HCS361- KeeLoQ Code Hopping Encoder

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/40146F-html.html
background image

© 2011 Microchip Technology Inc.

DS40146F-page  1

FEATURES

Security

• Programmable 28/32-bit serial number
• Programmable 64-bit encryption key
• Each transmission is unique
• 67-bit transmission code length
• 32-bit hopping code
• 35-bit fixed code (28/32-bit serial number, 

4/0-bit function code, 1-bit status, 2-bit CRC)

• Encryption keys are read protected

Operating

• 2.0-6.6V operation
• Four button inputs

- 15 functions available 

• Selectable baud rate
• Automatic code word completion
• Battery low signal transmitted to receiver
• Nonvolatile synchronization data
• PWM and VPWM modulation

Other

• Easy to use programming interface
• On-chip EEPROM
• On-chip oscillator and timing components
• Button inputs have internal pull-down resistors
• Current limiting on LED output
• Minimum component count

Enhanced Features Over HCS300

• 48-bit seed vs. 32-bit seed
• 2-bit CRC for error detection
• 28/32-bit serial number select
• Two seed transmission methods
• PWM and VPWM modulation
• Wake-up signal in VPWM mode
• IR Modulation mode

Typical Applications

The HCS361 is ideal for Remote Keyless Entry (RKE)
applications. These applications include:
• Automotive RKE systems
• Automotive alarm systems
• Automotive immobilizers
• Gate and garage door openers 
• Identity tokens
• Burglar alarm systems

DESCRIPTION

The HCS361 is a code hopping encoder designed for
secure Remote Keyless Entry (RKE) systems. The
HCS361 utilizes the K

EE

L

OQ®

 code hopping technol-

ogy, which incorporates high security, a small package
outline and low cost, to make this device a perfect
solution for unidirectional remote keyless entry sys-
tems and access control systems.

PACKAGE TYPES

HCS361 BLOCK DIAGRAM

DESCRIPTION

The HCS361 combines a 32-bit hopping code
generated by a nonlinear encryption algorithm, with a
28/32-bit serial number and 7/3 status bits to create a
67-bit transmission stream. 

1

2

3

4

8

7

6

5

S0

S1

S2

S3

V

DD

LED

DATA

V

SS

PDIP, SOIC

HCS361

V

SS

V

DD

Oscillator

RESET circuit

LED driver

Controller

Power
latching
and
switching

Button input port

32-bit shift register

Encoder

EEPROM

DATA   

LED   

S

3

S

2

S

1

S

0

HCS361

K

EE

L

OQ®

 Code Hopping Encoder

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/40146F-html.html
background image

HCS361

DS40146F-page  2

© 2011 Microchip Technology Inc.

The crypt key, serial number and configuration data are
stored in an EEPROM array which is not accessible via
any external connection. The EEPROM data is pro-
grammable but read protected. The data can be veri-
fied only after an automatic erase and programming
operation. This protects against attempts to gain
access to keys or manipulate synchronization values.
The HCS361 provides an easy-to-use serial interface
for programming the necessary keys, system parame-
ters and configuration data.

1.0

SYSTEM OVERVIEW

Key Terms
The following is a list of key terms used throughout this
data sheet. For additional information on K

EE

L

OQ

 and

Code Hopping, refer to Technical Brief 3 (TB003).
• RKE - Remote Keyless Entry
• Button Status - Indicates what button input(s) 

activated the transmission. Encompasses the 4 
button status bits S3, S2, S1 and S0 (Figure 3-2).

• Code Hopping - A method by which a code, 

viewed externally to the system, appears to 
change unpredictably each time it is transmitted.

• Code word - A block of data that is repeatedly 

transmitted upon button activation (Figure 3-2).

• Transmission - A data stream consisting of 

repeating code words (Figure 9-1).

• Crypt key - A unique and secret 64-bit number 

used to encrypt and decrypt data. In a symmetri-
cal block cipher such as the K

EE

L

OQ

 algorithm, 

the encryption and decryption keys are equal and 
will therefore be referred to generally as the crypt 
key.

• Encoder - A device that generates and encodes 

data.

• Encryption Algorithm - A recipe whereby data is 

scrambled using a crypt key. The data can only be 
interpreted by the respective decryption algorithm 
using the same crypt key.

• Decoder - A device that decodes data received 

from an encoder.

• Decryption algorithm - A recipe whereby data 

scrambled by an encryption algorithm can be 
unscrambled using the same crypt key.

• Learn – 

Learning involves the receiver calculating 

the transmitter’s appropriate crypt key, decrypting 
the received hopping code and storing the serial 
number, synchronization counter value and crypt 
key in EEPROM. The K

EE

L

OQ

 product family facil-

itates several learning strategies to be imple-
mented on the decoder. The following are 
examples of what can be done. 
Simple Learning

The receiver uses a fixed crypt key, common 
to all components of all systems by the same 
manufacturer, to decrypt the received code 
word’s encrypted portion.

Normal Learning

The receiver uses information transmitted 
during normal operation to derive the crypt 
key and decrypt the received code word’s 
encrypted portion.

Secure Learn

The transmitter is activated through a special 
button combination to transmit a stored 60-bit 
seed value used to generate the transmitter’s 
crypt key. The receiver uses this seed value 
to derive the same crypt key and decrypt the 
received code word’s encrypted portion. 

• Manufacturer’s code – A unique and secret 64-

bit number used to generate unique encoder crypt 
keys. Each encoder is programmed with a crypt 
key that is a function of the manufacturer’s code. 
Each decoder is programmed with the manufac-
turer code itself.

The HCS361 code hopping encoder is designed specif-
ically for keyless entry systems; primarily vehicles and
home garage door openers. The encoder portion of a
keyless entry system is integrated into a transmitter,
carried by the user and operated to gain access to a
vehicle or restricted area. The HCS361 is meant to be
a cost-effective yet secure solution to such systems,
requiring very few external components (Figure 2-1).
Most low-end keyless entry transmitters are given a
fixed identification code that is transmitted every time a
button is pushed. The number of unique identification
codes in a low-end system is usually a relatively small
number. These shortcomings provide an opportunity
for a sophisticated thief to create a device that ‘grabs’
a transmission and retransmits it later, or a device that
quickly ‘scans’ all possible identification codes until the
correct one is found.
The HCS361, on the other hand, employs the K

EE

L

OQ

code hopping technology coupled with a transmission
length of 66 bits to virtually eliminate the use of code
‘grabbing’ or code ‘scanning’. The high security level of
the HCS361 is based on the patented K

EE

L

OQ 

technol-

ogy. A block cipher based on a block length of 32 bits
and a key length of 64 bits is used. The algorithm
obscures the information in such a way that even if the
transmission information (before coding) differs by only
one bit from that of the previous transmission, the next

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/40146F-html.html
background image

© 2011 Microchip Technology Inc.

DS40146F-page  3

HCS361

coded transmission will be completely different. Statis-
tically, if only one bit in the 32-bit string of information
changes, greater than 50 percent of the coded trans-
mission bits will change.
As indicated in the block diagram on page one, the
HCS361 has a small EEPROM array which must be
loaded with several parameters before use; most often
programmed by the manufacturer at the time of produc-
tion. The most important of these are:
• A 28-bit serial number, typically unique for every 

encoder

• A crypt key
• An initial 16-bit synchronization value
• A 16-bit configuration value

The crypt key generation typically inputs the transmitter
serial number and 64-bit manufacturer’s code into the
key generation algorithm (Figure 1-1). The manufac-
turer’s code is chosen by the system manufacturer and
must be carefully controlled as it is a pivotal part of the
overall system security. 

FIGURE 1-1:

CREATION AND STORAGE OF CRYPT KEY DURING PRODUCTION

The 16-bit synchronization counter is the basis behind
the transmitted code word changing for each transmis-
sion; it increments each time a button is pressed. Due
to the code hopping algorithm’s complexity, each incre-
ment of the synchronization value results in greater
than 50% of the bits changing in the transmitted code
word.
Figure 1-2 shows how the key values in EEPROM are
used in the encoder. Once the encoder detects a button
press, it reads the button inputs and updates the syn-
chronization counter. The synchronization counter and
crypt key are input to the encryption algorithm and the
output is 32 bits of encrypted information. This data will
change with every button press, its value appearing
externally to ‘randomly hop around’, hence it is referred
to as the hopping portion of the code word. The 32-bit
hopping code is combined with the button information
and serial number to form the code word transmitted to
the receiver. The code word format is explained in
greater detail in Section 4.2. 
A receiver may use any type of controller as a decoder,
but it is typically a microcontroller with compatible firm-
ware that allows the decoder to operate in conjunction
with an HCS361 based transmitter. Section 7.0
provides detail on integrating the HCS361 into a sys-
tem.

A transmitter must first be ‘learned’ by the receiver
before its use is allowed in the system. Learning
includes calculating the transmitter’s appropriate crypt
key, decrypting the received hopping code and storing
the serial number, synchronization counter value and
crypt key in EEPROM.
In normal operation, each received message of valid
format is evaluated. The serial number is used to deter-
mine if it is from a learned transmitter. If from a learned
transmitter, the message is decrypted and the synchro-
nization counter is verified. Finally, the button status is
checked to see what operation is requested. Figure 1-3
shows the relationship between some of the values
stored by the receiver and the values received from
the transmitter. 

Transmitter 

Manufacturer’s 

Serial Number

Code

Crypt

 Key

Key

Generation

Algorithm

Serial Number

Crypt Key
Sync Counter

.

.

.

HCS361

Production

Programmer

EEPROM Array

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/40146F-html.html
background image

HCS361

DS40146F-page  4

© 2011 Microchip Technology Inc.

FIGURE 1-2:

BUILDING THE TRANSMITTED CODE WORD (ENCODER)

FIGURE 1-3:

BASIC OPERATION OF RECEIVER (DECODER) 

NOTE: Circled numbers indicate the order of execution.

Button Press

Information

EEPROM Array

32 Bits  

Encrypted Data

Serial Number

Transmitted Information

Crypt Key

Sync Counter

Serial Number

K

EE

L

OQ®

Encryption

Algorithm

Button Press

 Information

EEPROM Array

Manufacturer Code 

32 Bits of 

Encrypted Data

Serial Number

Received Information

 

  Decrypted

Synchronization

        

Counter

     Check for

     Match

Sync Counter

Serial Number

K

EE

L

OQ®

Decryption

Algorithm

1

3

4

     Check for

    Match

2

    Perform Function

        Indicated by

        button press 

5

Crypt Key

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/40146F-html.html
background image

© 2011 Microchip Technology Inc.

DS40146F-page  5

HCS361

2.0

DEVICE OPERATION

As shown in the typical application circuits (Figure 2-1),
the HCS361 is a simple device to use. It requires only
the addition of buttons and RF circuitry for use as the
transmitter in your security application. A description of
each pin is described in Table 2-1.

FIGURE 2-1:

Typical circuits    

TABLE 2-1:

PIN DESCRIPTIONS  

The HCS361 will wake-up upon detecting a button
press and delay approximately 10 ms for button
debounce (Figure 2-2). The synchronization counter,

discrimination value and button information will be
encrypted to form the hopping code. The hopping code
portion will change every transmission, even if the
same button is pushed again. A code word that has
been transmitted will not repeat for more than 64K
transmissions. This provides more than 18 years of use
before a code is repeated; based on 10 operations per
day. Overflow information sent from the encoder can be
used to extend the number of unique transmissions to
more than 192K.
If in the transmit process it is detected that a new but-
ton(s) has been pressed, a RESET will immediately
occur and the current code word will not be completed.
Please note that buttons removed will not have any
effect on the code word unless no buttons remain
pressed; in which case the code word will be completed
and the power-down will occur.

FIGURE 2-2:

ENCODER OPERATION 

Name

Pin 

Number

Description

S0

1

Switch input 0

S1

2

Switch input 1

S2

3

Switch input 2 / Clock pin when in
Programming mode

S3

4

Switch input 3

V

SS

5

Ground reference 

DATA

6

Data output pin /Data I/O pin for
Programming mode

LED

7

Cathode connection for LED

V

DD

8

Positive supply voltage

V

DD

B0

Tx out

S0

S1

S2

S3

LED

V

DD

DATA

V

SS

Two button remote control

B1

V

DD

Tx out

S0

S1

S2

S3

LED

V

DD

DATA

V

SS

Five button remote control  (Note

1

)

B4  B3   B2  B1   B0

Note:

Up to 15 functions can be implemented by pressing
more than one button simultaneously or by using a
suitable diode array.

Power-Up

RESET and Debounce Delay

     

 

(10 ms)

Sample Inputs

Update Sync Info 

Encrypt With

Load Transmit Register 

Buttons

Added

?

All

Buttons

Released

?

(A button has been pressed) 

 Transmit 

Stop

No

Yes

No

Yes

Crypt Key

 Complete Code 

Word Transmission 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/40146F-html.html
background image

HCS361

DS40146F-page  6

© 2011 Microchip Technology Inc.

3.0

EEPROM MEMORY 
ORGANIZATION

The HCS361 contains 192 bits (12 x 16-bit words) of
EEPROM memory (Table 3-1). This EEPROM array is
used to store the encryption key information,
synchronization value, etc. Further descriptions of the
memory array is given in the following sections.

TABLE 3-1:

EEPROM MEMORY MAP 

3.1

KEY_0 - KEY_3 (64-Bit Crypt Key)

The 64-bit crypt key is used to create the encrypted
message transmitted to the receiver. This key is calcu-
lated and programmed during production using a key
generation algorithm. The key generation algorithm
may be different from the K

EE

L

OQ 

algorithm. Inputs to

the key generation algorithm are typically the transmit-
ter’s serial number and the 64-bit manufacturer’s code.
While the key generation algorithm supplied from
Microchip is the typical method used, a user may elect
to create their own method of key generation. This may
be done providing that the decoder is programmed with
the same means of creating the key for
decryption purposes.

3.2

SYNC_A, SYNC_B
(Synchronization Counter)

This is the 16-bit synchronization value that is used to
create the hopping code for transmission. This value is
incremented after every transmission. Separate syn-
chronization counters can be used to stay synchro-
nized with different receivers. 

3.3

SEED_0, SEED_1, and SEED_2
(Seed Word)

The three word (48 bits) seed code will be transmitted
when seed transmission is selected. This allows the sys-
tem designer to implement the Secure Learn feature or
use this fixed code word as part of a different key genera-
tion/tracking process or purely as a fixed code transmis-
sion.

3.4

SER_0, SER_1 
(Encoder Serial Number) 

SER_0 and SER_1 are the lower and upper words of
the device serial number, respectively. There are 32
bits allocated for the Serial Number and a selectable
configuration bit determines whether 32 or 28 bits will
be transmitted. The serial number is meant to be
unique for every transmitter. 

WORD 

ADDRESS

MNEMONIC

DESCRIPTION

0

KEY_0 

64-bit crypt key 
(word 0) LSb’s

1

KEY_1

64-bit crypt key 
(word 1)

2

KEY_2

64-bit crypt key 
(word 2)

3

KEY_3 

64-bit crypt key 
(word 3) MSb’s

4

SYNC_A

16-bit synch counter 

5

SYNC_B/

SEED_2

16-bit synch counter B 
or Seed value (word 2)

6

RESERVED

Set to 0000H

7

SEED_0

Seed Value
 (word 0) LSb’s

8

SEED_1

Seed Value
 (word 1) MSb’s

9

SER_0

Device Serial Number
 (word 0) LSb’s

10

SER_1

Device Serial Number
 (word 1) MSb’s

11

CONFIG

Configuration Word

Note:

Since SEED2 and SYNC_B share the
same memory location, Secure Learn and
Independent mode transmission (including
IR mode) are mutually exclusive.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/40146F-html.html
background image

© 2011 Microchip Technology Inc.

DS40146F-page  7

HCS361

3.5

CONFIG 
(Configuration Word)

The Configuration Word is a 16-bit word stored in
EEPROM array that is used by the device to store
information used during the encryption process, as well
as the status of option configurations. Further
explanations of each of the bits are described in the
following sections.

TABLE 3-1:

CONFIGURATION WORD 

3.5.1

MOD:  MODULATION FORMAT

MOD selects between VPWM modulation and PWM
modulation format.
 If MOD = 1, VPWM modulation is selected as well as
the following:
1.

Enables the TXWAK bit to select the WAKE-UP
transmission.

2.

Extends the Guard Time. 

If MOD = 0, PWM modulation is selected.

3.5.2

BSEL: BAUD RATE SELECT

BSEL selects the baud rate. If BSEL = 1, the baud rate
is nominally 1667 bits per second and with BSEL = 0,
833 bits per second.

3.5.3

TXWAK: BIT FORMAT SELECT OR 
WAKE-UP

In PWM mode, this bit selects the bit format. 
If TXWAK = 0, the PWM pulse duty cycle is 1/3-2/3.
If TXWAK = 1, the PWM pulse duty cycle is 1/6-2/6.

In VPWM mode, this bit enables the wake-up signal. 
If TXWAK = 0, transmissions start normally with the
preamble portion of the code word.
If TXWAK = 1, transmissions start with a Wake-up
sequence followed by a dead time (see Figure 4-2).  

The following tables summarize the combined effect of
TXWAK, BSEL and MOD option bits.

TABLE 3-1:

PWM OPTIONS  

TABLE 3-2:

VPWM OPTIONS  

3.5.4

SPM: SYNC PULSE MODULATION

Select Modulation mode of Sync Pulse. If SPM = 1, the
sync pulse is modulated (Figure 4-1 and Figure 4-2).

3.5.5

OVR: OVERFLOW

The overflow bit is used to extend the number of possi-
ble synchronization values. The synchronization coun-
ter is 16 bits in length, yielding 65,536 values before the
cycle repeats. Under typical use of 10 operations a day,
this will provide nearly 18 years of use before a
repeated value will be used. Should the system
designer conclude that is not adequate, then the over-
flow bit can be utilized to extend the number of unique
values. This can be done by programming OVR to 1 at
the time of production. The encoder will automatically
clear OVR the first time that the transmitted synchroni-
zation value wraps from 0xFFFF to 0x0000. Once
cleared, OVR cannot be set again, thereby creating a
permanent record of the counter overflow. This pre-
vents fast cycling of 64K counter. If the decoder system
is programmed to track the overflow bits, then the effec-
tive number of unique synchronization values can be
extended to 128K. If programmed to zero, the system
will be compatible with old encoder devices.

Bit Number Symbol

Bit Description

0

BACW

Blank Alternate Code Word

1

BSEL

Baud Rate Selection

2

TXWAK

PWM mode: 1/6, 2/6 or 1/3, 

2/3 select 

VPWM mode: Wake-up 

enable

3

SPM

Sync Pulse Modulation

4

SEED

Seed Transmission enable

5

DELM

Delay mode enable

6

TIMO

Time-out enable

7

IND

Independent mode enable

8 USRA0

User bit

9

USRA1

User bit

10

USRB0

User bit

11

USRB1

User bit

12

XSER

Extended serial number 

enable

13

TMPSD

Temporary seed

 transmission enable

14

MOD

Modulation format select

15

OVR

Overflow bit

Note:

The Wake-up sequence is transmitted
before the first code word of each trans-
mission only.

MOD TXWAK

BSEL

T

E

Duty Cycle

0

0

0

400us

1/3-2/3

0

0

1

200us

 1/3-2/3

0

1

0

200us

 1/6-2/6

0

1

1

100us

 1/6-2/6

MOD TXWAK

BSEL

T

E

Wake-up

1

0

0

400us

NO 

1

0

1

200us

NO

1

1

0

400us

YES

1

1

1

200us

YES

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/40146F-html.html
background image

HCS361

DS40146F-page  8

© 2011 Microchip Technology Inc.

3.5.6

BACW: BLANK ALTERNATE CODE 
WORD

BACW = 1 selects the encoder to transmit every sec-
ond code word. This can be used to reduce the aver-
age power transmitted over a 100 ms window and
thereby transmit a higher peak power (see
Section 5.2).

3.5.7

XSER: EXTENDED SERIAL 
NUMBER

If XSER = 0, the four Most Significant bits of the Serial
Number are substituted by S[3:0] and the code word
format is compatible with the HCS200/300/301.
If XSER = 1, the full 32-bit Serial Number [SER_1,
SER_0] is transmitted.  

3.5.8

DISCRIMINATION VALUE 

While in other K

EE

L

OQ

 encoders its value is user

selectable, the HCS361 uses directly the 8 Least Sig-
nificant bits of the Serial Number as part of the infor-
mation that form the encrypted portion of the
transmission (Figure 3-2). 
The discrimination value aids the post-decryption
check on the decoder end. After the receiver has
decrypted a transmission, the discrimination bits are
checked against the encoder Serial Number to verify
that the decryption process was valid.

3.5.9

 USRA,B: USER BITS

User bits form part of the discrimination value. The user
bits together with the IND bit can be used to identify the
counter that is used in Independent mode.

FIGURE 3-2:

CODE WORD ORGANIZATION  

Note:

Since the button status S[3:0] is used to
detect a Seed transmission, Extended
Serial Number and Secure Learn are
mutually exclusive.

Discrimination Bits

(12 bits)

I

O

U

U

S

S

... S

N V

S

S

E

E

... E

D R

R

R

R

R

... R

1

0

7

6

...

0

Fixed Code Portion of Transmission

Encrypted Portion of Transmission

67 bits
of Data
Transmitted

MSB

LSB

CRC

(2-bit)

V

LOW

(1-bit)

Button

Status

(4 bits)

28-bit

Serial Number

Button

Status

(4 bits)

Discrimination

bits

(12 bits)

16-bit

Sync Value

Button Status

(4 bits)

S

S

S

S

2

1

0

3

Fixed Code Portion of Transmission

Encrypted  Portion of Transmission

MSB

LSB

CRC

(2-bit)

V

LOW

(1-bit)

32-bit

Extended Serial Number

Button
Status

(4 bits)

Discrimination

bits

(12 bits)

16-bit

Sync Value

XSER=1

XSER=0

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/40146F-html.html
background image

© 2011 Microchip Technology Inc.

DS40146F-page  9

HCS361

3.5.10

SEED: ENABLE SEED 
TRANSMISSION

If SEED = 0, seed transmission is disabled. The Inde-
pendent Counter mode can only be used with seed
transmission disabled since SEED_2 is shared with the
second synchronization counter. 
With SEED = 1, seed transmission is enabled. The
appropriate button code(s) must be activated to trans-
mit the seed information. In this mode, the seed infor-

mation (SEED_0, SEED_1, and SEED_2) and the
upper 12 or 16 bits of the serial number (SER_1)are
transmitted instead of the hop code.
Seed transmission is available for function codes
(Table 3-2) S[3:0] = 1001 and S[3:0] = 0011 (delayed).
This takes place regardless of the setting of the IND bit.
The two seed transmissions are shown in Figure 3-3.

FIGURE 3-3:

Seed Transmission

3.5.11

TMPSD: TEMPORARY SEED 
TRANSMISSION

The temporary seed transmission can be used to dis-
able learning after the transmitter has been used for a
programmable number of operations. This feature can
be used to implement very secure systems. After learn-
ing is disabled, the seed information cannot be
accessed even if physical access to the transmitter is
possible. If TMPSD = 1 the seed transmission will be
disabled after a number of code hopping transmis-
sions. The number of transmissions before seed trans-
mission is disabled, can be programmed by setting the
synchronization counter (SYNC_A or SYNC_B) to a
value as shown in Table 3-4. 

TABLE 3-4:

SYNCHRONOUS COUNTER 
INITIALIZATION VALUES

All examples shown with XSER = 1, SEED = 1

When S[3:0] = 1001, delay is not applicable.

CRC+V

LOW

SER_1

SEED_2

SEED_1

SEED_0

Data transmission direction

For S[3:0] = 0x3 before delay:

16-bit Data Word

16-bit Counter

Encrypt

CRC+V

LOW

SER_1

SER_0

Encrypted Data

For S[3:0] = 0011 after delay (Note 1, Note 2):

CRC+V

LOW

SER_1

SEED_2

SEED_1

SEED_0

Data transmission direction

Data transmission direction

Note 1: For Seed Transmission, SEED_2 is transmitted instead of SER_0.

2: For Seed Transmission, the setting of DELM has no effect.

Synchronous Counter 

Values

Number of 

Transmissions

0000H

128

0060H

64

0050H

32

0048H

16

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/40146F-html.html
background image

HCS361

DS40146F-page  10

© 2011 Microchip Technology Inc.

3.5.12

DELM: DELAY MODE

If DELM = 1, delay transmission is enabled. A delayed
transmission is indicated by inverting the lower nibble
of the discrimination value. The Delay mode is primarily
for compatibility with previous K

EE

L

OQ

 devices. 

If DELM = 0, delay transmission is disabled (Table 3-
1).

TABLE 3-1:

TYPICAL DELAY TIMES

3.5.13

TIMO: TIME-OUT
OR AUTO-SHUTOFF

If TIMO = 1, the time-out is enabled. Time-out can be
used to terminate accidental continuous transmissions.
When time-out occurs, the PWM output is set low and

the LED is turned off. Current consumption will be
higher than in Standby mode since current will flow
through the activated input resistors. This state can be
exited only after all inputs are taken low. TIMO = 0, will
enable continuous transmission (Table 3-5).

TABLE 3-5:

TYPICAL TIME-OUT TIMES

TXWAK

BSEL

Number of Code Words before 

Delay Mode

Time Before Delay Mode (MOD = 0)

0

0

28

≈  2.8s

0

1

56

≈  2.9s

1

0

28

≈  2.6s

1

1

56

≈  2.8s

TXWAK

BSEL

Maximum Number of Code Words 

Transmitted

Time Before Time-out (MOD = 0)

0

0

256

≈  25.6s

0

1

512

≈  27.2s

1

0

256

≈  23.8s

1

1

512

≈  25.4s

Maker
Microchip Technology Inc.