Dual 150mA CMOS LDO w/Select Mode Operation, Shutdown & RESET Output

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21527c-html.html
background image

© 2007 Microchip Technology Inc.

DS21527C-page 1

Features

• Extremely Low Supply Current for Longer Battery 

Life

• Select Mode™ Operation: Selectable Output 

Voltages for High Design Flexibility

• Very Low Dropout Voltage
• 10

μsec (Typ.) Wake-Up Time from SHDN

• Maximum 150mA Output Current per Output
• High Output Voltage Accuracy
• Power-Saving Shutdown Mode
• RESET Output Can Be Used as a Low Battery 

Detector or Processor Reset Generator

• Over Current Protection and Over Temperature 

Shutdown

• Space Saving 8-Pin MSOP Package

Applications

• Load Partitioning
• Battery Operated Systems
• Portable Computers
• Medical Instruments
• Instrumentation
• Pagers and Cellular/GSM/PHS Phones
• Linear Post-Regulator for SMPS

Device Selection Table

NOTE: “R” denotes the suffix for the 2.63V RESET threshold.

 “B” indicates V

OUT1 

= 1.8V (fixed).

 “D” indicates V

OUT2 

= 2.8V, 3.0V (selectable).

Other output voltages are available. Please contact Microchip
Technology Inc. for details.

Package Type

General Description

The TC1306 combines two CMOS Low Dropout Regu-
lators and a Microprocessor Monitor in a space saving
8-Pin MSOP package. Designed specifically for battery
operated systems, total supply current is typically
120

μA at full load, 20 to 60 times lower than in bipolar

regulators.
The TC1306 features selectable output voltages for
higher design flexibility. The dual-state SELECT input
pin allows the user to select V

OUT2

 from 2 different

values (2.8V and 3.0V). V

OUT1

 supplies a fixed 1.8V

voltage.
An active low RESET is asserted when the output
voltage V

OUT2

 falls below the 2.63V reset voltage

threshold. The RESET output remains low for 300msec
(typical) after V

OUT2

 rises above reset threshold. When

the shutdown control (SHDN1) is low, the regulator
output voltage V

OUT1

 falls to zero and RESET output

remains valid. When the shutdown control (SHDN2) is
low, the regulator output voltage V

OUT2

 falls to zero and

RESET output is low.
Other key features for the device include ultra low noise
operation, fast response to step changes in load and
very low dropout voltage (typically 125mV at full load).
The device also incorporates both over temperature
and over current protection. Each regulator is stable
with an output capacitor of only 1

μF and has a

maximum output current of 150mA.

Typical Application

Part Number

Package

Junction

Temperature

Range

TC1306R-BDVUA 8-Pin MSOP -40°C to +125°C

SHDN2

V

IN

V

OUT2

V

OUT1

1

GND

SELECT

2

3

4

8

7

6

5

SHDN1

RESET

TC1306

8-Pin MSOP

V

OUT2

V

OUT1

RESET

TC1306

3.3

µF

3.3

µF

1

2

3

4

8

7

6

5

V

IN

GND

SELECT

SHDN1

SHDN2

TC1306

Dual 150mA CMOS LDO With Select Mode™ Operation, 

Shutdown and RESET Output

Obsolete Device

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21527c-html.html
background image

TC1306

DS21527C-page 2

© 2007 Microchip Technology Inc.

1.0

ELECTRICAL 
CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

Input Voltage .........................................................6.5V
Output Voltage........................... (-0.3V) to (V

IN

 + 0.3V)

Power Dissipation................Internally Limited (Note 7)
Maximum Voltage on Any Pin ......... V

IN 

+0.3V to -0.3V

Operating Temperature Range.... -40°C < T

J

 < +125°C

Storage Temperature Range ..............-65°C to +150°C

*Stresses above those listed under "Absolute Maximum
Ratings" may cause permanent damage to the device. These
are stress ratings only and functional operation of the device
at these or any other conditions above those indicated in the
operation sections of the specifications is not implied.
Exposure to Absolute Maximum Rating conditions for
extended periods may affect device reliability.

TC1306 ELECTRICAL SPECIFICATIONS

Electrical Characteristics: V

IN

 = V

R

 + 1V, I

L

 = 100

μA, C

L

 = 3.3

μF, SHDN1 > V

IH

, SHDN2 > V

IH

, T

A

 = 25°C, unless otherwise noted. 

Boldface type specifications apply for junction temperature of -40°C to +125°C. Applies to both V

OUT1

 and V

OUT2

.

Symbol

Parameter

Min

Typ

Max

Units

Test Conditions

V

IN

Input Operating Voltage

2.7

6.0

V

Note 1

I

OUT

MAX

Maximum Output Current

150

mA

Per Channel

V

OUT

Output Voltage (V

OUT1

 and V

OUT2

)

V

R

 – 2.5%

V

R

 ± 0.5% V

R

 + 2.5%

V

Note 2

TCV

OUT

V

OUT

 Temperature Coefficient


20
40


ppm/°C Note 3

ΔV

OUT

/

ΔV

IN

Line Regulation

0.05

0.35

%

(V

R

 + 1V) < V

IN

 < 6V

ΔV

OUT

/V

OUT

Load Regulation

0.3

2

%

I

L

 = 0.1mA to I

OUT

MAX

 

(Note 4)

V

IN –

 V

OUT

Dropout Voltage 

2

45
85

125

120
240
360

mV

I

L

 = 100

μA

I

L

 = 50mA

I

L

 = 100mA

I

L

 = 150mA, (Note 5)

I

IN

Supply Current

120

200

μA

SHDN1, SHDN2 = V

IH

, I

L

 = 0

I

INSD

Shutdown Supply Current

0.05

0.5

μA

SHDN1, SHDN2 = 0V

PSRR

Power Supply Rejection Ratio

55

dB

F

RE 

≤ 120Hz

I

OUTSC

Output Short Circuit Current

450

mA

V

OUT

 = 0V

ΔV

OUT

ΔP

D

Thermal Regulation

— 

0.04

— 

V/W

Notes 6, 7

t

WK

Wake Up Time

(from Shutdown Mode)

10

μsec

V

IN

 = 5V

C

IN

 = 1

μF, C

OUT

 = 4.7

μF

I

L

 = 30mA, (See Figure 4-1)

ts

Settling Time

(from Shutdown Mode)

40

μsec

V

IN

 = 5V

C

IN

 = 1

μF, C

OUT

 = 4.7

μF

I

L

 = 30mA, (See Figure 4-1)

Note 1:

The minimum V

IN

 has to meet two conditions: V

IN

 

≥ 2.7 and V

IN

 = V

R

 + V

DROPOUT

.

2:

V

R

 is the regulator output voltage setting. For example: V

R

 = 2.8V, 3.0V.

3:

4:

Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range from 
0.1mA to the maximum specified output current. Changes in output voltage due to heating effects are covered by the thermal regulation 
specification.

5:

Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at a 1V 

differential.

6:

Thermal Regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied, excluding load or 
line regulation effects. Specifications are for a current pulse equal to I

L

MAX

 at V

IN

 = 6V for T = 10 msec.

7:

The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the 
thermal resistance from junction-to-air (i.e., T

A

, T

J

θ

JA

). Exceeding the maximum allowable power dissipation causes the device to initiate 

thermal shutdown. Please see Section 5.0 Thermal Considerations section of this data sheet for more details.

T

C

 V

OUT

 = (V

OUT

MAX

 – V

OUT

MIN

) x 10

6

V

OUT 

ΔT

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21527c-html.html
background image

© 2007 Microchip Technology Inc.

DS21527C-page 3

TC1306

TC1306 ELECTRICAL SPECIFICATIONS (CONTINUED)

Electrical Characteristics: V

IN

 = V

R

 + 1V, I

L

 = 100

μA, C

L

 = 3.3

μF, SHDN1 > V

IH

, SHDN2 > V

IH

, T

A

 = 25°C, unless otherwise 

noted. Boldface type specifications apply for junction temperature of -40°C to +125°C. Applies to both V

OUT1

 and V

OUT2

.

Symbol

Parameter

Min

Typ

Max

Units

Test Conditions

T

SD

Thermal Shutdown Die
Temperature

160

°C

ΔT

SD

Thermal Shutdown Hysteresis

15

°C

eN

Output Noise

200

nV

√Hz F = 10kHz

SHDN Input

V

IH

SHDN Input High Threshold

65

%V

IN

V

IN

 = 2.7V to 6.0V

V

IL

SHDN Input Low Threshold

15

%V

IN

V

IN

 = 2.7V to 6.0V

SELECT Input
V

SELH

SELECT Input HIgh Threshold

65

%V

IN

V

IN

 = 2.7V to 6.0V

V

SELL

SELECT Input Low Threshold

15

%V

IN

V

IN

 = 2.7V to 6.0V

RESET Output
V

IN

MIN

Minimum V

IN

 Operating Voltage

1.0
1.2


6.0
6.0

V

T

A

 = 0°C to +70°C

T

A

 = -40°C to +125°C

V

TH

Reset Threshold

2.59
2.55

2.63

2.66
2.70

V

T

A

 = +25°C

T

A

 = -40°C to +125°C

Reset Threshold Tempco

30

ppm/°C

V

OUT2

 to Reset Delay

100

μsec

V

OUT2

 = V

TH

 to (V

TH

 – 100mV)

Reset Active Time-out Period

140

300

560

msec

V

OL

RESET Output Voltage Low





0.3
0.4
0.3

V

V

OUT2

 = V

TH

MIN

, I

SINK

 = 1.2mA

V

OUT2

 = V

TH

MIN

, I

SINK

 = 3.2mA

V

OUT2

 > 1.0V, I

SINK

 = 50

μA

V

OH

RESET Output Voltage High

0.8 V

OUT2

V

OUT2 

– 1.5

V

V

OUT2

 > V

TH

MAX

,

I

SOURCE

 = 500

μA

V

OUT2

 > V

TH

MAX

,

I

SOURCE

 = 800

μA

Note 1:

The minimum V

IN

 has to meet two conditions: V

IN

 

≥ 2.7 and V

IN

 = V

R

 + V

DROPOUT

.

2:

V

R

 is the regulator output voltage setting. For example: V

R

 = 2.8V, 3.0V.

3:

4:

Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range from 
0.1mA to the maximum specified output current. Changes in output voltage due to heating effects are covered by the thermal regulation 
specification.

5:

Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at a 1V 

differential.

6:

Thermal Regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied, excluding load or 
line regulation effects. Specifications are for a current pulse equal to I

L

MAX

 at V

IN

 = 6V for T = 10 msec.

7:

The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the 
thermal resistance from junction-to-air (i.e., T

A

, T

J

θ

JA

). Exceeding the maximum allowable power dissipation causes the device to initiate 

thermal shutdown. Please see Section 5.0 Thermal Considerations section of this data sheet for more details.

T

C

 V

OUT

 = (V

OUT

MAX

 – V

OUT

MIN

) x 10

6

V

OUT 

ΔT

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21527c-html.html
background image

TC1306

DS21527C-page 4

© 2007 Microchip Technology Inc.

2.0

PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

TABLE 2-1:

PIN FUNCTION TABLE

3.0

DETAILED DESCRIPTION

The TC1306 is a precision fixed output voltage
regulator that contains two fully independent 150mA
outputs. The device also features separate shutdown
modes for low-power operation. The Select Mode™
operation allows the user to select V

OUT2

 from two

different values (2.8V, 3.0V), therefore providing high
design flexibility. V

OUT1

 supplies a fixed 1.8V output

voltage. The CMOS construction of the TC1306 results
in a very low supply current, which does not increase
with load changes. In addition, V

OUT

 remains stable

and within regulation at no load currents.

The TC1306 also features an integrated microproces-
sor supervisor that monitors the V

OUT2

 output. The

active low RESET signal is asserted when the voltage
of V

OUT2

 falls below the reset voltage threshold

(2.63V). The RESET output remains low for 300msec
(typical) after V

OUT2

 rises above the reset threshold.

The RESET output of the TC1306 is optimized to reject
fast transient glitches on the monitored output line.

Pin No.

(8-Pin MSOP)

Symbol

Description

1

V

IN

Power supply input.

2

GND

Ground terminal.

3

SELECT

SELECT control for setting V

OUT2

. SELECT = Low for V

OUT2

 = 2.8V, SELECT = High for

V

OUT2

 = 3.0V.

4

SHDN1

Shutdown control input for V

OUT1

. Regulator 1 is fully enabled when a logic high is applied to 

this input. Regulator 1 enters shutdown when a logic low is applied to this input. During 
shutdown, regulator output voltage falls to zero, RESET output remains valid.

5

SHDN2

Shutdown control input for V

OUT2

. Regulator 2 is fully enabled when a logic high is applied to 

this input. Regulator 2 enters shutdown when a logic low is applied to this input. During 
shutdown, regulator output voltage falls to zero, RESET output is low.

6

V

OUT1

Regulated voltage output 1.

7

V

OUT2

Regulated voltage output 2. 

8

RESET

RESET Output. RESET = Low when V

OUT2

 is below the Reset Threshold Voltage.

RESET = High when V

OUT2

 is above the Reset Threshold Voltage.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21527c-html.html
background image

© 2007 Microchip Technology Inc.

DS21527C-page 5

TC1306

4.0

TYPICAL APPLICATIONS

4.1

Input and Output Capacitor

The TC1306 is stable with a wide range of capacitor
values and types. A capacitor with a minimum value of
1

μF from V

OUT

 to Ground is required. The output

capacitor should have an effective series resistance
(ESR) of 0.1

Ω to 10Ω for a 1μF capacitor and 0.01Ω to

10

Ω for a 10μF capacitor. A 1μF capacitor should be

connected from the V

IN

 to GND if there is more than 10

inches of wire between the regulator and the AC filter
capacitor, or if a battery is used as the power source.
Aluminum electrolytic or tantalum capacitor types can
be used. (Since many aluminum electrolytic capacitors
freeze at approximately -30°C, solid tantalums are
recommended for applications operating below -20°C).
When operating from sources other than batteries,
supply-noise rejection and transient response can be
improved by increasing the value of the input and
output capacitors and employing passive filtering
techniques.

4.2

Shutdown Mode

Applying a logic high to each of the shutdown pins turns
on the corresponding output. Each regulator enters
shutdown mode when a logic low is applied to the
corresponding input. During shutdown mode, output
voltage falls to zero, and regulator supply current is
reduced to 0.5

μA (max). If shutdown mode is not

necessary, the pins should be connected to V

IN

.

4.3

Select Mode™ Operation

The Select Mode™ operation is a dual-state input that
allows the user to select V

OUT2

 from two different

values. By applying a logic low to the SELECT pin,
V

OUT2

 is set to supply a 2.8V output voltage. A logic

high signal at the SELECT pin sets V

OUT2

 to 3.0V. This

output voltage functionality provides high design
flexibility and minimizes cost associated with inventory,
time-to-market and new device qualifications.

4.4

Turn On Response

The turn on response is defined as two separate
response categories, Wake Up Time (t

WK

) and Settling

Time (t

S

).

The TC1306 has a fast Wake Up Time (10

μsec typical)

when released from shutdown. See Figure 4-1 for the
Wake Up Time designated as t

WK

. The Wake Up Time

is defined as the time it takes for the output to rise to 2%
of the V

OUT

 value after being released from shutdown.

The total turn on response is defined as the Settling
Time (t

S

), see Figure 4-1. Settling Time (inclusive with

t

WK)

 is defined as the condition when the output is

within 2% of its fully enabled value (40

μsec typical)

when released from shutdown. The settling time of the
output voltage is dependent on load conditions, output
voltage and V

OUT

 (RC response).

FIGURE 4-1:

WAKE-UP RESPONSE 
TIME

t

S

t

WK

98%

2%

SHDN

V

IL

V

OUT

V

IH

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21527c-html.html
background image

TC1306

DS21527C-page 6

© 2007 Microchip Technology Inc.

5.0

THERMAL CONSIDERATIONS

5.1

Thermal Shutdown

Integrated thermal protection circuitry shuts the
regulator off when die exceeds approximately 160°C.
The regulator remains off until the die temperature
drops to approximately 145°C.
Thermal shutdown is intended to protect the device
under transient accidental (fault) overload conditions.
Thermal Shutdown may not protect the LDO while
operating above junction temperatures of 125°C
continuously. Sufficient thermal evaluation of the
design needs to be conducted to ensure that the
junction temperature does not exceed 125°C.

5.2

Power Dissipation

The amount of power the regulator dissipates is
primarily a function of input and output voltage, and
output current. The following equation is used to
calculate worst case actual power dissipation.

EQUATION 5-1:

The maximum allowable power dissipation
(Equation 5-2) is a function of the maximum ambient
temperature (T

A

MAX

), the maximum allowable die

temperature (125°C), and the thermal resistance from
junction-to-air (

θ

JA

). The MSOP-8 package has a 

θ

JA

 of

approximately 200°C/W when mounted on a four layer
FR4 dielectric copper clad PC board.

EQUATION 5-2:

Equation 5-1 can be used in conjunction with
Equation 5-2 to ensure regulator thermal operation is
within limits. For example:
Given:

V

IN

MAX

 

= 3.8V ± 5%

V

OUT1

MIN

= 1.8V ± 2.5%

V

OUT2

MIN

= 3.0V ± 2.5%

I

LOAD1

MAX

= 60mA

I

LOAD2

MAX

= 120mA

T

J

MAX

= 125°C

 

T

A

MAX

= 55°C

 

θ

JA

= 200°C/W

Find:  1. Actual power dissipation
          2. Maximum allowable dissipation
Actual power dissipation:
P

D

 

≈ [(V

IN

MAX

 – V

OUT1

MIN

)] x I

LOAD1

MAX

+ [(V

IN

MAX

 – V

OUT2

MIN

)] x I

LOAD2

MAX

[(3.8 x 1.05) – (1.8 x .975)] x 60 x 10

-3

+ [(3.8 x 1.05) – (3.0 x .975)] x 120 x 10

-3

= 256mW

Maximum allowable power dissipation:

In this example, the TC1306 dissipates a maximum of
262mW; below the allowable limit of 350mW. In a
similar manner, Equation 5-1 and Equation 5-2 can be
used to calculate maximum current and/or input
voltage limits. For example, the maximum allowable
V

IN

 is found by substituting the maximum allowable

power dissipation of 350mW into Equation 5-1, from
which V

IN

MAX

 = 4.5V.

5.3

Layout Considerations

The primary path of heat conduction out of the package
is via the package leads. Therefore, layouts having a
ground plane, wide traces at the pads, and wide power
supply bus lines combine to lower 

θ

JA

  and therefore

increase the maximum allowable power dissipation
limit.

Where:

P

D

 

≈ (V

IN

MAX

 – V

OUT1

MIN

)I

LOAD1

MAX

 +

P

D

V

IN

MAX

V

OUT1

MIN

I

LOAD1

MAX

= Worst case actual power dissipation

= Minimum regulator output voltage1
= Maximum output (load) current1

= Maximum voltage on V

IN

(V

IN

MAX

 – V

OUT2

MIN

)I

LOAD2

MAX

 

V

OUT2

MIN

I

LOAD2

MAX

= Minimum regulator output voltage2
= Maximum output (load) current2

P

D

MAX

 

= (T

J

MAX

 – T

A

MAX

)

θ

JA

Where all terms are previously defined.

P

= (T

J

MAX

 – T

A

MAX

)

θ

JA

= (125 – 55)

200

= 350mW

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21527c-html.html
background image

© 2007 Microchip Technology Inc.

DS21527C-page 7

TC1306

6.0

TYPICAL CHARACTERISTICS

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein are
not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

V

DD

 = 6.0V,  I

L

 = 100

µA

V

DD

 = 6.0V,  I

L

 = 100

µA

 

1.81

1.80

1.79

1.78

1.77

1.76

1.75

1.74

2.505

2.500

2.495

2.490

2.485

2.480

2.475

2.470

2.465

2.460

3.000

2.995

2.990

2.985

2.980

2.975

2.970

2.965

2.960

2.955

2.950

 

V

OUT1

 at Various V

DD

 and

Load vs. Temperature

V

OUT

 (V)

 

V

OUT2

 (V)

V

DD

 = 6.0V, I

L

 = 100

µA Load

V

DD

 = 2.8V,

I

L

 = 150mA Load

V

DD

 = 6.0V, I

L

 = 100mA Load

 

TEMPERATURE (

°C)

-40

-20

5

125

105

80

55

30

 

TEMPERATURE (

°C)

-40

-20

5

125

105

80

55

30

 

TEMPERATURE (

°C)

-40

-20

5

125

105

80

55

30

V

OUT2

 (V)

V

OUT2

 at Various V

DD

 /

Load Current vs. Temperature

(Select = GND)

V

OUT2

 at Various V

DD

 /

Load Current vs. Temperature

(Select = V

DD

)

V

DD

 = 3.8V, I

L

 = 150mA

V

DD

 = 3.8V, I

L

 = 100mA

V

DD

 = 3.8V, I

L

 = 50mA

V

DD

 = 3.8V, I

L

 = 100

µA

V

DD

 = 4.0V,  I

L

 = 100

µA

V

DD

 = 3.8V, I

L

 = 50mA

V

DD

 = 3.8V, I

L

 = 100mA

V

DD

 = 4.0V, I

L

 = 150mA

LOAD REG (%)

LOAD REG (%)

   3     3.5       4      4.5       5       5.5      6  

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

160

140

120

100

80

60

40

20

0

Load Regulation 1 vs.

Temperature

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

I

DD

 vs. V

DD

 (Select = GND)

Load Regulation 2 vs.

Temperature (Select = GND)

I

DD

 (

µ

A)

 

TEMPERATURE (

°C)

-40

-20

5

125

105

80

55

30

 

TEMPERATURE (

°C)

-40

-20

5

125

105

80

55

30

V

DD

 (V)

125

°C

-40

°C

25

°C

% Load Reg #1, I

L

 = 0.1 to 150mA

I

L

 = 0.1 to 150mA

LOAD REGULATION (%)

LOAD CURRENT (mA)

DROPOUT VOLTAGE (V)

0       25      50      75    100     125   150 

0.20

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

DROPOUT VOLTAGE (V)

0.20

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Load Regulation 2 vs.

Temperature (Select = V

DD

)

Dropout Voltage vs.

Load Current (Select = GND)

Dropout Voltage vs.

Load Current (Select = V

DD

)

TEMPERATURE (

°C)

-40

-20

5

125

105

80

55

30

I

L

 = 0.1 to 150mA

-40

°C

25

°C

125

°C

-40

°C

25

°C

LOAD CURRENT (mA)

0       25      50      75    100     125   150 

125

°C

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21527c-html.html
background image

TC1306

DS21527C-page 8

© 2007 Microchip Technology Inc.

6.0

TYPICAL CHARACTERISTICS (CONTINUED)

f (Hz)

10 

 

100 

                 1k   

     10k  

       100                      1M

-100

-80

-60

-40

-20

0

IOUT = 150mA
COUT = 10
µF Ceramic

VINDC = 4V
VINAC = 100mVP-P
VOUTDC = 3V

PSRR (dB)

Power Supply Rejection Ratio vs. Frequency

f (Hz)

10 

 

100 

                 1k   

     10k  

       100                      1M

-100

-80

-60

-40

-20

0

IOUT = 150mA
COUT = 10
µF Tantalum

VINDC = 4V
VINAC = 100mVP-P
VOUTDC = 3V

PSRR (dB)

Power Supply Rejection Ratio vs. Frequency

f (Hz)

10 

 

100 

                 1k   

     10k  

       100                      1M

-100

-80

-60

-40

-20

0

IOUT = 100µA
COUT = 10
µF Tantalum

VINDC = 4V
VINAC = 100mVP-P
VOUTDC = 3V

PSRR (dB)

Power Supply Rejection Ratio vs. Frequency

10

0.1

0.001

0.01

f (Hz)

0.01

0.1

1

10

1000

100

Noise (μV/√HZ)

V

OUT2

C

OUT1

 = C

OUT2

 = 4.7

m

F,

I

LOAD

 = 100mA, V

IN

 = 4.0V

V

OUT1

 = V

OUT2

 = 3.0V

V

OUT1

Output Noise

1

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21527c-html.html
background image

© 2007 Microchip Technology Inc.

DS21527C-page 9

TC1306

6.0

TYPICAL CHARACTERISTICS (CONTINUED)

Output V

olta

g

e

  

(1V / div)

SHDN  

(5V / div)

Time (200ms / div)

Shutdown Response

I

LOAD = 100

μA

V

IN

 = 4.0V

V

OUT = 

3.0V

C

OUT = 

10

μF

Thermal Shutdown Response

V

OUT

V

IN

 = 6.0V

V

OUT = 

2.8V

C

IN = 

1

μF

C

OUT = 

1

μF

Time (500ms / div)

3.6V

4.6V

Output Voltage

  (50mV / div)

Input Voltage

  (2V / div)

Output Voltage

  (50mV / div)

Time (500ms / div)

V

OUT2

V

OUT1

Line Transient Response

C

OUT1 = 

C

OUT2 = 1μF Tantalum

R

LOAD = 30kΩ

V

IN

Thermal Shutdown Response

V

OUT

V

IN

 = 6.0V

V

OUT = 

1.8V

C

IN = 

1

μF

C

OUT = 

1

μF

Time (500ms / div)

Thermal Shutdown Response

V

OUT

V

IN

 = 6.0V

V

OUT = 

3.0V

C

IN = 

1

μF

C

OUT = 

1

μF

Time (500ms / div)

3.6V

4.6V

Output Voltage

  (50mV / div)

Input Voltage

(2V / div)

Output Voltage

  (50mV / div)

Time (500ms / div)

V

OUT2

V

OUT1

Line Transient Response

C

OUT1

 = C

OUT2

 = 10

μF Ceramic

R

LOAD

 = 30k

Ω

V

IN

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21527c-html.html
background image

TC1306

DS21527C-page 10

© 2007 Microchip Technology Inc.

6.0

TYPICAL CHARACTERISTICS (CONTINUED)

Output Voltage

  (20mV / div)

Output Voltage

  (20mV / div)

Output Current

Load Transient Response

Time (500ms / div)

V

OUT2

V

OUT1

V

IN

 = 5.5V

R

LOAD

 = 30k

Ω

R

L

 = 30

Ω

C

OUT1

 = C

OUT2

 = 10

μF Ceramic

100mA

100

μA

Load Transient Response

Output Voltage 2

(50mV / div)

Output Voltage 1

(20mV / div)

Output Current

Time (500ms / div)

V

OUT2

V

OUT1

V

IN

 = 5.5V

R

LOAD

 = 30k

Ω

R

L

 = 30

Ω

C

OUT1

 = C

OUT2

 = 10

μF Ceramic

100mA

100

μA

V

OUT2

V

OUT1

/Shdn1 = /Shdn2

3.0V

1.8V

Output Voltage 1

(1V / div)

Time (20ms / div)

Wake-Up Response

Output Voltage 2

(1V / div)

C

OUT1

 = C

OUT2

 = 1

μF Tantalum

V

IN

 = 5.5V

R

LOAD

 = 30k

Ω

Output Voltage

  (20mV / div)

Output Current

Output Voltage

  (20mV / div)

Time (500ms / div)

V

OUT2

V

OUT1

Thermal Shutdown Response

V

IN

 = 5.5V

R

LOAD

 = 30k

Ω

R

L

 = 30

Ω

C

OUT1

 = C

OUT2

 = 1

μF Tantalum

100mA

100

μA

Output Voltage 2

(50mV / div)

Output Current

Output Voltage 1

(20mV / div)

Time (500ms / div)

V

OUT2

V

OUT1

V

IN

 = 5.5V

R

LOAD

 = 30k

Ω

R

L

 = 30

Ω

C

OUT1

 = C

OUT2

 = 1

μF Tantalum

100mA

100

μA

Thermal Shutdown Response

Maker
Microchip Technology Inc.
Datasheet PDF Download