Four-Channel CMOS LDO with Select Mode, Shutdown and Independent Reset

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21702a-html.html
background image

 2002 Microchip Technology Inc.

DS21702A-page 1

M

TC1307

Features

• Four Independent 150 mA LDOs
• Low Supply Current (220 µA typical)
• High Output Voltage Accuracy (0.5% typical)
• Low Dropout Voltage (100 mV typical with 

150 mA load)

• Four Independent Shutdown Inputs
• Select Mode

: Selectable Output Voltages for 

High Design Flexibility

• Integrated Independent Microprocessor Reset
• Low Noise Outputs
• Fast Response from Shutdown (10 µs typical)
• RESET Output for Low Battery Detection or Reset 

Generator

• Over Current and Over-Temperature Protection
• Small 16-Pin QSOP Package
• Specified Junction Temperature Range:

- -40°C to +125°C

Applications

• Battery Operated Systems
• Potable Computers
• Set Top Boxes
• Load Partitioning
• Medical Instruments
• Cellular / GSM / PHS Phones
• Instrumentation
• Linear Post Regulator for SMPS
• Pagers

Description

The TC1307 combines four CMOS Low Dropout Linear
Regulators with a Microcontroller Monitor in a space-
saving 16-Pin QSOP package. Developed specifically
for battery powered portable applications, all four out-
puts of the TC1307 typically consume a total of 220 µA
supply current, hold the output voltage to a tolerance of
0.5% and require 100 mV of headroom for regulation at
the maximum output current of 150 mA. In addition to
the four high performance LDOs, the TC1307 also
includes a voltage detector with a delayed RESET out-
put that can be configured for low battery detection or
Microcontroller Reset Generator.

All four LDOs have independent shutdown inputs and
can be programmed using two select inputs making the
TC1307 adaptable for a wide range of multiple output
applications. The tri-state SELECT12 input pin allows
the designer to select the output voltages on V

OUT1

,

and V

OUT2

 from three different values (2.5V, 2.8V or

3.0V). The tri-state SELECT34 input pin allows the
designer to select the output voltages on V

OUT3

, and

V

OUT4

 from three different values (1.8V, 2.5V or 2.8V).

All four LDO’s require only a 1 µF output capacitor for
stability that can be ceramic, tantalum or aluminum
over the entire input voltage operating range and 0 mA
to 150 mA rated load range. All four LDOs have low
output noise and excellent dynamic response when
faced with sudden line and load changes.

The voltage detect pin is set for a threshold of 2.63V
(typical) and operates down to a minimum input voltage
of 1.0V. When the voltage on the detect pin rises above
the 2.63V threshold, the RESET output is held low for
300 ms (typical).

Additional integrated features include over-current pro-
tection and over-temperature protection providing full
protection from external load faults.

Package Types

TC1307

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

V

DET

SHDN1

SHDN3

SHDN4

SHDN2

SELECT12

SELECT34

V

IN

V

IN

V

IN

RESET

V

OUT

1

V

OUT

2

V

OUT

3

V

OUT

4

GND

QSOP

Four-Channel CMOS LDO with Select Mode, Shutdown and 

Independent Reset

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21702a-html.html
background image

TC1307

DS21702A-page 2

 2002 Microchip Technology Inc.

1.0

ELECTRICAL 
CHARACTERISTICS

1.1

Maximum Ratings*

V

DD

..............................................................................

6.5V

All inputs and outputs w.r.t. ....... ...V

IN

 + 0.3V to -0.3V

Output Short Circuit Current ...... ...............continuous

Storage temperature.................... .... -65°C to +150°C

Operating Junction Temperature, 
T

J

..................................................-40°C < T

J

 < +150°C

Maximum Junction Temperature, T

J

..................150°C

ESD protection on all pins...................................

≥ 

4 kV

*Notice: Stresses above those listed under “Maximum
Ratings” may cause permanent damage to the device.
This is a stress rating only and functional operation of
the device at those or any other conditions above those
indicated in the operational listings of this specification
is not implied. Exposure to maximum rating conditions
for extended periods may affect device reliability.

PIN FUNCTION TABLE

ELECTRICAL CHARACTERISTICS

Name

Function

V

DET

Voltage Detect Input 

SHDN1

Shutdown for V

OUT1

SELECT12

Input for setting V

OUT1

 and V

OUT2.

V

IN

Input Voltage Connection

V

IN

Input Voltage Connection

GND

Ground connection

SHDN3

Shutdown for V

OUT3

V

IN

Input Voltage Connection

SHDN4

Shutdown for V

OUT4

SELECT34

Input for setting V

OUT3

 and V

OUT4.

V

OUT4

LDO4 Output

V

OUT3

LDO3 Output

V

OUT2

LDO2 Output

V

OUT1

LDO1 Output

SHDN2

Shutdown for V

OUT2

RESET

Reset Output

Unless otherwise specified, all limits are established for V

IN 

= V

R

+1, I

L

 = 100 µA, C

L

 = 3.3 µF, SHDN > V

IH

, T

A

 = 25°C.

Boldface type specifications apply for junction temperatures, T

(Note 9) of -40°C to +125°C.

Parameter

Sym

Min

Typ

Max

Units

Conditions

Input Characteristics:
Input Operating Voltage

V

IN

2.7

6.0

V

Note 1

Input Quiescent Current

I

IN

220

370

µA

SHDN = V

IH

, I

L

 = 0

Input Shutdown Current

I

IN_SHDN

0.1

0.5

µA

SHDN = 0V

Output Characteristics:
Maximum Output Current

I

OUT_MAX

150

mA

Output Short Circuit Current
(Average)

I

OUT_SC

360

mA

V

OUT

 = 0V

Voltage Regulation
LDO1/LDO2/LDO3/LDO4

V

OUT

V

R

-2.5% V

R

±0.5

V

R

+2.5%

V

Note 2

Note 1: The minimum V

IN

 must meet two conditions: V

IN 

≥ 

2.7V and V

IN 

≥ 

(V

R

 + 2.5%) + V

DROPOUT

.

2: V

is the nominal regulator output voltage. For example: V

R

 = 1.8V, 2.5V, 2.8V or 3.0V.

3: TCV

OUT

 = (V

OUT-HIGH 

- V

OUT-LOW

) * 10

6

 / (V

R

 * 

Temperature), V

OUT-HIGH

 = Highest voltage measured over the tempera-

ture range. V

OUT-LOW

 = Lowest voltage measured over the temperature range.

4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is 

tested over a load range from 1mA to the maximum specified output current. Changes in output voltage due to heating 
effects are determined using thermal regulation specification TCV

OUT

.

5: Thermal regulation is defined as the change in output voltage at a time t after a change in power dissipation is applied. 

Specifications are for a current pulse equal to I

LMAX

 at V

IN

 = 6.0V for t = 10 msec.

6: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value 

with a 1V differential applied.

7: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temper-

ature and the thermal resistance from junction to air. (i.e. T

A

, T

J

θ

JA

). Exceeding the maximum allowable power dissipa-

tion will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained junction 
temperatures above 150°C can impact the device reliability. 

8: V

TH-MIN

 = 2.55V and V

TH-MAX

 = 2.70V.

9: The Junction temperature is approximated by soaking the device under test at an ambient temperature equal to the 

desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the Ambi-
ent temperature is not significant.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21702a-html.html
background image

 2002 Microchip Technology Inc.

DS21702A-page 3

TC1307

VOUT Temperature Coefficient 
LDO1/LDO2/LDO3/LDO4

TCV

OUT

20
40

ppm/°C Note 3

Line Regulation LDO1/LDO2/
LDO3/LDO4

V

OUT

/(V

OUT

x

V

IN

)

0.05

0.2

%/V

(V

R

+1)

 ≤ 

V

IN

 ≤ 

6.0V

Load Regulation
LDO1/LDO2/LDO3/LDO4

V

OUT

/V

OUT

2.0

%

I

L

 = 0.1 mA to I

OUT_MAX 

Note 4

Thermal Regulation
LDO1/LDO2/LDO3/LDO4

V

OUT

/

P

D

0.04

V/W

Note 5

Dropout Voltage
LDO1/LDO2/LDO3/LDO4

V

IN

-V

OUT

2

mV

I

L

 = 100 µA, Note 6

15

I

L

 = 20 mA, Note 6

35

90

I

L

 = 50 mA, Note 6

100

280

I

L

 = 150 mA, Note 6

Output Noise
LDO1/LDO2/LDO3/LDO4

e

N

1.2

µV/(Hz)

½

I

OUT

 = 100 mA, f = 10 kHz

C

OUT

 = 1 µF to noise

Over Temperature Protection Characteristics:

Thermal Shutdown Protection

T

SD

150

°C

Note 7

Thermal Shutdown Hysteresis

TSD

10

°C

SHDN Input Characteristics:

SHDN Input High Threshold

V

IH

60

%  of  V

IN

V

IN

 = 2.7V to 6.0V

SHDN Input Low Threshold

V

IL

15

% of V

IN

V

IN

 = 2.7V to 6.0V

Wake-up Time
(from SHDN mode)

t

WK

10

µsec

V

IN

 = 5V, I

L

 = 100 mA,

C

OUT

 = 1 µF, C

IN

 = 1 µF, 

see Figure 4-1

Settling Time
(from SHDN mode)

t

S

40

µsec

V

IN

 = 5V, I

L

 = 100 mA,

C

OUT

 = 1 µF, C

IN

 = 1 µF,

See Figure 4-1

Shutdown Leakage Current

I

SHDN

±0.01

nA

V

SHDN

 = V

IN

 or GND

SELECT Input Characteristics:
SELECT Input High Threshold

V

SELH

V

IN

-0.2

V

V

IN

 = 2.7V to 6.0V

SELECT Input Low Threshold

V

SELL

0.2

V

V

IN

 = 2.7V to 6.0V

SELECT Input Leakage
Current

I

SELECT


±0.11

±0.06


µA

V

SELECT

 = V

IN

V

SELECT

 = GND

RESET Output Characteristics:
Detect Operating
Voltage Range

V

DET

1.0
1.2


6.0
6.0

V

T

A

 = 0°C to +70°C

T

A

 = -40°C to +125°C

Unless otherwise specified, all limits are established for V

IN 

= V

R

+1, I

L

 = 100 µA, C

L

 = 3.3 µF, SHDN > V

IH

, T

A

 = 25°C.

Boldface type specifications apply for junction temperatures, T

(Note 9) of -40°C to +125°C.

Parameter

Sym

Min

Typ

Max

Units

Conditions

Note 1: The minimum V

IN

 must meet two conditions: V

IN 

≥ 

2.7V and V

IN 

≥ 

(V

R

 + 2.5%) + V

DROPOUT

.

2: V

is the nominal regulator output voltage. For example: V

R

 = 1.8V, 2.5V, 2.8V or 3.0V.

3: TCV

OUT

 = (V

OUT-HIGH 

- V

OUT-LOW

) * 10

6

 / (V

R

 * 

Temperature), V

OUT-HIGH

 = Highest voltage measured over the tempera-

ture range. V

OUT-LOW

 = Lowest voltage measured over the temperature range.

4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is 

tested over a load range from 1mA to the maximum specified output current. Changes in output voltage due to heating 
effects are determined using thermal regulation specification TCV

OUT

.

5: Thermal regulation is defined as the change in output voltage at a time t after a change in power dissipation is applied. 

Specifications are for a current pulse equal to I

LMAX

 at V

IN

 = 6.0V for t = 10 msec.

6: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value 

with a 1V differential applied.

7: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temper-

ature and the thermal resistance from junction to air. (i.e. T

A

, T

J

θ

JA

). Exceeding the maximum allowable power dissipa-

tion will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained junction 
temperatures above 150°C can impact the device reliability. 

8: V

TH-MIN

 = 2.55V and V

TH-MAX

 = 2.70V.

9: The Junction temperature is approximated by soaking the device under test at an ambient temperature equal to the 

desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the Ambi-
ent temperature is not significant.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21702a-html.html
background image

TC1307

DS21702A-page 4

 2002 Microchip Technology Inc.

Reset Threshold Voltage

V

TH

2.59
2.55

2.63

2.66
2.70

V
V

T

A

 = +25°C

T

A

 = -40°C to +125°C

See Figure 4-2

Reset Circuit Supply Current

I

VDET

20

40

µA

RESET = Open

Reset Threshold Voltage
Temperature Coefficient

V

TH-TEMP

30

ppm/°C

Detect Threshold to RESET
Active Time Delay

T

VDET-RESET

135

µsec

V

DET

 = V

TH

 to V

TH

 - 100 mV, 

See Figure 4-2

Reset Time-out Period

T

RESET

140

300

560

msec

See Figure 4-2

RESET Output Voltage Low

V

OL-RES

0.3

V

V

DET 

= V

TH-min

I

SINK

 = 1.2 mA

0.4

V

DET

 = V

TH-min 

I

SINK

 = 3.2 mA

0.3

V

DET

 > 1.0V I

SINK

 = 50 µA

Note 8, See Figure 4-2

RESET Output Voltage High

V

OH-RES

0.8*V

DET

V

DET

-

1.5V

V

I

SOURCE

 = 500 µA

Isource = 800 µA
V

DET

>V

TH-max

 (Both cases), 

See Figure 4-2

Temperature Ranges:
Maximum Junction Temperature 
Range

T

J

-40

+150

°C

Maximum Junction Temperature 
Range

T

J

-40

+125

°C

Storage Temperature Range

T

A

-65

+150

°C

Thermal Package Resistances:
Thermal Resistance, 16L-QSOP

θ

JA

112.4

°C/W

EIA/JEDEC JESD51-751-7
4 Layer Board

Unless otherwise specified, all limits are established for V

IN 

= V

R

+1, I

L

 = 100 µA, C

L

 = 3.3 µF, SHDN > V

IH

, T

A

 = 25°C.

Boldface type specifications apply for junction temperatures, T

(Note 9) of -40°C to +125°C.

Parameter

Sym

Min

Typ

Max

Units

Conditions

Note 1: The minimum V

IN

 must meet two conditions: V

IN 

≥ 

2.7V and V

IN 

≥ 

(V

R

 + 2.5%) + V

DROPOUT

.

2: V

is the nominal regulator output voltage. For example: V

R

 = 1.8V, 2.5V, 2.8V or 3.0V.

3: TCV

OUT

 = (V

OUT-HIGH 

- V

OUT-LOW

) * 10

6

 / (V

R

 * 

Temperature), V

OUT-HIGH

 = Highest voltage measured over the tempera-

ture range. V

OUT-LOW

 = Lowest voltage measured over the temperature range.

4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is 

tested over a load range from 1mA to the maximum specified output current. Changes in output voltage due to heating 
effects are determined using thermal regulation specification TCV

OUT

.

5: Thermal regulation is defined as the change in output voltage at a time t after a change in power dissipation is applied. 

Specifications are for a current pulse equal to I

LMAX

 at V

IN

 = 6.0V for t = 10 msec.

6: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value 

with a 1V differential applied.

7: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temper-

ature and the thermal resistance from junction to air. (i.e. T

A

, T

J

θ

JA

). Exceeding the maximum allowable power dissipa-

tion will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained junction 
temperatures above 150°C can impact the device reliability. 

8: V

TH-MIN

 = 2.55V and V

TH-MAX

 = 2.70V.

9: The Junction temperature is approximated by soaking the device under test at an ambient temperature equal to the 

desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the Ambi-
ent temperature is not significant.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21702a-html.html
background image

 2002 Microchip Technology Inc.

DS21702A-page 5

TC1307

2.0

TYPICAL PERFORMANCE CHARACTERISTICS

Note: Unless otherwise indicated, V

IN

 = 3.8V, C

IN

 = 10 µF ceramic (X5R), C

OUT

 = 1 µF ceramic (X5R), I

LOAD

 = 100 µA,

SELECT12 = NC, SELECT34 = V

IN

, SHDN1/2/3/4 = V

IN, 

T

A

 = 25°C. 

Junction temperature (T

J

) is approximated by soaking the device under test at an ambient temperature equal to the

desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the
Ambient temperature is not significant.

FIGURE 2-1:

V

OUT 

vs. Load Current.

FIGURE 2-2:

V

OUT 

vs. Load Current.

FIGURE 2-3:

V

OUT 

vs. Load Current.

FIGURE 2-4:

V

OUT 

vs. Load Current.

FIGURE 2-5:

V

OUT 

vs. Input Voltage.

FIGURE 2-6:

V

OUT 

vs. Input Voltage.

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only.  The performance characteristics listed herein
are not tested or guaranteed.  In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

1.800

1.805

1.810

1.815

1.820

1.825

1.830

0

25

50

75

100

125

150

Load Current (mA)

Output Voltage (V)

V

IN

 = 2.8V

T

J

 = +125°C

T

J

 = +25°C

T

J

 = -40°C

2.488

2.490

2.492

2.494

2.496

2.498

2.500

2.502

2.504

2.506

2.508

0

25

50

75

100

125

150

Load Current (mA)

Output Voltage (V)

V

IN 

= 3.5V

T

J

 = +125°C

T

J

 = +25°C

T

J

 = -40°C

2.78

2.785

2.79

2.795

2.8

2.805

0

25

50

75

100

125

150

Load Current (mA)

Output Voltage (V)

V

IN 

= 3.8V

T

J

 = +125°C

T

J

 = +25°C

T

J

 = -40°C

2.978

2.980

2.982

2.984

2.986

2.988

2.990

2.992

2.994

2.996

2.998

3.000

0

25

50

75

100

125

150

Load Current (mA)

Output Voltage (V)

V

IN 

= 4.0V

T

J

 = +125°C

T

J

 = +25°C

T

J

 = -40°C

1.802

1.804

1.806

1.808

1.810

1.812

1.814

1.816

2.7

3.0

3.3

3.6

3.9

4.2

4.5

4.8

5.1

5.4

5.7

6.0

Input Voltage (V)

Output Voltage (V)

I

LOAD 

= 100 µA

T

J

 = +125°C

T

J

 = +25°C

T

J

 = -40°C

2.488

2.49

2.492

2.494

2.496

2.498

2.5

2.502

2.7

3.0

3.3

3.6

3.9

4.2

4.5

4.8

5.1

5.4

5.7

6.0

Input Voltage (V)

Output Voltage (V)

I

LOAD 

= 100 µA

T

J

 = +125°C

T

J

 = +25°C

T

J

 = -40°C

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21702a-html.html
background image

TC1307

DS21702A-page 6

 2002 Microchip Technology Inc.

Note: Unless otherwise indicated, V

IN

 = 3.8V, C

IN

 = 10 µF ceramic (X5R), C

OUT

 = 1 µF ceramic (X5R), I

LOAD

 = 100 µA,

SELECT12 = NC, SELECT34 = V

IN

, SHDN1/2/3/4 = V

IN, 

T

A

 = 25°C.

Junction temperature (T

J

) is approximated by soaking the device under test at an ambient temperature equal to the

desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the
Ambient temperature is not significant.

FIGURE 2-7:

V

OUT 

vs. Input Voltage.

FIGURE 2-8:

V

IN

 Supply Current vs. Junction

Temperature.

FIGURE 2-9:

Supply Current vs. Input Voltage, V

IN

.

FIGURE 2-10: V

DET

 Supply Current vs. Junction

Temperature.

FIGURE 2-11: V

DET

 Supply Current vs. V

DET

 Input

Voltage.

FIGURE 2-12: Supply Current vs. Junction
Temperature.

2.780

2.782

2.784

2.786

2.788

2.790

2.792

2.794

2.796

3.0

3.3

3.6

3.9

4.2

4.5

4.8

5.1

5.4

5.7

6.0

Input Voltage (V)

Output Voltage (V)

I

LOAD 

= 100 µA

T

J

 = +125°C

T

J

 = +25°C

T

J

 = -40°C

100

120

140

160

180

200

220

240

260

280

-40

-25

-10

5

20

35

50

65

80

95

110

125

Junction Temperature (°C)

I

IN

 Supply Current (µA)

V

IN 

= 3.8V

I

LOAD1/2/3/4 

= 0 mA

180

210

240

270

2.7

3

3.3

3.6

3.9

4.2

4.5

4.8

5.1

5.4

5.7

6

Input Voltage (V)

I

IN

 Supply Current (µA)

T

J

 = +125°C

T

J

 = +25°C

T

J

 = -40°C

I

LOAD1/2/3/4 

= 0 mA

15.0

17.0

19.0

21.0

23.0

25.0

27.0

29.0

-40

-25

-10

5

20

35

50

65

80

95

110 125

Junction Temperature (°C)

I

VDET

 Supply Current (µA)

V

DET 

= 2.8V

RESET = OPEN

0.0

5.0

10.0

15.0

20.0

25.0

30.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

V

DET

 Input Voltage (V)

I

VDET

 Supply Current (µA)

T

J

 = -40°C

T

J

 = +25°C

T

J

 = +125°C

V

IN 

= 0V

SHDN1/2/3/4 = 0V

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

-40

-25

-10

5

20

35

50

65

80

95

110 125

Junction Temperature (°C)

Shutdown Supply Current (µA)

V

IN 

= 2.7V

V

IN 

= 3.8V

V

IN 

= 6.0V

SHDN1/2/3/4 = 0V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21702a-html.html
background image

 2002 Microchip Technology Inc.

DS21702A-page 7

TC1307

Note: Unless otherwise indicated, V

IN

 = 3.8V, C

IN

 = 10 µF ceramic (X5R), C

OUT

 = 1 µF ceramic (X5R), I

LOAD

 = 100 µA,

SELECT12 = NC, SELECT34 = V

IN

, SHDN1/2/3/4 = V

IN, 

T

A

 = 25°C.

Junction temperature (T

J

) is approximated by soaking the device under test at an ambient temperature equal to the

desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the
Ambient temperature is not significant.

FIGURE 2-13: Dropout Voltage vs. Load Current.

FIGURE 2-14: Dropout Voltage vs. Load Current.

FIGURE 2-15: Crosstalk Characteristics V

OUT1

,

V

OUT2

 and V

OUT3

.

FIGURE 2-16: Crosstalk Characteristics V

OUT1

,

V

OUT2

, and V

OUT3

.

FIGURE 2-17: Crosstalk Characteristics V

OUT1

,

V

OUT2

, and V

OUT3

.

FIGURE 2-18: Crosstalk Characteristics V

OUT1

,

V

OUT2

, and V

OUT3

.

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0

25

50

75

100

125

150

Load Current (mA)

Droput Voltage (V)

T

J

 = -40°C

T

J

 = +25°C

T

J

 = +125°C

V

OUT 

= 2.8V

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0

25

50

75

100

125

150

Load Current (mA)

Dropout Voltage (V)

T

J

 = +40°C

T

J

 = +25°C

T

J

 = +125°C

V

OUT 

= 3.0V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21702a-html.html
background image

TC1307

DS21702A-page 8

 2002 Microchip Technology Inc.

Note: Unless otherwise indicated, V

IN

 = 3.8V, C

IN

 = 10 µF ceramic (X5R), C

OUT

 = 1 µF ceramic (X5R), I

LOAD

 = 100 µA,

SELECT12 = NC, SELECT34 = V

IN

, SHDN1/2/3/4 = V

IN, 

T

A

 = 25°C.

Junction temperature (T

J

) is approximated by soaking the device under test at an ambient temperature equal to the

desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the
Ambient temperature is not significant.

FIGURE 2-19: Line Step Response.

FIGURE 2-20: Line Step Response.

FIGURE 2-21: Power Supply Rejection Ratio vs.
Ripple Voltage Frequency.

FIGURE 2-22: Power Supply Rejection Ratio vs.
Ripple Voltage Frequency.

FIGURE 2-23: Output Noise.

FIGURE 2-24: Output Noise.

0

10

20

30

40

50

60

70

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

Ripple Voltage Frequency (Hz)

PSRR (dB)

V

IN

 = 4.1V

V

OUT

 = 2.8V

C

OUT

 = 1 µF Ceramic

I

LOAD

 = 100 mA

0

10

20

30

40

50

60

70

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

Ripple Voltage Frequency (Hz)

PSSR (dB)

V

IN

 = 4.1V

V

OUT

 = 2.8V

C

OUT

 = 10µF Ceramic

I

LOAD

 = 100 mA

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21702a-html.html
background image

 2002 Microchip Technology Inc.

DS21702A-page 9

TC1307

Note: Unless otherwise indicated, V

IN

 = 3.8V, C

IN

 = 10 µF ceramic (X5R), C

OUT

 = 1 µF ceramic (X5R), I

LOAD

 = 100 µA,

SELECT12 = NC, SELECT34 = V

IN

, SHDN1/2/3/4 = V

IN,

T

A

 = 25°C.

Junction temperature (T

J

) is approximated by soaking the device under test at an ambient temperature equal to the

desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the
Ambient temperature is not significant.

FIGURE 2-25: Response From SHDN.

FIGURE 2-26: Output Voltage vs. Current.

FIGURE 2-27: Short Circuit Current vs. Input Voltage.

FIGURE 2-28: Power-Up Reset Time-out Period vs.
Junction Temperature.

FIGURE 2-29: Reset Threshold Voltage vs. Junction
Temperature.

FIGURE 2-30: Reset Delay vs. Overdrive Voltage.

0

0.5

1

1.5

2

2.5

3

50

100

150

200

250

300

350

400

Output Current (mA)

Output Voltage (V)

C

OUT

 = 1 µF

V

OUT

 = Set to 2.8V

0

50

100

150

200

250

300

350

400

450

500

1

2

3

4

5

6

Input Voltage (V)

Short Circuit Current (mA)

C

OUT

 = 1 µF

R

OUT

 < 0.1 ohm

V

OUT

 = Set to 2.8V

200

225

250

275

300

325

350

375

-40

-25

-10

5

20

35

50

65

80

95

110

125

Junction Temperature (°C)

Reset Delay Time (ms)

V

DET 

= 0V to 2.7V

2.626

2.627

2.628

2.629

2.63

2.631

2.632

2.633

2.634

-40

-25

-10

5

20

35

50

65

80

95

110 125

Junction Temperature (°C)

Reset Threshold Voltage (V)

RESET = OPEN

40

60

80

100

120

140

160

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Overdrive Voltage (V below V

TH

)

Time to Reset Output (µs)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21702a-html.html
background image

TC1307

DS21702A-page 10

 2002 Microchip Technology Inc.

Note: Unless otherwise indicated, V

IN

 = 3.8V, C

IN

 = 10 µF ceramic (X5R), C

OUT

 = 1 µF ceramic (X5R), I

LOAD

 = 100 µA,

SELECT12 = NC, SELECT34 = V

IN

, SHDN1/2/3/4 = V

IN, 

T

A

 = 25°C.

Junction temperature (T

J

) is approximated by soaking the device under test at an ambient temperature equal to the

desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the
Ambient temperature is not significant.

FIGURE 2-31: Reset V

OL-RES

 vs. I

SINK

.

FIGURE 2-32: Reset V

OL-RES

 vs. Junction

Temperature.

FIGURE 2-33: Reset V

OH-RES

 vs. I

SOURCE

.

FIGURE 2-34: Reset V

OH-RES

 vs.Junction

Temperature.

FIGURE 2-35: Power-Up RESET Timing.

FIGURE 2-36: Ground Current vs. Load Current.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.0

2.0

4.0

6.0

8.0

10.0

Sink Current (mA)

Reset V

OL

 (V)

V

DET 

= 2.55V 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-40

-25

-10

5

20

35

50

65

80

95

110 125

Junction Temperature (°C)

Reset V

OL

 (V)

V

DET 

= 2.55V 

I

SINK 

= 1.2 mA 

I

SINK 

= 3.2 mA 

2.00

2.20

2.40

2.60

2.80

3.00

3.20

3.40

3.60

3.80

4.00

0.00

2.00

4.00

6.00

8.00

10.00

Source Current (mA)

Reset V

OH

 (V)

V

DET 

= 3.80V 

5.91

5.92

5.93

5.94

5.95

5.96

5.97

-40

-25

-10

5

20

35

50

65

80

95

110 125

Junction Temperature (°C)

RESET V

OH

 (V)

V

DET 

= 6.0V 

I

SOURCE 

= 500 µA 

I

SOURCE 

= 800 µA 

200

225

250

275

300

325

0

25

50

75

100

125

150

Load Current (mA)

Ground Current (µA)

V

DET

 = V

IN 

= 3 .8V

Maker
Microchip Technology Inc.
Datasheet PDF Download