EMC1001 1.5 Degree C SMBus Temperature Sensor in Miniature SOT-23

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/1001-html.html
background image

SMSC EMC1001

DATASHEET

Revision 1.6 (01-29-07) 

Datasheet

PRODUCT FEATURES

EMC1001 

1.5°C SMBus 
Temperature Sensor in 
Miniature SOT-23

General Description

The EMC1001 is a tiny SMBus temperature sensor with
±1.5

°

C accuracy and two interrupts.  Packaged in a

SOT23-6, the EMC1001 provides an accurate, low-cost,
low-current, solution for critical temperature monitoring
in a PC or embedded applications. 

The EMC1001 generates two separate interrupts with
programmable thermal trip points. The 

THERM

 output

operates as a thermostat with programmable threshold
and hysteresis.  The 

ALERT

 output  can be configured

as a maskable SMBus alert  with  programmable
window comparator limits, or as a second 

THERM

output. An efficient fan control system can be created
since this output may be used to control a fan.

A power down mode extends battery life in portable
applications.

Each part number may be configured to respond to one
of four separate SMBus addresses.

Features

„

Self Contained Internal Temperature Sensor

0.25

°C resolution 

±1.5°C Accuracy 40°C to 85°C

„

Small 6-lead SOT lead-free RoHS compliant 

packages

„

SMBus address selected by external resistor

Select 1 of 4 per package, 8 addresses available

„

Maskable Interrupt using 

ALERT

„

One-shot Command during standby

„

Low Power, 3.0V to 3.6V Supply

47uA at 0.0625 Conversions per Second (Typical)

4.8uA in Standby (Typical)

„

SMBus 2.0 Compliant interface

„

Programmable temperature conversion rate

Applications

„

Desktop and Notebook Computers

„

Thermostats

„

Smart batteries

„

Industrial/Automotive

„

Other Electronic Systems

Simplified Block Diagram

EMC1001

Internal

Temp Diode

Switching

Current

SMCLK

Di

gita

l Mu

x

Li

mit Co

mpa

rat

or

High Limit Registers

THERM Hysteresis Register

Low Limit Registers

THERM Limit Register

Address Pointer Register

Conversion Rate Register

Interrupt Masking

Status Register

Configuration Register

SM

B

u

s

 In

te

rf

a

c

e

Temperature

Register

           
ALERT

SMDATA

10-bit

delta-sigma

ADC

             
THERM

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/1001-html.html
background image

Order Number(s):

EMC1001-AFZQ-TR for 6 pin, SOT 23 Lead-Free RoHS compliant package

(tape and reel)

EMC1001-1-AFZQ-TR for 6 pin, SOT 23 Lead-Free RoHS compliant package

(alternate addresses, tape and reel)

See 

Table 1.2, "SMBus Address Configuration Information," on page 3

Reel size is 8,000 pieces.

80 ARKAY DRIVE, HAUPPAUGE, NY 11788 (631) 435-6000, FAX (631) 273-3123

Copyright © 2007 SMSC or its subsidiaries. All rights reserved.

Circuit diagrams and other information relating to SMSC products are included as a means of illustrating typical applications. Consequently, complete information sufficient for
construction purposes is not necessarily given. Although the information has been checked and is believed to be accurate, no responsibility is assumed for inaccuracies. SMSC
reserves the right to make changes to specifications and product descriptions at any time without notice. Contact your local SMSC sales office to obtain the latest specifications
before placing your product order. The provision of this information does not convey to the purchaser of the described semiconductor devices any licenses under any patent
rights or other intellectual property rights of SMSC or others. All sales are expressly conditional on your agreement to the terms and conditions of the most recently dated
version of SMSC's standard Terms of Sale Agreement dated before the date of your order (the "Terms of Sale Agreement"). The product may contain design defects or errors
known as anomalies which may cause the product's functions to deviate from published specifications. Anomaly sheets are available upon request. SMSC products are not
designed, intended, authorized or warranted for use in any life support or other application where product failure could cause or contribute to personal injury or severe property
damage. Any and all such uses without prior written approval of an Officer of SMSC and further testing and/or modification will be fully at the risk of the customer. Copies of
this document or other SMSC literature, as well as the Terms of Sale Agreement, may be obtained by visiting SMSC’s website at http://www.smsc.com. SMSC is a registered
trademark of Standard Microsystems Corporation (“SMSC”). Product names and company names are the trademarks of their respective holders. 

SMSC DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY AND ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND AGAINST INFRINGEMENT AND THE LIKE, AND ANY AND ALL WARRANTIES ARISING FROM ANY COURSE
OF DEALING OR USAGE OF TRADE. IN NO EVENT SHALL SMSC BE LIABLE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, PUNITIVE, OR CONSEQUENTIAL
DAMAGES; OR FOR LOST DATA, PROFITS, SAVINGS OR REVENUES OF ANY KIND; REGARDLESS OF THE FORM OF ACTION, WHETHER BASED ON CONTRACT;
TORT; NEGLIGENCE OF SMSC OR OTHERS; STRICT LIABILITY; BREACH OF WARRANTY; OR OTHERWISE; WHETHER OR NOT ANY REMEDY OF BUYER IS HELD
TO HAVE FAILED OF ITS ESSENTIAL PURPOSE, AND WHETHER OR NOT SMSC HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

1.5°C SMBus Temperature Sensor in Miniature SOT-23

Datasheet

Revision 1.6 (01-29-07)

2

SMSC EMC1001

DATASHEET

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/1001-html.html
background image

1.5°C SMBus Temperature Sensor in Miniature SOT-23

Datasheet

SMSC EMC1001

3

Revision 1.6 (01-29-07)

DATASHEET

Chapter 1 Pin Configuration

Figure 1.1 EMC1001 Pin Configuration

Note 1.1

This value must be greater than 1k

Ω ±5% and less than or equal to 7.5kΩ ±5%.

Note 1.2

The pull-up resistor must be connected to V

DD

 (pin 1), and the total capacitance on this

pin must be less than 100pF.

Table 1.1  Pin Description

PIN

PIN NO.

DESCRIPTION

ADDR/

THERM

1

Logic output that can be used to turn on/off a fan or throttle a CPU clock 
in the event of an over-temperature condition.  This is an open-drain 
output. This pin is sampled following power up and the value of the pull 
up resistor determines the SMBus slave address per 

Table 1.2

.Total 

capacitance on this pin must not exceed 100 pF, and the pull-up resistor 
must be connected to the same supply voltage as V

DD

GND

2

Ground.

V

DD

3

Supply Voltage, 3.0V to 3.6V.

SMCLK

4

SMBus clock input.

ALERT

/

THERM2

5

Logic output used as interrupt, SMBus alert or as a second 

THERM

 output.  

This is an open-drain output.

SMDATA

6

SMBus data input/output, open drain output.

Table 1.2  SMBus Address Configuration Information

PART NUMBER

ADDR/THERM

PULL-UP RESISTOR

SMBUS

ADDRESS

PACKAGE

DESCRIPTION

EMC1001

7.5k

Ω ±5% 

Note 1.1

Note 1.2

1001 000b

6-Lead SOT-23

12k

Ω ±5% 

Note 1.2

1001 001b

6-Lead SOT-23

20k

Ω ±5% 

Note 1.2

0111 000b

6-Lead SOT-23

33k

Ω ±5% 

Note 1.2

0111 001b

6-Lead SOT-23

EMC1001-1

7.5k

Ω ±5% 

Note 1.1

Note 1.2

1001 010b

6-Lead SOT-23

12k

Ω ±5% 

Note 1.2

1001 011b

6-Lead SOT-23

20k

Ω ±5% 

Note 1.2

0111 010b

6-Lead SOT-23

33k

Ω ±5% 

Note 1.2

0111 011b

6-Lead SOT-23

6

4

1

2

3

GND

V

DD

SMDATA

SMCLK

5

ADDR/THERM

ALERT/THERM2

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/1001-html.html
background image

1.5°C SMBus Temperature Sensor in Miniature SOT-23

Datasheet

Revision 1.6 (01-29-07)

4

SMSC EMC1001

DATASHEET

Note: Stresses above those listed could cause damage to the device.  This is a stress rating only

and functional operation of the device at any other condition above those indicated in the
operation sections of this specification is not implied.  When powering this device from
laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be
exceeded or device failure can result.  Some power supplies exhibit voltage spikes on their
outputs when the AC power is switched on or off.  In addition, voltage transients on the AC
power line may appear on the DC output.  If this possibility exists, it is suggested that a clamp
circuit be used.

Table 1.3  Absolute Maximum Ratings

PARAMETER

RATING

UNIT

Supply Voltage V

DD

-0.3 to 5.0

V

Voltage on 

ALERT

/

THERM2, 

SMDATA and SMCLK 

pins

-0.3 to 5.5

V

Voltage on any other pin

-0.3 to V

DD

+0.3

V

Operating Temperature Range

-25 to +125

°C

Storage Temperature Range

-55 to +150

°C

Lead Temperature Range

Refer to JEDEC
Spec. J-STD-020

Package Thermal Characteristics for SOT23-6 

            Power Dissipation

TBD

mW @ 70

o

C

            Thermal Resistance

111.5

o

C/W

ESD Rating, All Pins (Human Body Model)

2000

V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/1001-html.html
background image

1.5°C SMBus Temperature Sensor in Miniature SOT-23

Datasheet

SMSC EMC1001

5

Revision 1.6 (01-29-07)

DATASHEET

Chapter 2 Electrical Characteristics

Table 2.1  Electrical Characteristics

V

DD

=3.0V to 3.6V, T

A

= -25

°C to +125°C, Typical values at T

A

 = 27

°C unless otherwise noted

PARAMETER

SYMBOL

MIN

TYP

MAX

UNITS

CONDITIONS

DC Power

Supply Voltage

V

DD

3.0

3.3

3.6

V

Average Operating Current

I

DD

47

TBD

μA

0.0625 conversion/s
See 

Table 4.6, 

"Conversion Rates," 
on page 14

I

PD

4.8

10

μA

Standby mode

Temperature Measurement

Accuracy

±0.5

±1.5

°C

40

°C≤T

A

≤85°C

±1

±3

°C

-25

°C≤T

A

≤125°C

Resolution

0.25

°C

Conversion Time

26

ms

Voltage Tolerance 

Voltage at pin (ADDR/

THERM, 

)

V

TOL

-0.3

3.6

V

Voltage at pin (

ALERT

/

THERM2, 

SMDATA,SMCLK)

V

TOL

-0.3

5.5

V

Digital Outputs (

ADDR

/

THERM

ALERT

/

THERM2

)

Output Low Voltage

V

OL

0.4

V

I

OUT

=-4mA

High Level Leakage Current

I

OH

0.1

1

μ

A

V

OUT

=V

DD

SMBus Interface (SMDATA,SMCLK)

Input High Level

V

IH

2.0

V

Input Low Level

V

IL

0.8

V

Input High/Low Current

I

IH

/I

IL

-1

1

μ

A

Hysteresis

500

mV

Input Capacitance

5

pF

Output Low Sink Current

6

mA

SMDATA = 0.6V

SMBus Timing

Clock Frequency

F

SMB

10

400

kHz

Spike Suppression

50

ns

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/1001-html.html
background image

1.5°C SMBus Temperature Sensor in Miniature SOT-23

Datasheet

Revision 1.6 (01-29-07)

6

SMSC EMC1001

DATASHEET

Note 2.1

300nS rise time max is required for 400kHz bus operation. For lower clock frequencies,
the maximum rise time is (0.1/F

SMB

)+50nS

Bus free time Start to Stop

T

BUF

1.3

μ

s

Hold time Start

T

HD:STA

0.6

μ

s

Setup time Start

T

SU:STA

0.6

μ

s

Setup time Stop

T

SU:STO

0.6

μ

s

Data Hold Time

T

HD:DAT

0.3

μ

s

Data Setup Time

T

SU:DAT

100

ns

Clock Low Period

T

LOW

1.3

μ

s

Clock High Period

T

HIGH

0.6

μ

s

Clock/Data Fall Time

T

F

*

300

ns

*Min = 20+0.1C

b

 ns

Clock/Data Rise Time

T

R

*

300

Note
2.1

ns

*Min = 20+0.1C

b

 ns

Capacitive Load (each bus line)

C

b

0.6

400

pF

Table 2.1  Electrical Characteristics (continued) 

V

DD

=3.0V to 3.6V, T

A

= -25

°C to +125°C, Typical values at T

A

 = 27

°C unless otherwise noted

PARAMETER

SYMBOL

MIN

TYP

MAX

UNITS

CONDITIONS

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/1001-html.html
background image

1.5°C SMBus Temperature Sensor in Miniature SOT-23

Datasheet

SMSC EMC1001

7

Revision 1.6 (01-29-07)

DATASHEET

Chapter 3 System Management Bus Interface Protocol

A host controller, such as an SMSC I/O controller, communicates with the EMC1001 via the two wire
serial interface named SMBus. The SMBus interface is used to read and write registers in the
EMC1001, which is a slave-only device. A detailed timing diagram is shown in 

Figure 3.1

.

Figure 3.1 System Management Bus Timing Diagram

The EMC1001 implements a subset of the SMBus specification and supports Write Byte, Read Byte,
Send Byte, Receive Byte, and Alert Response Address protocols. as shown. In the tables that describe
the protocol, the “gray” columns indicate that the slave is driving the bus.

3.1

  Write Byte

The Write Byte protocol is used to write one byte of data to the registers as shown below:

3.2

  Read Byte

The Read Byte protocol is used to read one byte of data from the registers as shown below:

3.3

  Send Byte

The Send Byte protocol is used to set the Internal Address Register to the correct Address. The Send
Byte can be followed by the Receive Byte protocol described below in order to read data from the
register. The send byte protocol cannot be used to write data - if data is to be written to a register then
the write byte protocol must be used as described in subsection above. The send byte protocol is shown
in 

Table 3.3

.

Table 3.1  SMBus Write Byte Protocol

START

SLAVE ADDRESS

WR

ACK

COMMAND

ACK

DATA

ACK

STOP

1

7

1

1

8

1

8

1

1

Table 3.2  SMBus Read Byte Protocol

START

SLAVE ADDRESS

WR

ACK

COMMAND

ACK

START

SLAVE ADDRESS

RD

ACK

DATA

NACK

STOP

1

7

1

1

8

1

1

7

1

1

8

1

1

Table 3.3  SMBus Send Byte Protocol

FIELD:

START

SLAVE ADDR

WR

ACK

REG. ADDR

ACK

STOP

Bits:

1

7

1

1

8

1

1

S M D A TA

S M C LK

T

LO W

T

R

T

H IG H

T

F

T

B U F

T

H D :S TA

P

S

S  - S tart C ondition

P   -  S top  C ondition

T

H D :D A T

T

S U :D A T

T

S U :S TA

T

H D :S TA

P

T

S U :S TO

S

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/1001-html.html
background image

1.5°C SMBus Temperature Sensor in Miniature SOT-23

Datasheet

Revision 1.6 (01-29-07)

8

SMSC EMC1001

DATASHEET

3.4

  Receive Byte

The Receive Byte protocol is used to read data from a register when the internal register address pointer
is known to be at the right location (e.g. set via Send Byte). This can be used for consecutive reads of
the same register as shown below: 

3.5

  Alert Response Address

The 

ALERT

/

THERM2

 output can be used as an SMBALERT# as described in 

4.3, "ALERT/THERM2

Output," on page 11

.  The Alert Response Address is polled by the Host whenever it detects an

SMBALERT#, i.e. when the 

ALERT

/

THERM2

 pin is asserted. The EMC1001 will acknowlege the Alert

Response Address and respond with its device address as shown below.

3.6

  SMBus Addresses

The EMC1001 is available in two versions, each of which has four 7-bit slave addresses that are
enabled based on the pull-up resistor on the 

ADDR

/

THERM

 pin. The value of this pull up resistor

determines the slave address per 

Table 1.2 on page 3

. Attempting to communicate with the EMC1001

SMBus interface with an invalid slave address or invalid protocol results in no response from the device
and does not affect its register contents. The EMC1001 supports stretching of the SMCLK signal by
other devices on the SMBus but will not perform this operation itself. The EMC1001 has an SMBus
timeout feature.  Bit 7 of the SMBus Timeout Enable register enables this function when set to 1 (the
default setting is 0).  When this feature is enabled, the SMBus will timeout after approximately 25ms
of inactivity.

Table 3.4  SMBus Receive Byte Protocol

FIELD:

START

SLAVE ADDR

RD

ACK

REG. DATA

NACK

STOP

Bits:

1

7

1

1

8

1

1

Table 3.5  Modified SMBus Receive Byte Protocol Response to ARA

FIELD:

START

ALERT

RESPONSE

ADDRESS

RD

ACK

EMC1001 SLAVE

ADDRESS NACK

STOP

Bits:

1

7

1

1

8

1

1

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/1001-html.html
background image

1.5°C SMBus Temperature Sensor in Miniature SOT-23

Datasheet

SMSC EMC1001

9

Revision 1.6 (01-29-07)

DATASHEET

Chapter 4 Product Description

The EMC1001 is an SMBus temperature that monitors a single temperature zone. Thermal
management is performed in cooperation with a host device. The host reads the temperature data from
the EMC1001 and takes appropriate action such as controlling fan speed or processor clock frequency.
The EMC1001 has programmable temperature limit registers that define a safe operating window. After
the host has configured the temperature limits, the EMC1001 can operate as a free-running
independent watchdog to warn the host of temperature hot spots without requiring the host to poll the
device. The 

ADDR

/

THERM

 output can be used to control a fan without host intervention.

Figure 4.1 Controlling a fan without host intervention.

The

 

EMC1001

 

has

 

two basic modes of operation:

„

Run Mode: In this mode, the EMC1001 continuously converts temperature data and updates its 
registers. The rate of temperature conversion is configured as shown in 

Section 4.9 on page 14

„

Standby Mode: In this mode, the EMC1001 is placed in standby to conserve power as described 
in 

Section 4.5 on page 12

4.1

  Temperature Monitors

Thermal diode temperature measurements are based on the change in forward bias voltage (

ΔV

BE

) of

a diode when operated at two different currents:

The change in 

Δ

V

BE

 voltage is proportional to absolute temperature T.

where:

k = Boltzmann’s constant

T = absolute temperature in Kelvin

q = electron charge

η

 = diode ideality factor

                        
ADDR/THERM

                           
ALERT/THERM2

EMC1001

Host

Fan

Driver

SMDATA

Internal

Diode

SMCLK

SMBus

Interface

⎟⎟

⎜⎜

=

=

Δ

LOW

HIGH

LOW

BE

HIGH

BE

BE

I

I

q

kT

V

V

V

ln

_

_

η

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/1001-html.html
background image

1.5°C SMBus Temperature Sensor in Miniature SOT-23

Datasheet

Revision 1.6 (01-29-07)

10

SMSC EMC1001

DATASHEET

Figure 4.2 Detailed Block Diagram

Figure 4.2

 shows a detailed block diagram of the temperature measurement circuit. The EMC1001

incorporates switched capacitor technology that integrates the temperature diode 

ΔV

BE

 from different

bias currents. The negative terminal, DN, for the temperature diode is internally biased with a forward
diode voltage referenced to ground.

The advantages of this architecture over Nyquist rate FLASH or SAR converters are superb linearity
and inherent noise immunity. The linearity can be directly attributed to the delta-sigma ADC single-bit
comparator while the noise immunity is achieved by the ~20ms integration time which translates to
50Hz input noise bandwidth.

4.2

  Temperature Measurement Results and Data

The 10-bit temperature measurement results are stored in temperature value registers. 

Table 4.1

shows the two’s complement temperature data format with an LSB equivalent to 0.25

°

C.

Note 4.1

Temperature measurement returns 1100 0000 00 for all temperatures 

≤ -64.00°C

Note 4.2

Temperature measurement returns 0111 1111 11 for all temperatures 

≥ +127.75

°

C

The eight most significant bits are stored in the Temperature Value High Byte register and the two least
significant bits stored in the Temperature Value Low Byte register as outlined in 

Table 4.2

. The six LSB

positions of the Temperature Value Low Byte register always read zero. In 

Table 4.2

, the upper case

Table 4.1  Temperature Data Format

TEMPERATURE

VALID RANGE 

–40

°

C TO 125

°

C

TWO’S COMPLEMENT

-0.25

°

C

1111 1111 11 

Note 4.1

 0.0

°

C

0000 0000 00

+0.25

°

C

0000 0000 01

+0.50

°

C

0000 0000 10

+0.75

°

C

0000 0000 11

+1

°

C

0000 0001 00

+125

°

C

0111 1101 00 

Note 4.2

 Delta Vbe

Sample

&

 Hold

I

bias

I

low

I

high

1-bit

delta-sigma

Modulator

Digital

Averaging

Filter

V

DD

Internal or

Remote Diode

Bias

Diode

10-bit Output

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/1001-html.html
background image

SMSC EMC1001

DATASHEET

Revision 1.6 (01-29-07) 

Datasheet

PRODUCT FEATURES

EMC1001 

1.5°C SMBus 
Temperature Sensor in 
Miniature SOT-23

General Description

The EMC1001 is a tiny SMBus temperature sensor with
±1.5

°

C accuracy and two interrupts.  Packaged in a

SOT23-6, the EMC1001 provides an accurate, low-cost,
low-current, solution for critical temperature monitoring
in a PC or embedded applications. 

The EMC1001 generates two separate interrupts with
programmable thermal trip points. The 

THERM

 output

operates as a thermostat with programmable threshold
and hysteresis.  The 

ALERT

 output  can be configured

as a maskable SMBus alert  with  programmable
window comparator limits, or as a second 

THERM

output. An efficient fan control system can be created
since this output may be used to control a fan.

A power down mode extends battery life in portable
applications.

Each part number may be configured to respond to one
of four separate SMBus addresses.

Features

„

Self Contained Internal Temperature Sensor

0.25

°C resolution 

±1.5°C Accuracy 40°C to 85°C

„

Small 6-lead SOT lead-free RoHS compliant 

packages

„

SMBus address selected by external resistor

Select 1 of 4 per package, 8 addresses available

„

Maskable Interrupt using 

ALERT

„

One-shot Command during standby

„

Low Power, 3.0V to 3.6V Supply

47uA at 0.0625 Conversions per Second (Typical)

4.8uA in Standby (Typical)

„

SMBus 2.0 Compliant interface

„

Programmable temperature conversion rate

Applications

„

Desktop and Notebook Computers

„

Thermostats

„

Smart batteries

„

Industrial/Automotive

„

Other Electronic Systems

Simplified Block Diagram

EMC1001

Internal

Temp Diode

Switching

Current

SMCLK

Di

gita

l Mu

x

Li

mit Co

mpa

rat

or

High Limit Registers

THERM Hysteresis Register

Low Limit Registers

THERM Limit Register

Address Pointer Register

Conversion Rate Register

Interrupt Masking

Status Register

Configuration Register

SM

B

u

s

 In

te

rf

a

c

e

Temperature

Register

           
ALERT

SMDATA

10-bit

delta-sigma

ADC

             
THERM

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/1001-html.html
background image

Order Number(s):

EMC1001-AFZQ-TR for 6 pin, SOT 23 Lead-Free RoHS compliant package

(tape and reel)

EMC1001-1-AFZQ-TR for 6 pin, SOT 23 Lead-Free RoHS compliant package

(alternate addresses, tape and reel)

See 

Table 1.2, "SMBus Address Configuration Information," on page 3

Reel size is 8,000 pieces.

80 ARKAY DRIVE, HAUPPAUGE, NY 11788 (631) 435-6000, FAX (631) 273-3123

Copyright © 2007 SMSC or its subsidiaries. All rights reserved.

Circuit diagrams and other information relating to SMSC products are included as a means of illustrating typical applications. Consequently, complete information sufficient for
construction purposes is not necessarily given. Although the information has been checked and is believed to be accurate, no responsibility is assumed for inaccuracies. SMSC
reserves the right to make changes to specifications and product descriptions at any time without notice. Contact your local SMSC sales office to obtain the latest specifications
before placing your product order. The provision of this information does not convey to the purchaser of the described semiconductor devices any licenses under any patent
rights or other intellectual property rights of SMSC or others. All sales are expressly conditional on your agreement to the terms and conditions of the most recently dated
version of SMSC's standard Terms of Sale Agreement dated before the date of your order (the "Terms of Sale Agreement"). The product may contain design defects or errors
known as anomalies which may cause the product's functions to deviate from published specifications. Anomaly sheets are available upon request. SMSC products are not
designed, intended, authorized or warranted for use in any life support or other application where product failure could cause or contribute to personal injury or severe property
damage. Any and all such uses without prior written approval of an Officer of SMSC and further testing and/or modification will be fully at the risk of the customer. Copies of
this document or other SMSC literature, as well as the Terms of Sale Agreement, may be obtained by visiting SMSC’s website at http://www.smsc.com. SMSC is a registered
trademark of Standard Microsystems Corporation (“SMSC”). Product names and company names are the trademarks of their respective holders. 

SMSC DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY AND ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND AGAINST INFRINGEMENT AND THE LIKE, AND ANY AND ALL WARRANTIES ARISING FROM ANY COURSE
OF DEALING OR USAGE OF TRADE. IN NO EVENT SHALL SMSC BE LIABLE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, PUNITIVE, OR CONSEQUENTIAL
DAMAGES; OR FOR LOST DATA, PROFITS, SAVINGS OR REVENUES OF ANY KIND; REGARDLESS OF THE FORM OF ACTION, WHETHER BASED ON CONTRACT;
TORT; NEGLIGENCE OF SMSC OR OTHERS; STRICT LIABILITY; BREACH OF WARRANTY; OR OTHERWISE; WHETHER OR NOT ANY REMEDY OF BUYER IS HELD
TO HAVE FAILED OF ITS ESSENTIAL PURPOSE, AND WHETHER OR NOT SMSC HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

1.5°C SMBus Temperature Sensor in Miniature SOT-23

Datasheet

Revision 1.6 (01-29-07)

2

SMSC EMC1001

DATASHEET

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/1001-html.html
background image

1.5°C SMBus Temperature Sensor in Miniature SOT-23

Datasheet

SMSC EMC1001

3

Revision 1.6 (01-29-07)

DATASHEET

Chapter 1 Pin Configuration

Figure 1.1 EMC1001 Pin Configuration

Note 1.1

This value must be greater than 1k

Ω ±5% and less than or equal to 7.5kΩ ±5%.

Note 1.2

The pull-up resistor must be connected to V

DD

 (pin 1), and the total capacitance on this

pin must be less than 100pF.

Table 1.1  Pin Description

PIN

PIN NO.

DESCRIPTION

ADDR/

THERM

1

Logic output that can be used to turn on/off a fan or throttle a CPU clock 
in the event of an over-temperature condition.  This is an open-drain 
output. This pin is sampled following power up and the value of the pull 
up resistor determines the SMBus slave address per 

Table 1.2

.Total 

capacitance on this pin must not exceed 100 pF, and the pull-up resistor 
must be connected to the same supply voltage as V

DD

GND

2

Ground.

V

DD

3

Supply Voltage, 3.0V to 3.6V.

SMCLK

4

SMBus clock input.

ALERT

/

THERM2

5

Logic output used as interrupt, SMBus alert or as a second 

THERM

 output.  

This is an open-drain output.

SMDATA

6

SMBus data input/output, open drain output.

Table 1.2  SMBus Address Configuration Information

PART NUMBER

ADDR/THERM

PULL-UP RESISTOR

SMBUS

ADDRESS

PACKAGE

DESCRIPTION

EMC1001

7.5k

Ω ±5% 

Note 1.1

Note 1.2

1001 000b

6-Lead SOT-23

12k

Ω ±5% 

Note 1.2

1001 001b

6-Lead SOT-23

20k

Ω ±5% 

Note 1.2

0111 000b

6-Lead SOT-23

33k

Ω ±5% 

Note 1.2

0111 001b

6-Lead SOT-23

EMC1001-1

7.5k

Ω ±5% 

Note 1.1

Note 1.2

1001 010b

6-Lead SOT-23

12k

Ω ±5% 

Note 1.2

1001 011b

6-Lead SOT-23

20k

Ω ±5% 

Note 1.2

0111 010b

6-Lead SOT-23

33k

Ω ±5% 

Note 1.2

0111 011b

6-Lead SOT-23

6

4

1

2

3

GND

V

DD

SMDATA

SMCLK

5

ADDR/THERM

ALERT/THERM2

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/1001-html.html
background image

1.5°C SMBus Temperature Sensor in Miniature SOT-23

Datasheet

Revision 1.6 (01-29-07)

4

SMSC EMC1001

DATASHEET

Note: Stresses above those listed could cause damage to the device.  This is a stress rating only

and functional operation of the device at any other condition above those indicated in the
operation sections of this specification is not implied.  When powering this device from
laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be
exceeded or device failure can result.  Some power supplies exhibit voltage spikes on their
outputs when the AC power is switched on or off.  In addition, voltage transients on the AC
power line may appear on the DC output.  If this possibility exists, it is suggested that a clamp
circuit be used.

Table 1.3  Absolute Maximum Ratings

PARAMETER

RATING

UNIT

Supply Voltage V

DD

-0.3 to 5.0

V

Voltage on 

ALERT

/

THERM2, 

SMDATA and SMCLK 

pins

-0.3 to 5.5

V

Voltage on any other pin

-0.3 to V

DD

+0.3

V

Operating Temperature Range

-25 to +125

°C

Storage Temperature Range

-55 to +150

°C

Lead Temperature Range

Refer to JEDEC
Spec. J-STD-020

Package Thermal Characteristics for SOT23-6 

            Power Dissipation

TBD

mW @ 70

o

C

            Thermal Resistance

111.5

o

C/W

ESD Rating, All Pins (Human Body Model)

2000

V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/1001-html.html
background image

1.5°C SMBus Temperature Sensor in Miniature SOT-23

Datasheet

SMSC EMC1001

5

Revision 1.6 (01-29-07)

DATASHEET

Chapter 2 Electrical Characteristics

Table 2.1  Electrical Characteristics

V

DD

=3.0V to 3.6V, T

A

= -25

°C to +125°C, Typical values at T

A

 = 27

°C unless otherwise noted

PARAMETER

SYMBOL

MIN

TYP

MAX

UNITS

CONDITIONS

DC Power

Supply Voltage

V

DD

3.0

3.3

3.6

V

Average Operating Current

I

DD

47

TBD

μA

0.0625 conversion/s
See 

Table 4.6, 

"Conversion Rates," 
on page 14

I

PD

4.8

10

μA

Standby mode

Temperature Measurement

Accuracy

±0.5

±1.5

°C

40

°C≤T

A

≤85°C

±1

±3

°C

-25

°C≤T

A

≤125°C

Resolution

0.25

°C

Conversion Time

26

ms

Voltage Tolerance 

Voltage at pin (ADDR/

THERM, 

)

V

TOL

-0.3

3.6

V

Voltage at pin (

ALERT

/

THERM2, 

SMDATA,SMCLK)

V

TOL

-0.3

5.5

V

Digital Outputs (

ADDR

/

THERM

ALERT

/

THERM2

)

Output Low Voltage

V

OL

0.4

V

I

OUT

=-4mA

High Level Leakage Current

I

OH

0.1

1

μ

A

V

OUT

=V

DD

SMBus Interface (SMDATA,SMCLK)

Input High Level

V

IH

2.0

V

Input Low Level

V

IL

0.8

V

Input High/Low Current

I

IH

/I

IL

-1

1

μ

A

Hysteresis

500

mV

Input Capacitance

5

pF

Output Low Sink Current

6

mA

SMDATA = 0.6V

SMBus Timing

Clock Frequency

F

SMB

10

400

kHz

Spike Suppression

50

ns

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/1001-html.html
background image

1.5°C SMBus Temperature Sensor in Miniature SOT-23

Datasheet

Revision 1.6 (01-29-07)

6

SMSC EMC1001

DATASHEET

Note 2.1

300nS rise time max is required for 400kHz bus operation. For lower clock frequencies,
the maximum rise time is (0.1/F

SMB

)+50nS

Bus free time Start to Stop

T

BUF

1.3

μ

s

Hold time Start

T

HD:STA

0.6

μ

s

Setup time Start

T

SU:STA

0.6

μ

s

Setup time Stop

T

SU:STO

0.6

μ

s

Data Hold Time

T

HD:DAT

0.3

μ

s

Data Setup Time

T

SU:DAT

100

ns

Clock Low Period

T

LOW

1.3

μ

s

Clock High Period

T

HIGH

0.6

μ

s

Clock/Data Fall Time

T

F

*

300

ns

*Min = 20+0.1C

b

 ns

Clock/Data Rise Time

T

R

*

300

Note
2.1

ns

*Min = 20+0.1C

b

 ns

Capacitive Load (each bus line)

C

b

0.6

400

pF

Table 2.1  Electrical Characteristics (continued) 

V

DD

=3.0V to 3.6V, T

A

= -25

°C to +125°C, Typical values at T

A

 = 27

°C unless otherwise noted

PARAMETER

SYMBOL

MIN

TYP

MAX

UNITS

CONDITIONS

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/1001-html.html
background image

1.5°C SMBus Temperature Sensor in Miniature SOT-23

Datasheet

SMSC EMC1001

7

Revision 1.6 (01-29-07)

DATASHEET

Chapter 3 System Management Bus Interface Protocol

A host controller, such as an SMSC I/O controller, communicates with the EMC1001 via the two wire
serial interface named SMBus. The SMBus interface is used to read and write registers in the
EMC1001, which is a slave-only device. A detailed timing diagram is shown in 

Figure 3.1

.

Figure 3.1 System Management Bus Timing Diagram

The EMC1001 implements a subset of the SMBus specification and supports Write Byte, Read Byte,
Send Byte, Receive Byte, and Alert Response Address protocols. as shown. In the tables that describe
the protocol, the “gray” columns indicate that the slave is driving the bus.

3.1

  Write Byte

The Write Byte protocol is used to write one byte of data to the registers as shown below:

3.2

  Read Byte

The Read Byte protocol is used to read one byte of data from the registers as shown below:

3.3

  Send Byte

The Send Byte protocol is used to set the Internal Address Register to the correct Address. The Send
Byte can be followed by the Receive Byte protocol described below in order to read data from the
register. The send byte protocol cannot be used to write data - if data is to be written to a register then
the write byte protocol must be used as described in subsection above. The send byte protocol is shown
in 

Table 3.3

.

Table 3.1  SMBus Write Byte Protocol

START

SLAVE ADDRESS

WR

ACK

COMMAND

ACK

DATA

ACK

STOP

1

7

1

1

8

1

8

1

1

Table 3.2  SMBus Read Byte Protocol

START

SLAVE ADDRESS

WR

ACK

COMMAND

ACK

START

SLAVE ADDRESS

RD

ACK

DATA

NACK

STOP

1

7

1

1

8

1

1

7

1

1

8

1

1

Table 3.3  SMBus Send Byte Protocol

FIELD:

START

SLAVE ADDR

WR

ACK

REG. ADDR

ACK

STOP

Bits:

1

7

1

1

8

1

1

S M D A TA

S M C LK

T

LO W

T

R

T

H IG H

T

F

T

B U F

T

H D :S TA

P

S

S  - S tart C ondition

P   -  S top  C ondition

T

H D :D A T

T

S U :D A T

T

S U :S TA

T

H D :S TA

P

T

S U :S TO

S

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/1001-html.html
background image

1.5°C SMBus Temperature Sensor in Miniature SOT-23

Datasheet

Revision 1.6 (01-29-07)

8

SMSC EMC1001

DATASHEET

3.4

  Receive Byte

The Receive Byte protocol is used to read data from a register when the internal register address pointer
is known to be at the right location (e.g. set via Send Byte). This can be used for consecutive reads of
the same register as shown below: 

3.5

  Alert Response Address

The 

ALERT

/

THERM2

 output can be used as an SMBALERT# as described in 

4.3, "ALERT/THERM2

Output," on page 11

.  The Alert Response Address is polled by the Host whenever it detects an

SMBALERT#, i.e. when the 

ALERT

/

THERM2

 pin is asserted. The EMC1001 will acknowlege the Alert

Response Address and respond with its device address as shown below.

3.6

  SMBus Addresses

The EMC1001 is available in two versions, each of which has four 7-bit slave addresses that are
enabled based on the pull-up resistor on the 

ADDR

/

THERM

 pin. The value of this pull up resistor

determines the slave address per 

Table 1.2 on page 3

. Attempting to communicate with the EMC1001

SMBus interface with an invalid slave address or invalid protocol results in no response from the device
and does not affect its register contents. The EMC1001 supports stretching of the SMCLK signal by
other devices on the SMBus but will not perform this operation itself. The EMC1001 has an SMBus
timeout feature.  Bit 7 of the SMBus Timeout Enable register enables this function when set to 1 (the
default setting is 0).  When this feature is enabled, the SMBus will timeout after approximately 25ms
of inactivity.

Table 3.4  SMBus Receive Byte Protocol

FIELD:

START

SLAVE ADDR

RD

ACK

REG. DATA

NACK

STOP

Bits:

1

7

1

1

8

1

1

Table 3.5  Modified SMBus Receive Byte Protocol Response to ARA

FIELD:

START

ALERT

RESPONSE

ADDRESS

RD

ACK

EMC1001 SLAVE

ADDRESS NACK

STOP

Bits:

1

7

1

1

8

1

1

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/1001-html.html
background image

1.5°C SMBus Temperature Sensor in Miniature SOT-23

Datasheet

SMSC EMC1001

9

Revision 1.6 (01-29-07)

DATASHEET

Chapter 4 Product Description

The EMC1001 is an SMBus temperature that monitors a single temperature zone. Thermal
management is performed in cooperation with a host device. The host reads the temperature data from
the EMC1001 and takes appropriate action such as controlling fan speed or processor clock frequency.
The EMC1001 has programmable temperature limit registers that define a safe operating window. After
the host has configured the temperature limits, the EMC1001 can operate as a free-running
independent watchdog to warn the host of temperature hot spots without requiring the host to poll the
device. The 

ADDR

/

THERM

 output can be used to control a fan without host intervention.

Figure 4.1 Controlling a fan without host intervention.

The

 

EMC1001

 

has

 

two basic modes of operation:

„

Run Mode: In this mode, the EMC1001 continuously converts temperature data and updates its 
registers. The rate of temperature conversion is configured as shown in 

Section 4.9 on page 14

„

Standby Mode: In this mode, the EMC1001 is placed in standby to conserve power as described 
in 

Section 4.5 on page 12

4.1

  Temperature Monitors

Thermal diode temperature measurements are based on the change in forward bias voltage (

ΔV

BE

) of

a diode when operated at two different currents:

The change in 

Δ

V

BE

 voltage is proportional to absolute temperature T.

where:

k = Boltzmann’s constant

T = absolute temperature in Kelvin

q = electron charge

η

 = diode ideality factor

                        
ADDR/THERM

                           
ALERT/THERM2

EMC1001

Host

Fan

Driver

SMDATA

Internal

Diode

SMCLK

SMBus

Interface

⎟⎟

⎜⎜

=

=

Δ

LOW

HIGH

LOW

BE

HIGH

BE

BE

I

I

q

kT

V

V

V

ln

_

_

η

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/1001-html.html
background image

1.5°C SMBus Temperature Sensor in Miniature SOT-23

Datasheet

Revision 1.6 (01-29-07)

10

SMSC EMC1001

DATASHEET

Figure 4.2 Detailed Block Diagram

Figure 4.2

 shows a detailed block diagram of the temperature measurement circuit. The EMC1001

incorporates switched capacitor technology that integrates the temperature diode 

ΔV

BE

 from different

bias currents. The negative terminal, DN, for the temperature diode is internally biased with a forward
diode voltage referenced to ground.

The advantages of this architecture over Nyquist rate FLASH or SAR converters are superb linearity
and inherent noise immunity. The linearity can be directly attributed to the delta-sigma ADC single-bit
comparator while the noise immunity is achieved by the ~20ms integration time which translates to
50Hz input noise bandwidth.

4.2

  Temperature Measurement Results and Data

The 10-bit temperature measurement results are stored in temperature value registers. 

Table 4.1

shows the two’s complement temperature data format with an LSB equivalent to 0.25

°

C.

Note 4.1

Temperature measurement returns 1100 0000 00 for all temperatures 

≤ -64.00°C

Note 4.2

Temperature measurement returns 0111 1111 11 for all temperatures 

≥ +127.75

°

C

The eight most significant bits are stored in the Temperature Value High Byte register and the two least
significant bits stored in the Temperature Value Low Byte register as outlined in 

Table 4.2

. The six LSB

positions of the Temperature Value Low Byte register always read zero. In 

Table 4.2

, the upper case

Table 4.1  Temperature Data Format

TEMPERATURE

VALID RANGE 

–40

°

C TO 125

°

C

TWO’S COMPLEMENT

-0.25

°

C

1111 1111 11 

Note 4.1

 0.0

°

C

0000 0000 00

+0.25

°

C

0000 0000 01

+0.50

°

C

0000 0000 10

+0.75

°

C

0000 0000 11

+1

°

C

0000 0001 00

+125

°

C

0111 1101 00 

Note 4.2

 Delta Vbe

Sample

&

 Hold

I

bias

I

low

I

high

1-bit

delta-sigma

Modulator

Digital

Averaging

Filter

V

DD

Internal or

Remote Diode

Bias

Diode

10-bit Output

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/1001-html.html
background image

SMSC EMC1001

DATASHEET

Revision 1.6 (01-29-07) 

Datasheet

PRODUCT FEATURES

EMC1001 

1.5°C SMBus 
Temperature Sensor in 
Miniature SOT-23

General Description

The EMC1001 is a tiny SMBus temperature sensor with
±1.5

°

C accuracy and two interrupts.  Packaged in a

SOT23-6, the EMC1001 provides an accurate, low-cost,
low-current, solution for critical temperature monitoring
in a PC or embedded applications. 

The EMC1001 generates two separate interrupts with
programmable thermal trip points. The 

THERM

 output

operates as a thermostat with programmable threshold
and hysteresis.  The 

ALERT

 output  can be configured

as a maskable SMBus alert  with  programmable
window comparator limits, or as a second 

THERM

output. An efficient fan control system can be created
since this output may be used to control a fan.

A power down mode extends battery life in portable
applications.

Each part number may be configured to respond to one
of four separate SMBus addresses.

Features

„

Self Contained Internal Temperature Sensor

0.25

°C resolution 

±1.5°C Accuracy 40°C to 85°C

„

Small 6-lead SOT lead-free RoHS compliant 

packages

„

SMBus address selected by external resistor

Select 1 of 4 per package, 8 addresses available

„

Maskable Interrupt using 

ALERT

„

One-shot Command during standby

„

Low Power, 3.0V to 3.6V Supply

47uA at 0.0625 Conversions per Second (Typical)

4.8uA in Standby (Typical)

„

SMBus 2.0 Compliant interface

„

Programmable temperature conversion rate

Applications

„

Desktop and Notebook Computers

„

Thermostats

„

Smart batteries

„

Industrial/Automotive

„

Other Electronic Systems

Simplified Block Diagram

EMC1001

Internal

Temp Diode

Switching

Current

SMCLK

Di

gita

l Mu

x

Li

mit Co

mpa

rat

or

High Limit Registers

THERM Hysteresis Register

Low Limit Registers

THERM Limit Register

Address Pointer Register

Conversion Rate Register

Interrupt Masking

Status Register

Configuration Register

SM

B

u

s

 In

te

rf

a

c

e

Temperature

Register

           
ALERT

SMDATA

10-bit

delta-sigma

ADC

             
THERM

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/1001-html.html
background image

Order Number(s):

EMC1001-AFZQ-TR for 6 pin, SOT 23 Lead-Free RoHS compliant package

(tape and reel)

EMC1001-1-AFZQ-TR for 6 pin, SOT 23 Lead-Free RoHS compliant package

(alternate addresses, tape and reel)

See 

Table 1.2, "SMBus Address Configuration Information," on page 3

Reel size is 8,000 pieces.

80 ARKAY DRIVE, HAUPPAUGE, NY 11788 (631) 435-6000, FAX (631) 273-3123

Copyright © 2007 SMSC or its subsidiaries. All rights reserved.

Circuit diagrams and other information relating to SMSC products are included as a means of illustrating typical applications. Consequently, complete information sufficient for
construction purposes is not necessarily given. Although the information has been checked and is believed to be accurate, no responsibility is assumed for inaccuracies. SMSC
reserves the right to make changes to specifications and product descriptions at any time without notice. Contact your local SMSC sales office to obtain the latest specifications
before placing your product order. The provision of this information does not convey to the purchaser of the described semiconductor devices any licenses under any patent
rights or other intellectual property rights of SMSC or others. All sales are expressly conditional on your agreement to the terms and conditions of the most recently dated
version of SMSC's standard Terms of Sale Agreement dated before the date of your order (the "Terms of Sale Agreement"). The product may contain design defects or errors
known as anomalies which may cause the product's functions to deviate from published specifications. Anomaly sheets are available upon request. SMSC products are not
designed, intended, authorized or warranted for use in any life support or other application where product failure could cause or contribute to personal injury or severe property
damage. Any and all such uses without prior written approval of an Officer of SMSC and further testing and/or modification will be fully at the risk of the customer. Copies of
this document or other SMSC literature, as well as the Terms of Sale Agreement, may be obtained by visiting SMSC’s website at http://www.smsc.com. SMSC is a registered
trademark of Standard Microsystems Corporation (“SMSC”). Product names and company names are the trademarks of their respective holders. 

SMSC DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY AND ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND AGAINST INFRINGEMENT AND THE LIKE, AND ANY AND ALL WARRANTIES ARISING FROM ANY COURSE
OF DEALING OR USAGE OF TRADE. IN NO EVENT SHALL SMSC BE LIABLE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, PUNITIVE, OR CONSEQUENTIAL
DAMAGES; OR FOR LOST DATA, PROFITS, SAVINGS OR REVENUES OF ANY KIND; REGARDLESS OF THE FORM OF ACTION, WHETHER BASED ON CONTRACT;
TORT; NEGLIGENCE OF SMSC OR OTHERS; STRICT LIABILITY; BREACH OF WARRANTY; OR OTHERWISE; WHETHER OR NOT ANY REMEDY OF BUYER IS HELD
TO HAVE FAILED OF ITS ESSENTIAL PURPOSE, AND WHETHER OR NOT SMSC HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

1.5°C SMBus Temperature Sensor in Miniature SOT-23

Datasheet

Revision 1.6 (01-29-07)

2

SMSC EMC1001

DATASHEET

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/1001-html.html
background image

1.5°C SMBus Temperature Sensor in Miniature SOT-23

Datasheet

SMSC EMC1001

3

Revision 1.6 (01-29-07)

DATASHEET

Chapter 1 Pin Configuration

Figure 1.1 EMC1001 Pin Configuration

Note 1.1

This value must be greater than 1k

Ω ±5% and less than or equal to 7.5kΩ ±5%.

Note 1.2

The pull-up resistor must be connected to V

DD

 (pin 1), and the total capacitance on this

pin must be less than 100pF.

Table 1.1  Pin Description

PIN

PIN NO.

DESCRIPTION

ADDR/

THERM

1

Logic output that can be used to turn on/off a fan or throttle a CPU clock 
in the event of an over-temperature condition.  This is an open-drain 
output. This pin is sampled following power up and the value of the pull 
up resistor determines the SMBus slave address per 

Table 1.2

.Total 

capacitance on this pin must not exceed 100 pF, and the pull-up resistor 
must be connected to the same supply voltage as V

DD

GND

2

Ground.

V

DD

3

Supply Voltage, 3.0V to 3.6V.

SMCLK

4

SMBus clock input.

ALERT

/

THERM2

5

Logic output used as interrupt, SMBus alert or as a second 

THERM

 output.  

This is an open-drain output.

SMDATA

6

SMBus data input/output, open drain output.

Table 1.2  SMBus Address Configuration Information

PART NUMBER

ADDR/THERM

PULL-UP RESISTOR

SMBUS

ADDRESS

PACKAGE

DESCRIPTION

EMC1001

7.5k

Ω ±5% 

Note 1.1

Note 1.2

1001 000b

6-Lead SOT-23

12k

Ω ±5% 

Note 1.2

1001 001b

6-Lead SOT-23

20k

Ω ±5% 

Note 1.2

0111 000b

6-Lead SOT-23

33k

Ω ±5% 

Note 1.2

0111 001b

6-Lead SOT-23

EMC1001-1

7.5k

Ω ±5% 

Note 1.1

Note 1.2

1001 010b

6-Lead SOT-23

12k

Ω ±5% 

Note 1.2

1001 011b

6-Lead SOT-23

20k

Ω ±5% 

Note 1.2

0111 010b

6-Lead SOT-23

33k

Ω ±5% 

Note 1.2

0111 011b

6-Lead SOT-23

6

4

1

2

3

GND

V

DD

SMDATA

SMCLK

5

ADDR/THERM

ALERT/THERM2

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/1001-html.html
background image

1.5°C SMBus Temperature Sensor in Miniature SOT-23

Datasheet

Revision 1.6 (01-29-07)

4

SMSC EMC1001

DATASHEET

Note: Stresses above those listed could cause damage to the device.  This is a stress rating only

and functional operation of the device at any other condition above those indicated in the
operation sections of this specification is not implied.  When powering this device from
laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be
exceeded or device failure can result.  Some power supplies exhibit voltage spikes on their
outputs when the AC power is switched on or off.  In addition, voltage transients on the AC
power line may appear on the DC output.  If this possibility exists, it is suggested that a clamp
circuit be used.

Table 1.3  Absolute Maximum Ratings

PARAMETER

RATING

UNIT

Supply Voltage V

DD

-0.3 to 5.0

V

Voltage on 

ALERT

/

THERM2, 

SMDATA and SMCLK 

pins

-0.3 to 5.5

V

Voltage on any other pin

-0.3 to V

DD

+0.3

V

Operating Temperature Range

-25 to +125

°C

Storage Temperature Range

-55 to +150

°C

Lead Temperature Range

Refer to JEDEC
Spec. J-STD-020

Package Thermal Characteristics for SOT23-6 

            Power Dissipation

TBD

mW @ 70

o

C

            Thermal Resistance

111.5

o

C/W

ESD Rating, All Pins (Human Body Model)

2000

V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/1001-html.html
background image

1.5°C SMBus Temperature Sensor in Miniature SOT-23

Datasheet

SMSC EMC1001

5

Revision 1.6 (01-29-07)

DATASHEET

Chapter 2 Electrical Characteristics

Table 2.1  Electrical Characteristics

V

DD

=3.0V to 3.6V, T

A

= -25

°C to +125°C, Typical values at T

A

 = 27

°C unless otherwise noted

PARAMETER

SYMBOL

MIN

TYP

MAX

UNITS

CONDITIONS

DC Power

Supply Voltage

V

DD

3.0

3.3

3.6

V

Average Operating Current

I

DD

47

TBD

μA

0.0625 conversion/s
See 

Table 4.6, 

"Conversion Rates," 
on page 14

I

PD

4.8

10

μA

Standby mode

Temperature Measurement

Accuracy

±0.5

±1.5

°C

40

°C≤T

A

≤85°C

±1

±3

°C

-25

°C≤T

A

≤125°C

Resolution

0.25

°C

Conversion Time

26

ms

Voltage Tolerance 

Voltage at pin (ADDR/

THERM, 

)

V

TOL

-0.3

3.6

V

Voltage at pin (

ALERT

/

THERM2, 

SMDATA,SMCLK)

V

TOL

-0.3

5.5

V

Digital Outputs (

ADDR

/

THERM

ALERT

/

THERM2

)

Output Low Voltage

V

OL

0.4

V

I

OUT

=-4mA

High Level Leakage Current

I

OH

0.1

1

μ

A

V

OUT

=V

DD

SMBus Interface (SMDATA,SMCLK)

Input High Level

V

IH

2.0

V

Input Low Level

V

IL

0.8

V

Input High/Low Current

I

IH

/I

IL

-1

1

μ

A

Hysteresis

500

mV

Input Capacitance

5

pF

Output Low Sink Current

6

mA

SMDATA = 0.6V

SMBus Timing

Clock Frequency

F

SMB

10

400

kHz

Spike Suppression

50

ns

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/1001-html.html
background image

1.5°C SMBus Temperature Sensor in Miniature SOT-23

Datasheet

Revision 1.6 (01-29-07)

6

SMSC EMC1001

DATASHEET

Note 2.1

300nS rise time max is required for 400kHz bus operation. For lower clock frequencies,
the maximum rise time is (0.1/F

SMB

)+50nS

Bus free time Start to Stop

T

BUF

1.3

μ

s

Hold time Start

T

HD:STA

0.6

μ

s

Setup time Start

T

SU:STA

0.6

μ

s

Setup time Stop

T

SU:STO

0.6

μ

s

Data Hold Time

T

HD:DAT

0.3

μ

s

Data Setup Time

T

SU:DAT

100

ns

Clock Low Period

T

LOW

1.3

μ

s

Clock High Period

T

HIGH

0.6

μ

s

Clock/Data Fall Time

T

F

*

300

ns

*Min = 20+0.1C

b

 ns

Clock/Data Rise Time

T

R

*

300

Note
2.1

ns

*Min = 20+0.1C

b

 ns

Capacitive Load (each bus line)

C

b

0.6

400

pF

Table 2.1  Electrical Characteristics (continued) 

V

DD

=3.0V to 3.6V, T

A

= -25

°C to +125°C, Typical values at T

A

 = 27

°C unless otherwise noted

PARAMETER

SYMBOL

MIN

TYP

MAX

UNITS

CONDITIONS

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/1001-html.html
background image

1.5°C SMBus Temperature Sensor in Miniature SOT-23

Datasheet

SMSC EMC1001

7

Revision 1.6 (01-29-07)

DATASHEET

Chapter 3 System Management Bus Interface Protocol

A host controller, such as an SMSC I/O controller, communicates with the EMC1001 via the two wire
serial interface named SMBus. The SMBus interface is used to read and write registers in the
EMC1001, which is a slave-only device. A detailed timing diagram is shown in 

Figure 3.1

.

Figure 3.1 System Management Bus Timing Diagram

The EMC1001 implements a subset of the SMBus specification and supports Write Byte, Read Byte,
Send Byte, Receive Byte, and Alert Response Address protocols. as shown. In the tables that describe
the protocol, the “gray” columns indicate that the slave is driving the bus.

3.1

  Write Byte

The Write Byte protocol is used to write one byte of data to the registers as shown below:

3.2

  Read Byte

The Read Byte protocol is used to read one byte of data from the registers as shown below:

3.3

  Send Byte

The Send Byte protocol is used to set the Internal Address Register to the correct Address. The Send
Byte can be followed by the Receive Byte protocol described below in order to read data from the
register. The send byte protocol cannot be used to write data - if data is to be written to a register then
the write byte protocol must be used as described in subsection above. The send byte protocol is shown
in 

Table 3.3

.

Table 3.1  SMBus Write Byte Protocol

START

SLAVE ADDRESS

WR

ACK

COMMAND

ACK

DATA

ACK

STOP

1

7

1

1

8

1

8

1

1

Table 3.2  SMBus Read Byte Protocol

START

SLAVE ADDRESS

WR

ACK

COMMAND

ACK

START

SLAVE ADDRESS

RD

ACK

DATA

NACK

STOP

1

7

1

1

8

1

1

7

1

1

8

1

1

Table 3.3  SMBus Send Byte Protocol

FIELD:

START

SLAVE ADDR

WR

ACK

REG. ADDR

ACK

STOP

Bits:

1

7

1

1

8

1

1

S M D A TA

S M C LK

T

LO W

T

R

T

H IG H

T

F

T

B U F

T

H D :S TA

P

S

S  - S tart C ondition

P   -  S top  C ondition

T

H D :D A T

T

S U :D A T

T

S U :S TA

T

H D :S TA

P

T

S U :S TO

S

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/1001-html.html
background image

1.5°C SMBus Temperature Sensor in Miniature SOT-23

Datasheet

Revision 1.6 (01-29-07)

8

SMSC EMC1001

DATASHEET

3.4

  Receive Byte

The Receive Byte protocol is used to read data from a register when the internal register address pointer
is known to be at the right location (e.g. set via Send Byte). This can be used for consecutive reads of
the same register as shown below: 

3.5

  Alert Response Address

The 

ALERT

/

THERM2

 output can be used as an SMBALERT# as described in 

4.3, "ALERT/THERM2

Output," on page 11

.  The Alert Response Address is polled by the Host whenever it detects an

SMBALERT#, i.e. when the 

ALERT

/

THERM2

 pin is asserted. The EMC1001 will acknowlege the Alert

Response Address and respond with its device address as shown below.

3.6

  SMBus Addresses

The EMC1001 is available in two versions, each of which has four 7-bit slave addresses that are
enabled based on the pull-up resistor on the 

ADDR

/

THERM

 pin. The value of this pull up resistor

determines the slave address per 

Table 1.2 on page 3

. Attempting to communicate with the EMC1001

SMBus interface with an invalid slave address or invalid protocol results in no response from the device
and does not affect its register contents. The EMC1001 supports stretching of the SMCLK signal by
other devices on the SMBus but will not perform this operation itself. The EMC1001 has an SMBus
timeout feature.  Bit 7 of the SMBus Timeout Enable register enables this function when set to 1 (the
default setting is 0).  When this feature is enabled, the SMBus will timeout after approximately 25ms
of inactivity.

Table 3.4  SMBus Receive Byte Protocol

FIELD:

START

SLAVE ADDR

RD

ACK

REG. DATA

NACK

STOP

Bits:

1

7

1

1

8

1

1

Table 3.5  Modified SMBus Receive Byte Protocol Response to ARA

FIELD:

START

ALERT

RESPONSE

ADDRESS

RD

ACK

EMC1001 SLAVE

ADDRESS NACK

STOP

Bits:

1

7

1

1

8

1

1

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/1001-html.html
background image

1.5°C SMBus Temperature Sensor in Miniature SOT-23

Datasheet

SMSC EMC1001

9

Revision 1.6 (01-29-07)

DATASHEET

Chapter 4 Product Description

The EMC1001 is an SMBus temperature that monitors a single temperature zone. Thermal
management is performed in cooperation with a host device. The host reads the temperature data from
the EMC1001 and takes appropriate action such as controlling fan speed or processor clock frequency.
The EMC1001 has programmable temperature limit registers that define a safe operating window. After
the host has configured the temperature limits, the EMC1001 can operate as a free-running
independent watchdog to warn the host of temperature hot spots without requiring the host to poll the
device. The 

ADDR

/

THERM

 output can be used to control a fan without host intervention.

Figure 4.1 Controlling a fan without host intervention.

The

 

EMC1001

 

has

 

two basic modes of operation:

„

Run Mode: In this mode, the EMC1001 continuously converts temperature data and updates its 
registers. The rate of temperature conversion is configured as shown in 

Section 4.9 on page 14

„

Standby Mode: In this mode, the EMC1001 is placed in standby to conserve power as described 
in 

Section 4.5 on page 12

4.1

  Temperature Monitors

Thermal diode temperature measurements are based on the change in forward bias voltage (

ΔV

BE

) of

a diode when operated at two different currents:

The change in 

Δ

V

BE

 voltage is proportional to absolute temperature T.

where:

k = Boltzmann’s constant

T = absolute temperature in Kelvin

q = electron charge

η

 = diode ideality factor

                        
ADDR/THERM

                           
ALERT/THERM2

EMC1001

Host

Fan

Driver

SMDATA

Internal

Diode

SMCLK

SMBus

Interface

⎟⎟

⎜⎜

=

=

Δ

LOW

HIGH

LOW

BE

HIGH

BE

BE

I

I

q

kT

V

V

V

ln

_

_

η

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/1001-html.html
background image

1.5°C SMBus Temperature Sensor in Miniature SOT-23

Datasheet

Revision 1.6 (01-29-07)

10

SMSC EMC1001

DATASHEET

Figure 4.2 Detailed Block Diagram

Figure 4.2

 shows a detailed block diagram of the temperature measurement circuit. The EMC1001

incorporates switched capacitor technology that integrates the temperature diode 

ΔV

BE

 from different

bias currents. The negative terminal, DN, for the temperature diode is internally biased with a forward
diode voltage referenced to ground.

The advantages of this architecture over Nyquist rate FLASH or SAR converters are superb linearity
and inherent noise immunity. The linearity can be directly attributed to the delta-sigma ADC single-bit
comparator while the noise immunity is achieved by the ~20ms integration time which translates to
50Hz input noise bandwidth.

4.2

  Temperature Measurement Results and Data

The 10-bit temperature measurement results are stored in temperature value registers. 

Table 4.1

shows the two’s complement temperature data format with an LSB equivalent to 0.25

°

C.

Note 4.1

Temperature measurement returns 1100 0000 00 for all temperatures 

≤ -64.00°C

Note 4.2

Temperature measurement returns 0111 1111 11 for all temperatures 

≥ +127.75

°

C

The eight most significant bits are stored in the Temperature Value High Byte register and the two least
significant bits stored in the Temperature Value Low Byte register as outlined in 

Table 4.2

. The six LSB

positions of the Temperature Value Low Byte register always read zero. In 

Table 4.2

, the upper case

Table 4.1  Temperature Data Format

TEMPERATURE

VALID RANGE 

–40

°

C TO 125

°

C

TWO’S COMPLEMENT

-0.25

°

C

1111 1111 11 

Note 4.1

 0.0

°

C

0000 0000 00

+0.25

°

C

0000 0000 01

+0.50

°

C

0000 0000 10

+0.75

°

C

0000 0000 11

+1

°

C

0000 0001 00

+125

°

C

0111 1101 00 

Note 4.2

 Delta Vbe

Sample

&

 Hold

I

bias

I

low

I

high

1-bit

delta-sigma

Modulator

Digital

Averaging

Filter

V

DD

Internal or

Remote Diode

Bias

Diode

10-bit Output

Maker
Microchip Technology Inc.
Datasheet PDF Download