HV9110/9112/9113 High-Voltage Current-Mode PWM Controller Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005505A-html.html
background image

 2016 Microchip Technology Inc.

DS20005505A-page  1

Features

• Input Voltage Range of V

DD

 Regulator

- HV9110: 10V to 120V
- HV9112: 9V to 80V
- HV9113: 10V to 120V

• Maximum Duty, Feedback Accuracy

- HV9110: 49%, 1%
- HV9112: 49%, 2%
- HV9113: 99%, 1%

• Current Mode Control
• <1 mA Supply Current
• >1 MHz clock

Applications

• DC/DC Power Converters

General Description

HV9110/HV9112/HV9113 are Switch-Mode Power 
Supply (SMPS) controllers suitable for the control of a 
variety of converter topologies, including the flyback 
converter and the forward converter. 

The V

DD

 regulator supports an input voltage as high as 

80V or 120V.

HV9110/HV9112/HV9113 controllers include all essen-
tials for a power converter design, such as a bandgap 
reference, an error amplifier, a ramp generator, a high-
speed PWM comparator, and a gate driver. A shutdown 
latch provides on/off control.

The HV9110 and HV9113 feature an input voltage 
range of 10V to 120V, and the HV9112 has an input 
voltage range of 9V to 80V. The HV9110 and HV9112 
have a maximum duty of 49%, while the HV9113 has a 
maximum duty of 99%.

Package Type

See 

Table 3-1

 for pin information.

1

14

14-lead SOIC

HV9110/HV9112/HV9113

High-Voltage Current-Mode PWM Controller

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005505A-html.html
background image

HV9110/HV9112/HV9113

DS20005505A-page  2

 2016 Microchip Technology Inc.

Functional Block Diagram

HV9110/HV9112

V

DD

V

IN

V

REF

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005505A-html.html
background image

 2016 Microchip Technology Inc.

DS20005505A-page  3

HV9110/HV9112/HV9113

Functional Block Diagram

HV9113

V

IN

V

REF

V

DD

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005505A-html.html
background image

HV9110/HV9112/HV9113

DS20005505A-page  4

 2016 Microchip Technology Inc.

1.0

 ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS

 

Input Voltage, V

IN 

HV9110/HV9113 ............................................................................................................................................ 120V
HV9112............................................................................................................................................................ 80V

Device Supply Voltage, V

DD

................................................................................................................................... 15.5V

Logic Input Voltage Range .............................................................................................................. –0.3V to V

DD 

+ 0.3V

Linear Input Voltage Range............................................................................................................. –0.3V to V

DD 

+ 0.3V

Storage Temperature Range ................................................................................................................ –65°C to +150°C
Operating Temperature Range............................................................................................................. –55°C to +125°C
Power Dissipation: 14-lead SOIC....................................................................................................................... 750 mW

† Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This is 
a stress rating only and functional operation of the device at those or any other conditions above those indicated in the 
operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods 
may affect device reliability.

ELECTRICAL CHARACTERISTICS 

Electrical Specifications: V

DD 

= 10V, V

IN 

= 48V, V

DISC 

= 0V, R

BIAS

 = 390 kΩ, R

OSC

 = 330 kΩ, T

A

= 25°C unless otherwise noted. 

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

REFERENCE
Output Voltage

HV9110/13

V

REF

3.92

4

4.08

V

R

= 10 MΩ

HV9112

3.88

4

4.12

HV9110/13

3.82

4

4.16

R

L

 = 10 MΩ,

T

A

 = –55°C to +125°C

Output Impedance

Z

OUT

15

30

45

kΩ

(

Note 1

)

Short Circuit Current

I

SHORT

125

250

μA

V

REF 

= GND

Change in V

REF

 with Temperature

∆V

REF

0.25

mV/°C T

= –55°C to +125°C 

(

Note 1

)

OSCILLATOR
Oscillator Frequency

f

MAX

1

3

MHz

R

OSC 

= 0Ω

Initial Accuracy

f

OSC

80

100

120

kHz

R

OSC 

= 330 kΩ (

Note 

)

160

200

240

R

OSC 

= 150 kΩ (

Note 

)

V

DD

 Regulation

15

%

9.5V < V

DD

 < 13.5V

Temperature Coefficient

170

ppm/°C T

A

 = –55°C to +125°C 

(

Note 1

)

PWM
Maximum Duty 
Cycle

HV9110/HV9112

D

MAX

49

49.4

49.6

%

(

Note 1

)

HV9113

95

97

99

Dead Time

HV9113

D

MIN

225

ns

HV9113 only (

Note 1

)

Minimum Duty Cycle

0

%

Pulse Width where Pulse drops out

80

125

ns

(

Note 1

)

CURRENT LIMIT
Maximum Input Signal

V

LIM

1

1.2

1.4

V

V

FB 

= 0V

Delay to Output

t

D

80

120

ns

V

CS

 = 1.5V, V

COMP 

≤ 2V 

(

Note 1

)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005505A-html.html
background image

 2016 Microchip Technology Inc.

DS20005505A-page  5

HV9110/HV9112/HV9113

Note 1: Design guidance only; Not 100% tested in production.

2: Stray capacitance on OSC input pin must be ≤5 pF.

ERROR AMPLIFIER
Feedback Voltage

HV9110/13

V

FB

3.96

4

4.04

V

V

FB

 shorted to COMP

HV9112

3.92

4

4.08

Input Bias Current

I

IN

25

500

nA

V

FB 

= 4V

Input Offset Voltage

V

OS

Nulled during trim

Open-loop Voltage Gain

A

VOL

60

80

dB

(

Note 1

)

Unity Gain Bandwidth

GB

1

1.3

MHz

(

Note 1

)

Output Source Current

I

SOURCE

–1.4

–2

mA

V

FB 

= 3.4V

Output Sink Current

I

SINK

0.12

0.15

mA

V

FB

 = 4.5V

HIGH-VOLTAGE REGULATOR AND START-UP
Input Voltage

HV9110/13

V

IN

120

V

I

IN 

< 10 µA; V

CC 

> 9.4V

HV9112

80

Input Leakage Current

I

IN

10

μA

V

DD 

> 9.4V

Regulator Turn-off Threshold Voltage

V

TH

8

8.7

9.4

V

I

IN 

= 10 µA

Undervoltage Lockout

V

LOCK

7

8.1

8.9

V

SUPPLY
Supply Current

I

DD

0.75

1

mA

C

< 75 pF

Quiescent Supply Current

I

Q

0.55

mA

V

NSD 

= 0V

Nominal Bias Current

I

BIAS

20

μA

Operating Range

V

DD

9

13.5

V

SHUTDOWN LOGIC
Shutdown Delay

t

SD

50

100

ns

C

L

= 500 pF, V

CS

= 0V 

(

Note 1

)

NSD Pulse Width

t

SW

50

ns

(

Note 1

)

RST Pulse Width

t

RW

50

ns

(

Note 1

)

Latching Pulse Width

t

LW

25

ns

V

NSD

, V

RST

 = 0V(

Note 1

)

Input Low Voltage

V

IL

2

V

Input High Voltage

V

IH

7

V

Input Current, Input High Voltage

I

IH

1

5

μA

V

IN 

= V

DD

Input Current, Input Low Voltage

I

IL

–25

–35

μA

V

IN

 = 0V

OUTPUT
Output High Voltage HV9110/13

V

OH

V

DD

–0.25

V

I

OUT 

= 10 mA

HV9112

V

DD

–0.3

HV9110/13

V

DD

–0.3

I

OUT 

= 10 mA,

T

= –55°C to 125°C

Output Low Voltage

All

V

OL

0.2

V

I

OUT 

= –10 mA

HV9110/13

0.3

I

OUT 

= –10 mA,

T

A

 = –55°C to 125°C 

Output Resistance

Pull up

R

OUT

15

25

I

OUT 

= ±10 mA

Pull down

8

20

Pull up

20

30

I

OUT 

= ±10 mA,

T

= –55°C to 125°C

Pull down

10

30

Rise Time

t

R

30

75

ns

C

= 500 pF (

Note 1

)

Fall Time

t

F

20

75

ns

C

L

 = 500 pF (

Note 1

)

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications: V

DD 

= 10V, V

IN 

= 48V, V

DISC 

= 0V, R

BIAS

 = 390 kΩ, R

OSC

 = 330 kΩ, T

A

= 25°C unless otherwise noted. 

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005505A-html.html
background image

TEMPERATURE SPECIFICATIONS

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

TEMPERATURE RANGES
Operating Temperature

–55

125

°C

Storage Temperature

–65

150

°C

PACKAGE THERMAL RESISTANCE

14-lead SOIC

θ

ja

83

°C/W

HV9110/HV9112/HV9113

DS20005505A-page  6

 2016 Microchip Technology Inc.

1.1

Truth Table

 

TRUTH TABLE

SHUTDOWN

RESET

OUTPUT

H

H

Normal operation

H

H → L

Normal operation, no change

L

H

Off, not latched

L

L

Off, latched

L → H

L

Off, latched, no change

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005505A-html.html
background image

 2016 Microchip Technology Inc.

DS20005505A-page  7

HV9110/HV9112/HV9113

2.0

TYPICAL PERFORMANCE CURVES

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of 
samples and are provided for informational purposes only. The performance characteristics listed herein 
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified 
operating range (e.g. outside specified power supply range) and therefore outside the warranted range.

FIGURE 2-1:

1M

100k

10k

1k

100

10

1

100m

100             1k            10k           100k          1M           10M

Z

0

 (Ω)

Frequency (Hz)

Error Amplifier Output 

Impedance (Z

0

). 

0

-10

-20

-30

-40

-50

-60

-70

-80

PSSR (dB)

Frequency (Hz)

10             100            1k           10k          100k           1M

FIGURE 2-2:

PSRR –Error Amplifier and 

Reference.

Bias Resistance (Ω)

100k  

1M

 

                                     

10M

Bias Current (μA)

100

10

V

DD 

= 12V

V

DD 

= 10V

FIGURE 2-3:

Bias Current vs. Bias 

Resistance. 

FIGURE 2-4:

10k                                    100k                                    1M

R

OSC 

(Ω)

f

OUT 

(Hz)

1M

100k

10k

HV9113

HV9110, HV9112 

Output Switching Frequency 

vs. Oscillator Resistance. 

80

70

60

50

40

30

20

10

0

-10

Gain (dB)

Phase (

O

C)

180

120

60

0

-60

-120

-180

Frequency (Hz)

100              1k              10k             100k            1M

FIGURE 2-5:

Error Amplifier Open-loop 

Gain/Phase.

R

DISCHARGE 

(Ω) 

100m       1            10          100         1k           10k        100k        1M   

100

t

OFF 

(ns)

 1k

10k

R

OSC 

= 100k

R

OSC 

= 10k

R

OSC 

= 1k

 

FIGURE 2-6:

R

DISCHARGE

 vs. t

OFF

 

(HV9113 only).

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005505A-html.html
background image

HV9110/HV9112/HV9113

DS20005505A-page  8

 2016 Microchip Technology Inc.

3.0

 

PIN DESCRIPTION

Table 3-1

 shows the pin description for 

HV9110/HV9112/HV9113. The locations of the pins are 
listed in 

Features

.

 

TABLE 3-1:

PIN DESCRIPTION 

Pin Number

HV9110/HV9112/HV9113

Pin Name

Description

1

BIAS

Internal bias, current set

2

V

IN

High-voltage V

DD

 regulator input

3

CS

Current sense input

4

GATE

Gate drive output

5

GND

Ground

6

V

DD

High-voltage V

DD

 regulator output

7

OSCO

Oscillator output

8

OSCI

Oscillator input

9

DISC

Oscillator discharge, current set

10

V

REF

4V reference output

Reference voltage level can be overridden by an externally applied voltage 
source.

11

NSD

Active low input to set shutdown latch

12

RST

Active high input to reset shutdown latch

13

COMP

Error amplifier output

14

FB

Feedback voltage input 

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005505A-html.html
background image

 2016 Microchip Technology Inc.

DS20005505A-page  9

HV9110/HV9112/HV9113

4.0

TEST CIRCUITS

The test circuits for characterizing error amplifier output impedance, Z

OUT

, and error amplifier, power supply rejection 

ratio, PSRR, are shown in 

Figure 4-1

 and 

Figure 4-2

.

+

Reference

60k

40k

1V swept 100 Hz-2.2 MHz 

Tektronix

P6021
(1 turn

secondary)

+10 V

DD

GND

FB

NOTE: 
     Set Feedback Voltage so that V

COMP

 = V

DIVIDE

 ±1 mV

     before connecting transformer

100 nF

V

1

V

2

FIGURE 4-1:

Error Amp Z

OUT

.

+

Reference

0.1V swept

10 Hz-1.0 MHz 

100 nF

10.0V

4.0V

100k1%

100k1%

V

2

V

1

FIGURE 4-2:

PSRR.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005505A-html.html
background image

HV9110/HV9112/HV9113

DS20005505A-page  10

 2016 Microchip Technology Inc.

5.0

DETAILED DESCRIPTION

5.1

High-Voltage Regulator

The high-voltage regulator included in 
HV9110/HV9112/HV9113 consists of a high-voltage N-
channel Depletion-mode DMOS transistor driven by an 
error amplifier, providing a current path between the 
V

IN

 terminal and the V

DD

 terminal. The maximum cur-

rent, about 20 mA, occurs when V

DD 

= 0, with current 

reducing as V

DD

 rises. This path shuts off when V

DD

rises to somewhere between 8V and 9.4V. So, if V

DD

 is 

held at 10V or 12V by an external source, no current 
other than leakage is drawn through the high voltage 
transistor. This minimizes dissipation within the high-
voltage regulator.

Use an external capacitor between V

DD

 and GND. This 

capacitor should have good high-frequency character-
istics. Ceramic caps work well. 

The device uses a compound resistor divider to monitor 
V

DD

 for both the undervoltage lockout circuit and the 

shutoff circuit of the high-voltage FET. Setting the 
undervoltage sense point about 0.6V lower on the 
string than the FET shutoff point guarantees that the 
undervoltage lockout releases before the FET shuts 
off.

5.2

Bias Circuit

HV9110/HV9112/HV9113 require an external bias 
resistor, connected between the Bias pin and GND

,

 to 

set currents in a series of current mirrors used by the 
analog sections of the chip. The nominal external bias 
current requirement is 15 µA to 20 µA, which can be set 
by a 390 kΩ to 510 kΩ resistor if V

DD

 = 10V, or a 

510 kΩ to 680 kΩ resistor if V

DD

 = 12V. A precision 

resistor is not required, ±5% meets device require-
ments.

5.3

Clock Oscillator

The clock oscillator of the HV9110/HV9112/HV9113 
consists of a ring of CMOS inverters, timing capacitors, 
and a capacitor-discharge FET. A single external resis-
tor between the OSCI and OSCO sets the oscillator fre-
quency. (See 

Figure 2-4

.)

The HV9110 and HV9112 include a frequency-dividing 
flip-flop that allows the part to operate with a 50% duty 
limit. Accordingly, the effective switching frequency of 
the power converter is half the oscillator frequency. 
(See 

Figure 2-4

.)

An internal discharge FET resets the oscillator ramp at 
the end of the oscillator cycle. The discharge FET is 
externally connected to GND, by way of a resistor. The 
resistor programs the oscillator dead time at the end of 
the oscillator period.

The oscillator turns off during shutdown to reduce sup-
ply current by about 150 μA.

5.4

Reference

The reference of the HV9110/HV9112/HV9113 consists 
of a band-gap reference, followed by a buffer amplifier, 
which scales the voltage up to 4V. The scaling resistors 
of the buffer amplifier are trimmed during manufacture 
so that the output of the error amplifier, when con-
nected in a gain of –1 configuration, is as close to 4V 
as possible. This nulls out the input offset of the error 
amplifier. As a consequence, even though the 
observed reference voltage of a specific part may not 
be exactly 4V, the feedback voltage required for proper 
regulation will be 4V.

An approximately 50 kΩ resistor is located internally 
between the output of the reference buffer amplifier 
and the circuitry it feeds—reference output pin and 
non-inverting input to the error amplifier. This allows 
overriding the internal reference with a low impedance 
voltage source ≤ 6V. Using an external reference rein-
states the input offset voltage of the error amplifier. 
Overriding the reference should seldom be necessary. 

The reference of the HV9110/HV9112/HV9113 is a 
high-impedance node, and usually there will be signifi-
cant electrical noise nearby. Therefore, a bypass 
capacitor between the reference pin and GND is 
strongly recommended. The reference buffer amplifier 
is compensated to be stable with a capacitive load of 
0.01 µF to 0.1 µF.

5.5

Error Amplifier

The error amplifier on HV9110/HV9112/HV9113 is a 
low-power, differential-input, operational amplifier. A 
PMOS input stage is used, so the common mode range 
includes ground and the input impedance is high. 

5.6

Current Sense Comparators

The  HV9110/HV9112/HV9113 use a dual-comparator 
system with independent comparators for modulation 
and current limiting. This provides the designer greater 
latitude in compensation design, as there are no 
clamps, except ESD protection, on the compensation 
pin. 

5.7

Remote Shutdown

The NSD and RST pins control the shutdown latch. 
These pins have internal current-source pull-ups so
they can be driven from open drain logic. When not 
used they should be left open or connected to V

DD

.

Maker
Microchip Technology Inc.