HV256 32-Channel High-Voltage Amplifier Array Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005826A-html.html
background image

 2017 Microchip Technology Inc.

DS20005826A-page  1

HV256

Features

• Thirty-two Independent High-voltage Amplifiers
• 300V Operating Voltage
• 295V Output Voltage
• 2.2V/µs Typical Output Slew Rate
• Adjustable Output Current Source Limit
• Adjustable Output Current Sink Limit
• Internal Closed-loop Gain of 72V/V
• 12 MΩ Feedback Impedance
• Layout Ideal for Die Applications

Applications

• Microelectromechanical Systems (MEMS) Driver
• Piezoelectric Transducer Driver
• Optical Crosspoint Switches                             

(Using MEMS Technology)

General Description

The  HV256 is a 32-channel, high-voltage amplifier 
array integrated circuit. It operates on a single 
high-voltage supply, up to 300V, and two low-voltage 
supplies, V

DD

 and V

NN

.

The input voltage range is from 0V to 4.096V. The 
internal closed-loop gain is 72V/V, giving an output 
voltage of 295V when 4.096V is applied. Input voltages 
of up to 5V can be applied but will cause the output to 
saturate. The maximum output voltage swing is 5V 
below the V

PP

 high-voltage supply. The outputs can 

drive capacitive loads of up to 3000 pF.
The maximum output source and sink currents can be 
adjusted by using two external resistors. An external 
R

SOURCE

 resistor controls the maximum sourcing 

current, and an external R

SINK

 resistor controls the 

maximum sinking current. The current limit is 
approximately 12.5V divided by the external resistor 
value. The setting is common for all 32 outputs. A 
low-voltage silicon junction diode is made available to 
help monitor the die temperature.

Package Type

100-lead MQFP

(Top view)

100 

See 

Table 3-1

 for pin information.

32-Channel High-Voltage Amplifier Array 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005826A-html.html
background image

 HV

OUT

0

 HV

OUT

31

 HV

OUT

1

GND

VPP

VNN

R

71R

VDD

 VPP

VIN0

VPP

Output Current Source

Limiting for all HV

OUT

 RSOURCE

R

R

 RSINK

Output Current Sink 

Limiting for all HV

OUT 

71R 

71R

Anode

Cathode

To internal VPP bus

BYP-VPP

BYP-VDD

BYP-VNN

To internal VNN bus

To internal VDD bus

VIN1

VIN31

VDD

VDD

VNN

VNN

HV256

DS20005826A-page  2

 2017 Microchip Technology Inc.

Functional Block Diagram

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005826A-html.html
background image

 2017 Microchip Technology Inc.

DS20005826A-page  3

HV256

Typical Application Circuit

V

IN

0

V

IN

0

V

IN

0

V

IN

0

HV

OUT

0

HV

OUT

1

HV

OUT

2

HV

OUT

3

HV256

AGND

MEMS 

Array 

HV

OUT

30

HV

OUT

31

VNN

VDD

VPP

V

IN

30

V

IN

31

Micro 

Processor 

DAC

DAC

DAC

DAC

DAC

DAC

High Voltage 

Op-Amp 

Array 

RSOURCE

RSINK

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005826A-html.html
background image

HV256

DS20005826A-page  4

 2017 Microchip Technology Inc.

1.0

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

High-voltage Supply, V

PP 

.......................................................................................................................................  310V 

Analog Low-voltage Positive Supply, AV

DD 

................................................................................................................ 8V

Digital Low-voltage Positive Supply, DV

DD

 ................................................................................................................. 8V 

Analog Low-voltage Negative Supply, AV

NN

 ............................................................................................................ –7V

Digital Low-voltage Negative Supply, DV

NN

 ............................................................................................................  –7V

Logic Input Voltage .................................................................................................................................  –0.5V to DV

DD

Analog Input Signal, V

IN

 ................................................................................................................................... 0V to 6V

Maximum Junction Temperature, T

J

..................................................................................................................... 150°C

Storage Temperature, T

....................................................................................................................  –65°C to +150°C

 Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the 
device. This is a stress rating only, and functional operation of the device at those or any other conditions above those 
indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for 
extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Parameter

Sym.

Min.

Typ.

Max.

Unit

Conditions

High-voltage Positive Supply

V

PP

125

300

V

Low-voltage Positive Supply

V

DD

6

7.5

V

Low-voltage Negative Supply

V

NN

–4.5

–6.5

V

V

PP

 Supply Current

I

PP

0.8

mA

V

PP

 = 300V, All HV

OUT

 = 0V, No load

V

DD

 Supply Current

I

DD

5

mA

V

DD

 = 6V to 7.5V

V

NN 

Supply Current

I

NN

–6

mA

V

NN

 = –4.5V to –6.5V

Operating Temperature Range

T

J

–10

85

°C

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005826A-html.html
background image

DC ELECTRICAL CHARACTERISTICS 

Electrical Specifications: Over operating conditions unless otherwise noted.

Parameter

Sym.

Min.

Typ.

Max.

Unit

Conditions

HV

OUT

 Voltage Swing

HV

OUT

0

V

PP

–5

V

Input Voltage Range

V

IN

0

5

V

Input Voltage Offset

V

INOS

±50

mV

Input referred

Feedback Resistance from HV

OUT

            

to Ground 

R

FB

9.6

12

MΩ

HV

OUT

 Capacitive Load

C

LOAD

0

3000

pF

HV

OUT

 Sourcing Current Limiting Range

I

SOURCE

385

550

715

µA

R

SOURCE

 = 25 kΩ

HV

OUT

 Sinking Current Limiting Range

I

SINK

385

550

715

µA

R

SINK

 = 25 kΩ

External Resistance Range                      
for Setting Maximum Current Source

R

SOURCE

25

250

kΩ

External Resistance Range for Setting 
Maximum Current Sink

R

SINK

25

250

kΩ

AC ELECTRICAL CHARACTERISTICS 

Electrical Specifications: Over operating conditions unless otherwise noted

Parameter

Sym.

Min.

Typ.

Max.

Unit

Conditions

HV

OUT

 Slew Rate Rise

SR

2.2

V/µs

No load

HV

OUT

 Slew Rate Fall

2

V/µs

No load

HV

OUT

 –3 dB Channel Bandwidth

BW

4

kHz

V

PP

 = 300V

Open-loop Gain

A

O

70

100

dB

Closed-loop Gain

A

V

68.4

72

75.6

V/V

DC Channel-to-channel Crosstalk

CT

DC

–80

dB

Power Supply Rejection Ratio for V

PP

V

DD

 and V

NN

PSRR

–40

dB

TEMPERATURE DIODE
Peak Inverse Voltage

PIV

5

V

Cathode to anode

Forward Diode Drop

V

F

0.6

V

I

F

 = 100 µA,             

anode to                 
cathode at T

A

 = 25°C

Forward Diode Current

I

F

100

µA

Anode to cathode

V

F

 Temperature Coefficient

T

C

–2.2

mV/°C Anode to cathode

TEMPERATURE SPECIFICATIONS

Parameter

Sym.

Min.

Typ.

Max.

Unit

Conditions

TEMPERATURE RANGE
Maximum Junction Temperature

T

J

+150

°C

Storage Temperature

T

S

–65

+150

°C

PACKAGE THERMAL RESISTANCE
100-lead MQFP

JA

39

°C/W

 2017 Microchip Technology Inc.

DS20005826A-page  5

HV256

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005826A-html.html
background image

HV256

DS20005826A-page  6

 2017 Microchip Technology Inc.

2.0

TYPICAL PERFORMANCE CURVES

(V

PP 

= 300V, V

DD 

= 6.5V, V

NN 

= 5.5V, T

= 25

O

C)

R

SINK 

(kΩ)

I

SINK 

(μA)

min

max

600

500

400

300

200

100

0

25                                                                150                                                               250

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of 
samples and are provided for informational purposes only. The performance characteristics listed herein 
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified 
operating range (e.g. outside specified power supply range) and therefore outside the warranted range.

FIGURE 2-1:

I

SINK 

vs. R

SINK

.

                                                                     

min

max

(V

PP 

= 300V, V

DD 

= 6.5V, V

NN  

= 5.5V, T

= 25

O

C)

R

SOURCE 

(kΩ)

  I

SOURCE 

(μA)

600

500

400

300

200

100

0

25                                                                150                                                               250

                                             

FIGURE 2-2:

I

SOURCE 

vs. R

SOURCE

.

700

600

500

400

300

Diode Biasing Current (μA)

V

(mV)

(V

PP 

= 300V, V

DD 

= 6.5V, V

NN 

= 5.5V)

-10

O

C

85

O

C

25

O

C

min

max

min

max

min

max

0                       20                      40                      60                      80                     100

      

FIGURE 2-3:

Temperature Diode vs. 

Temperature.

FIGURE 2-4:

Input Offset vs. V

IN 

and 

Temperature. 

3.5

3.0

2.5

2.0

1.5

-2.0

-2.5

-3.0

-3.5

-4.0

-4.5

0                                  1.0                                2.0                                 3.0                        4.0

V

IN 

(Volts)

Input Offset (mV)

Offset at -10

O

C

Offset at   25

O

C

Offset at   85

O

C

(V

PP 

= 300V, V

DD 

= 6.5V, V

NN 

= 5.5V ) 

0                             1                             2                              3                       4

V

IN 

(Volts)

Gain

(V

PP 

= 300V, V

DD 

= 6.5V, V

NN 

= 5.5V, T

= -10

O

, +25

O

, +85

O

C)

 

73.97
73.96
73.95
73.94
73.93

  

72.73
72.72
72.71
72.70
72.69

FIGURE 2-5:

Gain vs. V

IN

.

Frequency (Hz) 

-50

-40

-30

-20

-10

0

10               100                    1k                     10k                  100k                 1M

V

PP

 

PSRR (dB)

(V

PP 

= 300V, V

DD 

= 6.5V, V

NN 

= 5.5V, T

= 25

O

C)

FIGURE 2-6:

V

PP

 PSRR vs. Frequency.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005826A-html.html
background image

 2017 Microchip Technology Inc.

DS20005826A-page  7

HV256

FIGURE 2-7:

Frequency (Hz) 

V

DD 

PSRR (dB)

(V

PP 

= 300V, V

DD 

= 6.5V, V

NN 

= 5.5V, T

= 25

O

C)

-50

-40

-30

-20

-10

0

10               100                    1K                    10K                  100K                 1M

V

DD

 PSRR vs. Frequency.

Frequency (Hz) 

V

NN 

PSRR (dB)

(V

PP 

= 300V, V

DD 

= 6.5V, V

NN 

= 5.5V, T

= 25

O

C)

-50

-40

-30

-20

-10

0

10               100                    1k                    10k                  100k                 1M

FIGURE 2-8:

V

NN

 PSRR vs. Frequency. 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005826A-html.html
background image

HV256

DS20005826A-page  8

 2017 Microchip Technology Inc.

3.0

PIN DESCRIPTION

The details on the pins of HV256 are listed on 

Table 3-1

. Refer to 

Package Type

 for the location of 

pins.

TABLE 3-1:

PIN FUNCTION TABLE 

Pin Number

Pin Name

Description

1

HVOUT31

Amplifier output

2

HVOUT30

Amplifier output

3

HVOUT29

Amplifier output

4

HVOUT28

Amplifier output

5

HVOUT27

Amplifier output

6

HVOUT26

Amplifier output

7

HVOUT25

Amplifier output

8

HVOUT24

Amplifier output

9

HVOUT23

Amplifier output

10

HVOUT22

Amplifier output

11

HVOUT21

Amplifier output

12

HVOUT20

Amplifier output

13

HVOUT19

Amplifier output

14

HVOUT18

Amplifier output

15

HVOUT17

Amplifier output

16

HVOUT16

Amplifier output

17

HVOUT15

Amplifier output

18

HVOUT14

Amplifier output

19

HVOUT13

Amplifier output

20

HVOUT12

Amplifier output

21

HVOUT11

Amplifier output

22

HVOUT10

Amplifier output

23

HVOUT9

Amplifier output

24

HVOUT8

Amplifier output

25

HVOUT7

Amplifier output

26

HVOUT6

Amplifier output

27

HVOUT5

Amplifier output

28

HVOUT4

Amplifier output

29

HVOUT3

Amplifier output

30

HVOUT2

Amplifier output

31

HVOUT1

Amplifier output

32

HVOUT0

Amplifier output

33

VPP

High-voltage positive supply. There are two pads in the die pad diagram.

34

NC

No connect

35

NC

No connect

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005826A-html.html
background image

 2017 Microchip Technology Inc.

DS20005826A-page  9

HV256

36

NC

No connect

37

NC

No connect

38

NC

No connect

39

GND

Digital ground. There are four pads in the die pad diagram.

40

VNN

Analog low-voltage negative supply. There are four pads in the die pad diagram.

41

NC

No connect

42

VDD

Analog low-voltage positive supply. There are four pads in the die pad diagram.

43

GND

Digital ground. There are four pads in the die pad diagram.

44

VNN

Analog low-voltage negative supply. There are four pads in the die pad diagram.

45

VDD

Analog low-voltage positive supply. There are four pads in the die pad diagram.

46

NC

No connect

47

NC

No connect

48

VIN0

Amplifier input

49

VIN1

Amplifier input

50

VIN2

Amplifier input

51

VIN3

Amplifier input

52

VIN4

Amplifier input

53

VIN5

Amplifier input

54

VIN6

Amplifier input

55

VIN7

Amplifier input

56

VIN8

Amplifier input

57

VIN9

Amplifier input

58

VIN10

Amplifier input

59

VIN11

Amplifier input

60

VIN12

Amplifier input

61

VIN13

Amplifier input

62

VIN14

Amplifier input

63

VIN15

Amplifier input

64

VIN16

Amplifier input

65

VIN17

Amplifier input

66

VIN18

Amplifier input

67

VIN19

Amplifier input

68

VIN20

Amplifier input

69

VIN21

Amplifier input

70

VIN22

Amplifier input

71

VIN23

Amplifier input

72

VIN24

Amplifier input

73

VIN25

Amplifier input

74

VIN26

Amplifier input

TABLE 3-1:

PIN FUNCTION TABLE (CONTINUED)

Pin Number

Pin Name

Description

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005826A-html.html
background image

HV256

DS20005826A-page  10

 2017 Microchip Technology Inc.

75

VIN27

Amplifier input

76

VIN28

Amplifier input

77

VIN29

Amplifier input

78

VIN30

Amplifier input

79

VIN31

Amplifier input

80

NC

No connect

81

NC

No connect

82

NC

No connect

83

NC

No connect

84

NC

No connect

85

NC

No connect

86

GND

Digital ground. There are four pads in the die pad diagram.

87

VDD

Analog low-voltage positive supply. There are four pads in the die pad diagram.

88

VNN

Analog low-voltage negative supply. There are four pads in the die pad diagram.

89

GND

Digital ground. There are four pads in the die pad diagram.

90

NC

No connect

91

VDD

Analog low-voltage positive supply. There are four pads in the die pad diagram.

92

BYP-VNN

A low-voltage 1 nF to 10 nF decoupling capacitor across VNN and BYP-VNN is 
required.

93

BYP-VDD

A low voltage 1 nF to 10 nF decoupling capacitor across VDD and BYP-VDD is 
required.

94

VNN

Analog low-voltage negative supply. There are four pads in the die pad diagram.

95

ANODE

The anode side of a low-voltage silicon diode that can be used to monitor die      
temperature

96

CATHODE

The cathode side of a low-voltage silicon diode that can be used to monitor die 
temperature

97

RSINK

The external resistor from RSINK to VNN that sets the output current sinking limit. 
The current limit is approximately 12.5V divided by the RSINK resistor value.

98

RSOURCE

The external resistor from RSOURCE to VNN that sets the output current         
sourcing limit. The current limit is approximately 12.5V divided by the RSOURCE 
resistor value.

99

BYP-VPP

A low-voltage 1 nF to 10 nF decoupling capacitor across VPP and BYP-VPP is 
required.

100

VPP

High-voltage positive supply. There are four pads in the die pad diagram.

TABLE 3-1:

PIN FUNCTION TABLE (CONTINUED)

Pin Number

Pin Name

Description

Maker
Microchip Technology Inc.