Dual 500mA LDO Regulator

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005774A-html.html
background image

 2017 Microchip Technology Inc.

DS20005774A-page 1

MIC5212

Features

• Fused-Lead Frame SOIC-8
• Up to 500 mA per Regulator Output 
• Low Quiescent Current
• Low Dropout Voltage
• Tight Load and Line Regulation
• Low Temperature Coefficient
• Current and Thermal Limiting
• Reversed Input Polarity Protection

Applications

• Hard Disk Drives
• CD R/W
• Barcode Scanners
• SMPS Post Regulator and DC/DC Modules
• High-Efficiency Linear Power Supplies

General Description

The MIC5212 is a dual linear voltage regulator with
very low dropout voltage (typically 10 mV at light loads
and 350 mV at 500 mA), very low ground current
(225 μA at 10 mA output), and better than 1% initial
accuracy.
Both regulator outputs can supply up to 500 mA at the
same time as long as each regulator’s maximum
junction temperature is not exceeded.
Key features include current limiting, overtemperature
shutdown, and protection against reversed battery.
The MIC5212 is available in a fixed 3.3V/2.5V output
voltage configuration. Other voltages are available;
contact Microchip for details.

Package Type

MIC5212

SOIC-8

Top View

Dual 500 mA LDO Regulator

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005774A-html.html
background image

MIC5212

DS20005774A-page 2

 2017 Microchip Technology Inc.

Typical Application Circuit

Functional Diagram

MIC5212

3.3V/2.5V Dual LDO

V

O1

 = 3.3V

V

O2

 = 2.5V

IN = 5V

4.7

µF

4.7

µF 4.7µF

MIC5212-SJYM

GND

OUTB

OUTA

INA

INB

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005774A-html.html
background image

 2017 Microchip Technology Inc.

DS20005774A-page 3

MIC5212

1.0

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Supply Input Voltage, (V

IN

 A or B) .............................................................................................................. –20V to +20V

Power Dissipation .................................................................................................................................  Internally Limited

Operating Ratings ††

Supply Input Voltage, (V

IN

 ) ....................................................................................................................... +2.5V to +16V

 Notice: Exceeding the absolute maximum rating may damage the device.

††

 Notice: The device is not guaranteed to function outside its operating rating.

DC CHARACTERISTICS

Electrical Characteristics:

 Unless otherwise indicated, Regulator A and B V

IN

 = V

OUT

 + 1V; I

L

 = 100 μA; 

C

L

 = 4.7 μF; T

J

 = +25°C, bold values indicate –40°C ≤ T

J

 ≤ +125°C.

Parameters

Symbol

Min.

Typ.

Max.

Units

Conditions

Output Voltage Accuracy

V

O

–1

1

%

Variation from specified 
V

OUT

–2

2

%

Output Voltage 
Temperature Coefficient

∆V

O

/∆T

40

ppm/°C

Note 1

Line Regulation

∆V

O

/V

O

0.009

0.05

%/V

V

IN

 = V

OUT

 + 1V to 16V

0.1

%/V

Load Regulation

∆V

O

/V

O

0.05

0.7

%

I

L

 = 0.1 mA to 500 mA, 

Note 2

1

%

Dropout Voltage, 

Note 3

(per regulator)

V

IN

 – V

O

175

275

mV

I

L

 = 150 mA

350

mV

350

500

mV

I

L

 = 150 mA

600

mV

Ground Pin Current, 

Note 4

(per regulator)

I

GND

1.5

2.5

mA

I

L

 = 150 mA

3.0

mA

12

20

mA

I

L

 = 150 mA

25

mA

Ripple Rejection

PSRR

75

dB

f = 120 Hz, I

L

 = 150 mA

Current Limit

I

LIMIT

750

1000

mA

V

OUT

 = 0V

Spectral Noise Density

500

nV/√Hz

V

OUT

 = 2.5V, I

OUT

 = 50 mA, 

C

OUT

 = 2.2 μF

Note 1:

Output voltage temperature coefficient is defined as the worst case voltage change divided by the total 
temperature range.

2:

Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are 
tested for load regulation in the load range from 0.1 mA to 500 mA. Changes in output voltage due to 
heating effects are covered by the thermal regulation specification.

3:

Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its 
nominal value measured at 1V differential.

4:

Ground pin current is the regulator quiescent current plus pass transistor base current. The total current 
drawn from the supply is the sum of the load current plus the ground pin current.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005774A-html.html
background image

MIC5212

DS20005774A-page 4

 2017 Microchip Technology Inc.

TEMPERATURE SPECIFICATIONS (

Note 1

)

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Temperature Ranges
Storage Temperature Range

T

A

–60

+150

°C

Lead Temperature 

T

J

+260

°C

Soldering, 5 sec.

Junction Temperature

T

J

–40

+125

°C

Package Thermal Resistances

Thermal Resistance, SOIC-8Ld

JC

20

°C/W

Note 2

JA

63

°C/W

Note 1:

The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable 
junction temperature and the thermal resistance from junction to air (i.e., T

A

, T

J

JA

). Exceeding the 

maximum allowable power dissipation will cause the device operating junction temperature to exceed the 
maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability.

2:

Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical 
specifications do not apply when operating the device outside of its operating ratings. The maximum 
allowable power dissipation is a function of the maximum junction temperature, T

J(max)

, the junc-

tion-to-ambient thermal resistance, θ

JA

, and the ambient temperature, T

A

. The maximum allowable power 

dissipation at any ambient temperature is calculated using: P

D(max)

 = (T

J(max)

 – T

A

) ÷ θ

JA

. Exceeding the 

maximum allowable power dissipation will result in excessive die temperature, and the regulator will go 
into thermal shutdown. The θ

JA

 of the 8-lead SOIC (M) is 63°C/W mounted on a PC board.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005774A-html.html
background image

 2017 Microchip Technology Inc.

DS20005774A-page 5

MIC5212

2.0

TYPICAL PERFORMANCE CURVES

FIGURE 2-1:

MIC5212-3.3 PSRR 150 mA 

Load.

FIGURE 2-2:

MIC5212-3.3 PSRR 500 mA 

Load.

FIGURE 2-3:

MIC5212-2.5 PSRR 150 mA 

Load.

FIGURE 2-4:

MIC5212-2.5 PSRR 500 mA 

Load.

FIGURE 2-5:

Ground Current vs. 

Temperature.

FIGURE 2-6:

Short Circuit Current vs. 

Temperature.

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

0

10

20

30

40

50

60

70

80

90

PSRR (dB)

FREQUENCY (Hz)

C

OUT

 = 10

μF Tantulum

V

IN

 = 4.3V

V

OUT

 = 3.3V

V

IN

 = V

OUT

 + 1V

10

100

1k

10k

100k

1M

0

10

20

30

40

50

60

70

80

90

PSRR (dB)

FREQUENCY (Hz)

C

OUT

 = 10

μF Tantulum

V

IN

 = 4.3V

V

OUT

 = 3.3V

V

IN

 = V

OUT

 + 1V

10

100

1k

10k

100k

1M

0

10

20

30

40

50

60

70

80

90

PSRR (dB)

FREQUENCY (Hz)

C

OUT

 = 10

μF Tantulum

V

IN

 = 4.3V

V

OUT

 = 3.3V

V

IN

 = V

OUT

 + 1V

10

100

1k

10k

100k

1M

0

10

20

30

40

50

60

70

80

90

PSRR (dB)

FREQUENCY (Hz)

C

OUT

 = 10

μF Tantulum

V

IN

 = 4.3V

V

OUT

 = 3.3V

V

IN

 = V

OUT

 + 1V

10

100

1k

10k

100k

1M

0

2

4

6

8

10

12

14

-40 -20 0

20 40 60 80 100 120

GROUND CURRENT (mA)

TEMPERATURE (

°C)

500mA

150mA

100

μA

300mA

0

100

200

300

400

500

600

700

800

-40 -20 0

20 40 60 80 100 120

LOAD CURRENT (mA)

TEMPERATURE (

°C)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005774A-html.html
background image

MIC5212

DS20005774A-page 6

 2017 Microchip Technology Inc.

FIGURE 2-7:

Output Voltage vs. 

Temperature.

FIGURE 2-8:

Dropout Voltage vs. 

Temperature.

FIGURE 2-9:

Dropout Voltage vs. Load 

Current.

.

FIGURE 2-10:

Ground Current vs. Load 

Current.

FIGURE 2-11:

Output 1 Load Transient 

Response.

FIGURE 2-12:

Output 2 Load Transient 

Response.

3.275

3.280

3.285

3.290

3.295

3.300

3.305

3.310

3.315

3.320

-40 -20 0

20 40 60 80 100 120

OUTPUT VOLTAGE (V)

TEMPERATURE (

°C)

0

50

100

150

200

250

300

350

400

450

500

-40 -20 0

20 40 60 80 100 120

DROPOUT VOLTAGE (mV)

TEMPERATURE (

°C)

500mA

150mA

300mA

0

50

100

150

200

250

300

350

0

50

100

150

200

250

300

350

400

450

500

DROPOUT VOLTAGE (mV)

OUTPUT CURRENT (mA)

0

2

4

6

8

10

12

14

0

100

200

300

400

500

GROUND CURRENT (mA)

OUTPUT CURRENT (mA)

TIME (1ms/div.)

OUTPUT

 CURRENT

(500mA/div)

OUTPUT

 2

(20mV/div)

OUTPUT

 1

(20mV/div)

V

IN

 = 3.3V

V

OUT

 = 2.5V

C

OUT

 = 10 F Ceramic

1000mA

10mA

500mA

10mA

TIME (1ms/div.)

OUTPUT

 2 CURRENT

(200mA/div)

OUTPUT

 1

(20mV/div)

OUTPUT

 2

(20mV/div)

V

IN

 = 3.3V

V

OUT

 = 2.5V

C

OUT

 = 10 F Ceramic

1000mA

10mA

500mA

10mA

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005774A-html.html
background image

 2017 Microchip Technology Inc.

DS20005774A-page 7

MIC5212

FIGURE 2-13:

Line Transient Response.

FIGURE 2-14:

Line Transient Response.

FIGURE 2-15:

Turn-On Response.

TIME (1ms/div.)

VOUT

 1

(10mV/div)

VOUT

 2

(10mV/div)

VIN

(2V/div)

V

IN

 = 3.3V

V

OUT

 = 2.5V

C

OUT

 = 10 F Ceramic

1000mA

10mA

4.3V

7V

TIME (1ms/div.)

VOUT

 1

(10mV/div)

VOUT

 2

(10mV/div)

VIN

(2V/div)

6V

3.5V

TIME (40

μs/div.)

OUTPUT

 2

(1V/div)

OUTPUT

 1

(1V/div)

VSUPPL

Y

(2V/div)

3.3V, 500mA

2.5V, 200mA

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005774A-html.html
background image

MIC5212

DS20005774A-page 8

 2017 Microchip Technology Inc.

3.0

PIN DESCRIPTIONS

The descriptions of the pins are listed in 

Table 3-1

.

TABLE 3-1:

PIN FUNCTION TABLE

Pin Number

Pin Name

Description

1

OUTA

Regulator A Output.

2

INA

Regulator A Input.

3

INB

Regulator B Input.

4

OUTB

Regulator B Output.

5, 6, 7, 8

GND

Ground.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005774A-html.html
background image

 2017 Microchip Technology Inc.

DS20005774A-page 9

MIC5212

4.0

DEVICE OVERVIEW

4.1

Input Capacitor

A 1 μF capacitor should be placed from IN to GND if
there is more than 10 inches of wire between the input
and the AC filter capacitor or if a battery is used as the
input.

4.2

Output Capacitor

An output capacitor is required between OUT and GND
to prevent oscillation. 1.0 μF minimum is
recommended. Larger values improve the regulator’s
transient response. The output capacitor value may be
increased without limit.
The output capacitor should have an ESR (Effective
Series Resistance) of about 5Ω or less and a resonant
frequency above 1 MHz. Ultra-low-ESR capacitors
may cause a low-amplitude oscillation and/or
underdamped transient response. Most tantalum or
aluminum electrolytic capacitors are adequate; film
types will work, but are more expensive. Since many
aluminum electrolytic capacitors have electrolytes that
freeze at about –30°C, solid tantalum capacitors are
recommended for operation below –25°C.
At lower values of output current, less output
capacitance is required for output stability. The
capacitor can be reduced to 0.47 μF for current below
10 mA or 0.33 μF for currents below 1 mA.

4.3

No-Load Stability

The MIC5212 will remain stable and in regulation with
no load (other than the internal voltage divider) unlike
many other voltage regulators. This is especially
important in CMOS RAM keep-alive applications.

4.4

Dual-Supply Operation

When used in dual supply systems where the regulator
load is returned to a negative supply, the output voltage
must be diode clamped to ground.

4.4.1

POWER SO-8 THERMAL 
CHARACTERISTICS

One of the secrets of the MIC5212’s performance is its
power SO-8 package featuring half the thermal
resistance of a standard SO-8 package. Lower thermal
resistance means more output current or higher input
voltage for a given package size.
Lower thermal resistance is achieved by joining the
four ground leads with the die attach paddle to create a
single-unit electrical and thermal conductor. This
concept has been used by MOSFET manufacturers for
years, proving very reliable and cost effective for the
user.
Thermal resistance consists of two main elements, θ

JC

(junction-to-case thermal resistance) and θ

CA

(case-to-ambient thermal resistance). See 

Figure 4-1

.

θ

JC

 is the resistance from the die to the leads of the

package.  θ

CA

 is the resistance from the leads to the

ambient air and it includes θ

CS 

(case-to-sink thermal

resistance) and θ

SA

 (sink-to-ambient thermal

resistance).

FIGURE 4-1:

Thermal Resistance.

Using the power SO-8 reduces the θ

JC

 dramatically

and allows the user to reduce θ

CA

. The total thermal

resistance, 

θ

JA

 (junction-to-ambient thermal

resistance) is the limiting factor in calculating the
maximum power dissipation capability of the device.
Typically, the power SO-8 has a θ

JC

 of 20°C/W, this is

significantly lower than the standard SO-8 which is
typically 75°C/W. θ

CA

 is reduced because pins 5

through 8 can now be soldered directly to a ground
plane which significantly reduces the case-to-sink
thermal resistance and sink to ambient thermal
resistance.
These low dropout linear regulators are rated to a
maximum junction temperature of 125°C. It is important
not to exceed this maximum junction temperature

θ

JA

θ

JC

θ

CA

printed circuit board

ground plane

heat sink area

SO-8

AMBIENT

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005774A-html.html
background image

MIC5212

DS20005774A-page 10

 2017 Microchip Technology Inc.

during operation of the device. To prevent this
maximum junction temperature from being exceeded,
the appropriate ground plane heat sink must be used.

FIGURE 4-2:

Copper Area vs. Power-SO 

Power Dissipation (∆T

JA

).

Figure 4-2

 shows copper area versus power

dissipation with each trace corresponding to a different
temperature rise above ambient. 
From these curves, the minimum area of copper
necessary for the part to operate safely can be
determined. The maximum allowable temperature rise
must be calculated to determine operation along which
curve.

EQUATION 4-1:

For example, the maximum ambient temperature is
50°C, the ∆T is determined as shown in 

Equation 4-2

.

EQUATION 4-2:

Using 

Figure 4-2

, the minimum amount of required

copper can be determined based on the required
power dissipation.
Power dissipation in a linear regulator is calculated as
shown in 

Equation 4-3

.

EQUATION 4-3:

With a common 5V input, a 3.3V, 300 mA output on
LDO 1 and a 2.5V, 150 mA output on LDO 2, power
dissipation is as follows:

EQUATION 4-4:

From 

Figure 4-2

, the minimum amount of copper

required to operate this application at a ∆T of 75°C is
500 mm

2

.

4.4.2

QUICK METHOD

Determine the power dissipation requirements for the
design along with the maximum ambient temperature
at which the device will be operated. Refer to

Figure 4-3

, which shows safe operating curves for

three different ambient temperatures: 25°C, 50°C and
85°C. From these curves, the minimum amount of
copper can be determined by knowing the maximum
power dissipation required. If the maximum ambient
temperature is 50°C and the power dissipation is as
above, 920 mW, the curve in 

Figure 4-3

 shows that the

required area of copper is 500 mm

2

.

The  θ

JA

 of this package is ideally 63°C/W, but it will

vary depending upon the availability of copper ground
plane to which it is attached.

FIGURE 4-3:

Copper Area vs. Power-SO 

Power Dissipation (T

A

).

Where:
T

J(max)

= 125°C

T

A(max)

= Maximum ambient operating 

temperature

∆T

=

125°C – 50°C

∆T

=

75°C

0

100

200

300

400

500

600

700

800

900

0

0.25 0.50 0.75 1.00 1.25 1.50

COPPER AREA (mm

2

)

POWER DISSIPATION (W)

40°C

50°C 55°C

65°C

75°C

85°C

100°C

T

T

J max

T

A max

=

P

D

V

IN1

V

OUT1

 I

OUT1

V

IN1

+

I

GND1

V

IN2

V

OUT2

+

I

OUT2

V

IIN2

+

I

GND2

=

P

D

=

P

D

=

0.919W

5V

3.3V

 300mA

5V

+

5mA

5V

2.5V

+

150mA

5V

+

1.8mA

0

100

200

300

400

500

600

700

800

900

0

0.25 0.50 0.75 1.00 1.25 1.50

COPPER AREA (mm

2

)

POWER DISSIPATION (W)

85

°C

50

°C 25°C

T

J

 = 125

°C

Maker
Microchip Technology Inc.
Datasheet PDF Download