Configurable Four Output, Low Jitter Crystal-less Clock Generator

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005612A-html.html
background image

 2016 Microchip Technology Inc.

DS20005612A-page 1

DSC400

Features

• Low RMS Phase Jitter: <1 ps (typ.)
• High Stability: ±25 ppm, ±50 ppm
• Wide Temperature Range:

- Industrial –40°C to +85°C
- Ext. Commercial –20°C to +70°C

• High Supply Noise Rejection: –50 dBc
• Four Format-Configurable Outputs:

- LVPECL, LVDS, HCSL, LVCMOS

• Available Pin-Selectable Frequency Table

- 1 Pin per Bank for 2 Frequency Sets

• Wide Frequency Range:

- 2.3 MHz – 460 MHz

• 20-Pin QFN Footprint (5.0 mm x 3.2 mm)
• Excellent Shock and Vibration Immunity
• High Reliability

- 20x better MTF than quartz-based devices

• Wide Supply Range of 2.25V to 3.6V
• Lead Free and RoHS-Compliant
• AEC-Q100 Automotive Qualified

Applications

• Communications and Networks
• Ethernet

- 1G, 10GBASE-T/KR/LR/SR, and FCoE

• Storage Area Networks

- SATA, SAS, Fibre Channel

• Passive Optical Networks

- EPON, 10G-EPON, GPON, 10G-PON

• HD/SD/SDI Video and Surveillance
• Automotive
• Media and Video
• Embedded and Industrial

General Description

The DSC400 is a four output crystal-less™ clock
generator. It utilizes proven PureSilicon™ MEMS
technology to provide excellent jitter and stability while
incorporating additional device functionality.
The nominal frequencies of the outputs can be identical
or independently derived from common PLLs.
Each output may be configured independently to
support a single-ended LVCMOS interface or a
differential interface. Differential options include
LVPECL, LVDS, or HCSL.
The DSC400 provides two independent select lines for
choosing between two sets of pre-configured
frequencies per bank. It also has two OE pins to allow
for enabling and disabling outputs.
The DSC400 is packaged in a 20-pin QFN (5 mm x
3.2 mm) and is available in extended commercial and
industrial temperature grades.

Block Diagram

CLK0+

BANK 2

OUTPUT

CONTROL

AND

DIVIDERS

CONTROL

CIRCUITRY

MEMS

PLL

OE1
OE2

FSB1
FSB2

BANK 1

CLK0-

CLK3+
CLK3-

CLK1+
CLK1-

CLK2+
CLK2-

PLL

Configurable Four Output, Low Jitter Crystal-less™ Clock Generator

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005612A-html.html
background image

DSC400

DS20005612A-page 2

 2016 Microchip Technology Inc.

1.0

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Supply Voltage .......................................................................................................................................... –0.3V to +4.0V
Input Voltage .......................................................................................................................................–0.3V to V

DD

+0.3V

ESD Protection (HBM) ...............................................................................................................................................4 kV
ESD Protection (MM) ................................................................................................................................................400V
ESD Protection (CDM) ............................................................................................................................................1.5 kV

 Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.

This is a stress rating only and functional operation of the device at those or any other conditions above those indicated
in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended
periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Specifications: V

DD

 = 3.3V; T

= +25°C unless otherwise specified.

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Supply Voltage (

Note 1

)

V

DD

2.25

3.6

V

Core Supply Current (

Note 2

)

I

DDCORE

40

44

mA

OE(1:2) = 0. All outputs 
disabled.

Frequency Stability

∆f

±25

ppm

All temperature and V

DD

 

ranges.

±50

Aging - First Year

∆f

Y1

±5

ppm

One year at +25°C

Aging - After First Year

∆f

Y2

+

<±1

ppm/yr Year two and beyond at 

+25°C

Start-up Time (

Note 3

)

t

SU

5

ms

T = +25°C

Input Logic Levels

V

IH

0.75 x V

DD

V

Input logic high

V

IL

0.25 x V

DD

Input logic low

Output Disable Time (

Note 4

)

t

DA

5

ns

OE(1:2) transition 
from 1 to 0

Output Enable Time (

Note 4

)

t

EN

20

ns

OE(1:2) transition 
from 0 to 1

Pull-Up Resistor

R

PU

40

kΩ

All input pins have an 
internal pull-up

Note 1:

V

DD

 pins should be filtered with a 0.1 µF capacitor connected between V

DD

 and V

SS

.

2:

The addition of I

DDCORE

 and I

DDIO

 provides the total current consumption of the device.

3:

t

SU

 is time to 100 ppm stable output frequency after V

DD

 is applied and outputs are enabled.

4:

See the 

Output Waveform

 section for more information.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005612A-html.html
background image

 2016 Microchip Technology Inc.

DS20005612A-page 3

DSC400

TEMPERATURE SPECIFICATIONS (

Note 1

)

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Temperature Ranges

Operating Temperature Range (T)

T

A

–20

+70

°C

Ordering Option E

T

A

–40

+85

°C

Ordering Option I

Junction Temperature 

T

J

+150

°C

Storage Temperature Range

T

S

–40

+150

°C

Soldering Temperature

+260

°C

40 sec. max.

Note 1:

The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable 
junction temperature, and the thermal resistance from junction to air (i.e., T

A

, T

J

JA

). Exceeding the 

maximum allowable power dissipation will cause the device operating junction temperature to exceed the 
maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005612A-html.html
background image

DSC400

DS20005612A-page 4

 2016 Microchip Technology Inc.

2.0

PIN DESCRIPTIONS

FIGURE 2-1:

Pin Configuration, 20-Pin QFN (5.0 mm x 3.2 mm)

The descriptions of the pins are listed in 

Table 2-1

TABLE 2-1:

PIN FUNCTION TABLE

Pin Number

Pin Name

Pin Type

Description

1

OE1

I

Output Enable for Bank1 (CLK0 and CLK3); Active-High. See 

Table 3-1

.

2

NC

N/A

Leave unconnected or connect to ground.

3

V

SS

PWR

Ground.

4

V

SS

PWR

Ground.

5

CLK0–

O

Complement output of differential pair 0 (off when in LVCMOS format).

6

CLK0+

O

True output of differential pair 0 or LVCMOS output 0.

7

CLK1–

O

Complement output of differential pair 1 (off when in LVCMOS format).

8

CLK1+

O

True output of differential pair 1 or LVCMOS output 1.

9

V

DD2

PWR

Power Supply for Bank2 (CLK1 and CLK2).

10

FSB2

I

Input for selecting pre-configured frequencies on Bank2 (CLK1 and 
CLK2).

11

OE2

I

Output Enable for Bank2 (CLK1 and CLK2); Active-High. See 

Table 3-1

.

12

NC

N/A

Leave unconnected or connect to ground.

13

V

SS

PWR

Ground.

14

V

SS

PWR

Ground.

15

CLK2–

O

Complement output of differential pair 2 (off when in LVCMOS format).

16

CLK2+

O

True output of differential pair 2 or LVCMOS output 2.

17

CLK3–

O

Complement output of differential pair 3 (off when in LVCMOS format).

18

CLK3+

O

True output of differential pair 3 or LVCMOS output 3.

19

V

DD1

PWR

Power Supply for Bank1 (CLK0 and CLK3).

20

FSB1

I

Input for selecting pre-configured frequencies on Bank1 (CLK0 and 
CLK3).

OE2

11

NC

VSS

VSS

13

12

14

VSS

4

VSS

NC

OE1

2

3

1

CLK
0-

 

5

CLK
0+

CLK
1-

 

CLK
1+

VD
D

2

FS

B

2

7

6

8

9

10

CLK

2-

15

CLK

2+

CLK

3-

CLK

3+

VD

D

1

FS

B

1

17

16

18

19

20

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005612A-html.html
background image

 2016 Microchip Technology Inc.

DS20005612A-page 5

DSC400

3.0

OPERATIONAL DESCRIPTION

The DSC400 is a crystal-less™ clock generator. Unlike
older clock generators in the industry, it does not
require an external crystal to operate; it relies on the
integrated MEMS resonator that interfaces with internal
PLLs. This technology enhances performance and
reliability by allowing tighter frequency stability over a
far wider temperature range. In addition, the higher
resistance to shock and vibration decreases the aging
rate to allow for much improved product life in the
system.

3.1

Inputs

There are four input signals in the device. Each has an
internal (40 kΩ) pull-up to default the selection to a high
(1). Inputs can be controlled through hardware
strapping method with a resistor to ground to assert the
input low (0). Inputs may also be controlled by other
components’ GPIOs
In case more than one frequency set is desired, FSB1
and FSB2 are used to independently select one of two
sets per bank. FSB1 selects the pre-configured set on
Bank1 (CLK0 and CLK3) and FSB2 selects the
pre-configured set on Bank2 (CLK1 and CLK2), as
shown in 

Table 1-1

 in the 

Product Identification System

section.
If there is a requirement to disable outputs, the inputs
OE1 and OE2 are used in conjunction to disable the
banks of outputs. Outputs are disabled in tri-state (Hi-Z)
mode. See 

Table 3-1

 for more information.

3.2

Outputs

The four outputs are grouped into two banks. Each
bank is supplied by an independent V

DD

 to allow for

optimized noise isolation between the two banks. Each
bank provides two synchronous outputs generated by
a common PLL:
• Bank1 is composed of outputs CLK0 and CLK3. 
• Bank2 is composed of outputs CLK1 and CLK2.
Each output may be pre-configured independently to
be one of the following formats: LVCMOS, LVDS,
LVPECL or HCSL. In case the output is configured to
be single-ended LVCMOS, the frequency is generated
on the true output (CLKx+) and the complement output
(CLKx–) is shut off in a low state. Frequencies can be

chosen from 2.3 MHz to 460 MHz for differential
outputs and from 2.3 MHz to 170 MHz on LVCMOS
outputs.

3.3

Power

V

DD1

 and V

DD2

 supply the power to banks 1 and 2

respectively. Each V

DD

 may each have a different

supply voltage from the other as long as it is within the
2.25V to 3.6V range. Each V

DD

 pin should have a

0.1 µF capacitor to filter high-frequency noise. V

SS

 is

common to the entire device.

TABLE 3-1:

OUTPUT ENABLE 
SELECTION TABLE

OE1

OE2

Bank 1

(CLK0 & CLK3)

Bank 2

(CLK1 & CLK2)

0

0

Hi-Z

Hi-Z

0

1

Hi-Z

Running

1

0

Running

Hi-Z

1

1

Running

Running

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005612A-html.html
background image

DSC400

DS20005612A-page 6

 2016 Microchip Technology Inc.

4.0

TERMINATION SCHEMES

4.1

LVPECL

FIGURE 4-1:

Typical LVPECL Termination Scheme.

Note 1:

LVPECL applicable to extended commercial temperature only.

2:

See the 

Output Waveform

 section for more information.

3:

The addition of I

DDCORE

 and I

DDIO

 provides the total current consumption of the device.

4:

Period jitter includes crosstalk from adjacent output.

V

DD

100 Ω  

130 Ω  

82 Ω  

130 Ω  

82 Ω  

TABLE 4-1:

LVPECL OUTPUTS (

Note 1

)

Parameter

Symbol

Min.

Typ.

Max.

Units

Condition

Output Logic 
Levels

V

OH

V

DD

 – 1.08

V

Output Logic High, R

L

 = 50Ω to V

DD

–2V

V

OL

V

DD

 – 1.55

Output Logic Low, R

L

 = 50Ω to V

DD

–2V

Peak-to-Peak 
Output Swing

800

mV

Single-Ended

Output 
Transition Time 
(

Note 2

)

t

R

250

ps

Rise Time. 20% to 80%; R

L

 = 50Ω to 

V

DD

–2V

t

F

250

Fall Time. 20% to 80%; R

L

 = 50Ω to 

V

DD

–2V

Frequency

f

0

2.3

460

MHz

Single Frequency

Output Duty 
Cycle

SYM

48

52

%

Differential

IO Supply 
Current (

Note 3

)

I

DDIO

35

38

mA

Per Output at 125 MHz

Period Jitter 
(

Note 4

)

J

PER

2.5

ps

RMS

CLK(0:3) = 156.25 MHz

Integrated 
Phase Noise

J

PH

0.25

ps

RMS

200 kHz to 20 MHz @ 156.25 MHz

0.38

100 kHz to 20 MHz @ 156.25 MHz

1.7

2

12 kHz to 20 MHz @ 156.25 MHz

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005612A-html.html
background image

 2016 Microchip Technology Inc.

DS20005612A-page 7

DSC400

4.2

LVDS

FIGURE 4-2:

Typical LVDS Termination Scheme.

If the 100Ω clamping resistor does not exist inside the receiving device, it should be added externally on the PCB and
placed as close as possible to the receiver.

Note 1:

See the 

Output Waveform

 section for more information.

2:

The addition of I

DDCORE

 and I

DDIO

 provides the total current consumption of the device.

TABLE 4-2:

LVDS OUTPUTS

Parameter

Symbol

Min.

Typ.

Max.

Units

Condition

Output Offset 
Voltage

V

OS

1.125

1.4

V

R = 100Ω Differential

Delta Offset 
Voltage

∆V

OS

50

mV

Peak-to-Peak 
Output Swing

V

PP

350

mV

Single-Ended

Output 
Transition Time 
(

Note 1

)

t

R

200

ps

Rise Time, 20% to 80%, R

L

= 50Ω, 

C

L

= 2 pF

t

F

200

Fall Time, 20% to 80%, R

L

= 50Ω, 

C

L

= 2 pF

Frequency

f

0

2.3

460

MHz

Single Frequency

Output Duty 
Cycle

SYM

48

52

%

Differential

IO Supply 
Current (

Note 2

)

I

DDIO

9

12

mA

Per Output at 125 MHz.

Period Jitter

J

PER

2.5

ps

RMS

Integrated 
Phase Noise

J

PH

0.28

ps

RMS

200 kHz to 20 MHz @ 156.25 MHz

0.4

100 kHz to 20 MHz @ 156.25 MHz

1.7

2.0

12 kHz to 20 MHz @156.25 MHz

100 Ω  

100 Ω  

Load (receiver IC)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005612A-html.html
background image

DSC400

DS20005612A-page 8

 2016 Microchip Technology Inc.

4.3

HCSL

FIGURE 4-3:

Typical HCSL Termination Scheme.

R

S

 is a series resistor implemented to match the trace impedance. Depending on the board layout, the value may range

from 0Ω to 30Ω.

Note 1:

See the 

Output Waveform

 section for more information.

2:

The addition of I

DDCORE

 and I

DDIO

 provides the total current consumption of the device.

TABLE 4-3:

HCSL OUTPUTS

Parameter

Symbol

Min.

Typ.

Max.

Units

Condition

Output Logic 
Levels

V

OH

0.725

V

Output Logic High, R

L

 = 50Ω

V

OL

0.1

Output Logic Low, R

L

 = 50Ω

Peak-to-Peak 
Output Swing

750

mV

Single-Ended

Output 
Transition Time 
(

Note 1

)

t

R

200

400

ps

Rise Time, 20% to 80%, R

L

= 50Ω, 

C

L

= 2 pF

t

F

200

400

Fall Time, 20% to 80%, R

L

= 50Ω, 

C

L

= 2 pF

Frequency

f

0

2.3

460

MHz

Single Frequency

Output Duty 
Cycle

SYM

48

52

%

Differential

IO Supply 
Current (

Note 2

)

I

DDIO

20

22

mA

Per Output at 125 MHz.

Period Jitter

J

PER

2.5

ps

RMS

Integrated 
Phase Noise

J

PH

0.25

ps

RMS

200 kHz to 20 MHz @ 156.25 MHz

0.37

100 kHz to 20 MHz @ 156.25 MHz

1.7

2.0

12 kHz to 20 MHz @156.25 MHz

100 Ω  

50 Ω  

50 Ω  

R

S

R

S

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005612A-html.html
background image

 2016 Microchip Technology Inc.

DS20005612A-page 9

DSC400

4.4

LVCMOS

FIGURE 4-4:

Typical LVCMOS Termination Scheme.

R

S

 is a series resistor implemented to match the trace impedance to that of the clock output. Depending on the board

layout, the value may range from 0Ω to 27Ω.

Note 1:

See the 

Output Waveform

 section for more information.

2:

The addition of I

DDCORE

 and I

DDIO

 provides the total current consumption of the device.

TABLE 4-4:

LVCMOS OUTPUTS

Parameter

Symbol

Min.

Typ.

Max.

Units

Condition

Output Logic 
Levels

V

OH

0.9 x V

DD

V

Output Logic High, I = ±6 mA

V

OL

0.1 x V

DD

Output Logic Low, I = ±6 mA

Output 
Transition Time 
(

Note 1

)

t

R

1.1

2.0

ns

Rise Time, 20% to 80%, C

L

= 15 pF

t

F

1.3

2.0

Fall Time, 20% to 80%, C

L

= 15 pF

Frequency

f

0

2.3

170

MHz

All Temperature Ranges, Except 
Automotive

100

Automotive Temperature Range

Output Duty 
Cycle

SYM

44

55

%

IO Supply 
Current (

Note 2

)

I

DDIO

11

14

mA

Per Output at 125 MHz, C

L

 = 15 pF

Period Jitter

J

PER

3

ps

RMS

CLK(0:3) = 125 MHz

Integrated 
Phase Noise

J

PH

0.3

ps

RMS

200 kHz to 20 MHz @ 125 MHz

0.38

100 kHz to 20 MHz @ 125 MHz

1.7

2.0

12 kHz to 20 MHz @125 MHz

50 Ω  

R

S

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005612A-html.html
background image

DSC400

DS20005612A-page 10

 2016 Microchip Technology Inc.

5.0

OUTPUT WAVEFORM

FIGURE 5-1:

Differential Output (LVDS, LVPECL, HCSL).

FIGURE 5-2:

LVCMOS Output.

OE

t

R

t

F

1/f

0

t

DA

t

EN

Clk

Clk

V

IL

V

IH

50%
20%

80%

OE

t

R

t

F

1/f

0

t

DA

t

EN

Clk

V

IL

V

IH

V

OL

V

OH

Maker
Microchip Technology Inc.
Datasheet PDF Download