms)

FIGURE 2-3:

C

T

 Capacitor Value vs. 

Delay Time at 25°C. 

12.0

11.0

10.0

9.0

8.0

7.0

6.0

2.5                               3.0                                  3.5                                4.0                                  4.5                                 5.0

Charge Pump Output V

oltage V

DD

 (V)

Input Voltage V

LL

 (V)

CL = 100 pF

CL = 220 pF

CL = 330 pF

FIGURE 2-4:

Charge Pump Output 

Voltage vs. Input Voltage at 25°C.    

12

11

10

9

8

7

6

5

0                       50                      100                     150                     200                     250                     300                     350

Output V

oltage V

DD

 (V)

Load Capacitance (pF)

(f

GATE

 = 100 kHz, C

CP1

 = C

CP2

 = 0.22 µF, C

VDD

 = 1.0 µF) 

V

LL 

= 4.5V

V

LL 

= 3.6V

V

LL 

= 3.3V

V

LL 

= 2.7V

FIGURE 2-5:

Charge Pump Output 

Voltage vs. Load Capacitance at 25°C.

101

100

99

98

97

96

2              3             4               5             6             7               8             9            10            11           12            13           14

Frequency (kHz)

V

LL 

Input Voltage (V)

LDO mode

CP mode

(Gate output load capacitance = 330 pF, R

FREQ 

= 255 kΩ @ 25

O

C) 

FIGURE 2-6:

Gate Driver Switching 

Frequency vs. V

LL

 Input Voltage.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005689A-html.html
background image

 2017 Microchip Technology Inc.

DS20005689A-page  9

HV9150

3.0

PIN DESCRIPTION

The details on the pins of HV9150 16-lead QFN are 
listed on 

Table 3-1

. Refer to 

Package Type

 for the 

location of pins.

TABLE 3-1:

PIN FUNCTION TABLE 

Pin Number

Pin Name

Description

1

VLL

Input supply voltage

2

GND

Ground connection

3

EN

Enable

4

CP_EN

Charge pump/LDO enable input

5

VCONTROL

Duty cycle adjustment voltage control input

6

FREQ_ADJ

Frequency adjustment

7

EXT_REF

External reference voltage input

8

CT

Timing capacitor

9

FB

Feedback input voltage

10

FB_RTN

Feedback return

11

GATE

Gate control output

12

VDD

Charge pump output voltage

13

CCP2+

Charge pump storage capacitor #2 plus terminal

14

CCP2–

Charge pump storage capacitor #2 minus terminal

15

CCP1+

Charge pump storage capacitor #1 plus terminal

16

CCP1–

Charge pump storage capacitor #1 minus terminal

Center Pad

Substrate connection (at ground potential)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005689A-html.html
background image

HV9150

DS20005689A-page  10

 2017 Microchip Technology Inc.

4.0

FUNCTIONAL DESCRIPTION

Follow the steps in 

Table 4-1

 to power up and power 

down the HV9150. 

TABLE 4-1:

POWER-UP AND POWER-DOWN SEQUENCE

 

Power-up

Power-down

Step

Description

Step

Description

1

Connect ground.

1

Remove all inputs.

2

Apply V

IN

.

2

Remove V

IN.

3

Set all inputs to a known state.

3

Disconnect ground.

4.1

Hysteretic Mode Controller

A Hysteretic mode controller consists of an oscillator, a 
voltage reference, a comparator and a driver. Both the 
internal oscillator and the duty cycle of the gate driver 
are running at a fixed rate.
As this device is designed for a step-up conversion, a 
pulse train is used to control the switch of a classical 
switching boost converter. The pulse train is gated by 
the output of the comparator, which compares the 
feedback of the output voltage with the voltage 
reference.
If the output voltage reaches the target voltage, the 
comparator will turn off the pulse train. When the output 
voltage drops below the target voltage, the comparator 
will pass the pulse train to the switch and start the 
inductor charging cycle. The advantage of this 
Hysteretic mode controller is its stability and simple 
operation. The diagram in 

Figure 4-1

 shows a 

Hysteretic Mode controller and a classical boost 
converter. 

XQWV

XKP

J{uvgtgvke"Oqfg

Eqpvtqnngt

FIGURE 4-1:

A Hysteretic Mode 

Controller and a Classical Boost Converter.

4.2

Internal Oscillator

This device has an internal oscillator which generates 
the reference clock for the Hysteretic mode controller. 
The controller is running at half of the frequency of the 
internal oscillator. This oscillator is powered by the V

LL

power supply pin. The frequency of the oscillator is set 
by the external resistor R

FREQ

, and this frequency is 

inversely proportional to the value of R

FREQ

. Its 

characteristic is shown in 

Figure 2-2

, f

GATE

 vs. R

FREQ

diagram, where f

GATE

 = 1/2 f

OSC

. See 

Equation 4-1

.

EQUATION 4-1:

f

OSC

1

R

FREQ

C

------------------------------------

=

Where: C = 4.75 pF

4.3

Voltage Reference (V

REF

)

The voltage reference is used by the comparator to 
compare it with the feedback voltage and the boost 
converter output. This device provides the options of 
using either its internal voltage reference or an external 
voltage reference.
The internal voltage reference provides a stable 1.25V 
with a tolerance of ±2.5%. With the use of ±1% 
tolerance feedback resistors, the output can be 
achieved with a tolerance of ±4.5%. In order to use the 
internal voltage reference, the EXT_REF pin must be 
connected to ground.
If the output voltage of the boost converter is required 
to have high precision and tight tolerance, the external 
voltage reference can be used to achieve that purpose. 
The external reference voltage must be between 0.5V 
and V

LL

–1.4V and connected to the EXT_REF pin. A 

single low-to-high transition must be presented at the 
EN pin to trigger the device to select an external 
voltage reference. If no enable control signal is 
available in the application, this signal can be easily 
mimicked by a simple RC circuit. See 

Figure 4-2

.

Maker
Microchip Technology Inc.