ATtiny4/5/9/10 - Appendix A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8127_125-html.html
background image

Appendix A – ATtiny4/5/9/10 Specification at 125°C

This document contains information specific to devices operating at temperatures up
to 125°C. Only deviations are covered in this appendix, all other information can be
found in the complete datasheet. The complete datasheet can be found at
www.atmel.com.

8-bit  

Microcontroller 
with 512/1024 
Bytes In-System
Programmable 
Flash

ATtiny4/5/9/10

Appendix A

Rev. 8127D–Appendix A–AVR–08/11

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8127_125-html.html
background image

2

8127D–Appendix A–AVR–08/11

ATtiny4/5/9/10

1.

Electrical Characteristics

1.1

Absolute Maximum Ratings*

1.2

DC Characteristics

Operating Temperature.................................. -55

°

C to +125

°

C

*NOTICE:

Stresses beyond those listed under “Absolute 
Maximum Ratings” may cause permanent dam-
age to the device. This is a stress rating only and 
functional operation of the device at these or 
other conditions beyond those indicated in the 
operational sections of this specification is not 
implied. Exposure to absolute maximum rating 
conditions for extended periods may affect 
device reliability.

Storage Temperature ..................................... -65°C to +150°C

Voltage on any Pin except RESET
with respect to Ground ................................-0.5V to V

CC

+0.5V

Voltage on RESET with respect to Ground......-0.5V to +13.0V

Maximum Operating Voltage ............................................ 6.0V

DC Current per I/O Pin ............................................... 40.0 mA

DC Current 

V

CC

 and GND Pins................................ 200.0 mA

Table 1-1.

 DC Characteristics. T

A

 = -40

°

C to +125

°

C

Symbol

Parameter

Condition

Min.

Typ.

Max.

Units

V

IL

Input Low Voltage

V

CC

 = 1.8V - 2.4V

V

CC

 = 2.4V - 5.5V

-0.5

0.2V

CC

0.3V

CC

V

V

IH

Input High-voltage
Except RESET pin

V

CC

 = 1.8V - 2.4V

V

CC

 = 2.4V - 5.5V

0.7V

CC

(1)

0.6V

CC

(1)

V

CC

 +0.5

(2)

V

Input High-voltage
RESET pin

V

CC

 = 1.8V to 5.5V

0.9V

CC

(1)

V

CC

 +0.5

(2)

V

V

OL

Output Low Voltage

(3)

Except RESET pin

(5)

I

OL

 = 10 mA, V

CC

 = 5V

I

OL

 = 5 mA, V

CC

 = 3V

0.7
0.6

V

V

OH

Output High-voltage

(4)

Except RESET pin

(5)

I

OH

 = -10 mA, V

CC

 = 5V

I

OH

 = -5 mA, V

CC

 = 3V

4.2
2.4

V

I

LIL

Input Leakage
Current I/O Pin

Vcc = 

5.5

V, pin low

(absolute value)

<0.05

2

µA

I

LIH

Input Leakage
Current I/O Pin

Vcc = 

5.5

V, pin high

(absolute value)

<0.05

2

µA

R

RST

Reset Pull-up Resistor

Vcc = 

5.5

V, input low

30

60

k

Ω

R

PU

I/O Pin Pull-up Resistor

Vcc = 

5.5

V, input low

20

50

k

Ω

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8127_125-html.html
background image

3

8127D–Appendix A–AVR–08/11

ATtiny4/5/9/10

Notes:

1. “Min” means the lowest value where the pin is guaranteed to be read as high.

2. “Max” means the highest value where the pin is guaranteed to be read as low.

3. Although each I/O port can sink more than the test conditions (10 mA at V

CC

 = 5V, 5 mA at V

CC

 = 3V) under steady state 

conditions (non-transient), the sum of all I

OL

 (for all ports) should not exceed 60 mA. If I

OL

 exceeds the test conditions, V

OL

 

may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test condition.

4. Although each I/O port can source more than the test conditions (10 mA at V

CC

 = 5V, 5 mA at V

CC

 = 3V) under steady state 

conditions (non-transient), the sum of all I

OH

 (for all ports) should not exceed 60 mA. If I

OH

 exceeds the test condition, V

OH

 

may exceed the related specification. Pins are not guaranteed to source current greater than the listed test condition.

5. The RESET pin must tolerate high voltages when entering and operating in programming modes and, as a consequence, 

has a weak drive strength as compared to regular I/O pins.

6. Values are with external clock. Power Reduction is enabled (PRR = 0xFF) and there is no I/O drive.

7. BOD Disabled.

1.3

Speed

The maximum operating frequency of the device depends on V

CC 

. As shown in 

Figure 1-1

, the

relationship between maximum frequency vs. V

CC

 is linear between 1.8V < V

CC

 < 4.5V.

Figure 1-1.

Maximum Frequency vs. V

CC

 

I

CC

Power Supply Current

(6)

Active 1MHz, V

CC

 = 2V

0.2

0.5

mA

Active 4MHz, V

CC

 = 3V

0.8

1.5

mA

Active 8MHz, V

CC

 = 5V

2.7

5

mA

Idle 1MHz, V

CC

 = 2V

0.02

0.2

mA

Idle 4MHz, V

CC

 = 3V

0.13

0.5

mA

Idle 8MHz, V

CC

 = 5V

0.6

1.5

mA

Power-down mode

(7)

WDT enabled, V

CC

 = 3V

 4.5

20

µA

WDT disabled, V

CC

 = 3V

 0.15

10

µA

Table 1-1.

 DC Characteristics. T

A

 = -40

°

C to +125

°

C (Continued)

Symbol

Parameter

Condition

Min.

Typ.

Max.

Units

4 MHz

6 MHz

1.8V

5.5V

4.5V

2.7V

10 MHz

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8127_125-html.html
background image

4

8127D–Appendix A–AVR–08/11

ATtiny4/5/9/10

1.4

Clock Characteristics

1.4.1

Accuracy of Calibrated Internal Oscillator

It is possible to manually calibrate the internal oscillator to be more accurate than default factory
calibration. Note that the oscillator frequency depends on temperature and voltage. Voltage and
temperature characteristics can be found in 

Figure 2-32 on page 24

 and 

Figure 2-33 on page 24

.

Note:

1. Accuracy of oscillator frequency at calibration point (fixed temperature and fixed voltage).

1.4.2

External Clock Drive

Figure 1-2.

External Clock Drive Waveform

Table 1-2.

Calibration Accuracy of Internal RC Oscillator

Calibration
Method

Target Frequency

V

CC 

Temperature

Accuracy at given Voltage 

& Temperature

(1)

Factory
Calibration

8.0 MHz

3V

25

°

C

±10%

User
Calibration

Fixed frequency within:

7.3 – 8.1 MHz

Fixed voltage within:

1.8V – 5.5V

Fixed temp. within:

-40

°

C – 125

°

C

±1%

V

IL1

V

IH1

Table 1-3.

External Clock Drive Characteristics

Symbol

Parameter

V

CC

 = 1.8 - 5.5V

V

CC

 = 2.7 - 5.5V

V

CC

 = 4.5 - 5.5V

Units

Min.

Max.

Min.

Max.

Min.

Max.

1/t

CLCL

Clock Frequency

0

4

0

8

0

10

MHz

t

CLCL

Clock Period

250

125

100

ns

t

CHCX

High Time

100

50

33

ns

t

CLCX

Low Time

100

50

33

ns

t

CLCH

Rise Time

2.0

1

0.6

μ

s

t

CHCL

Fall Time

2.0

1

0.6

μ

s

Δ

t

CLCL

Change in period from one clock cycle to the next

2

2

2

%

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8127_125-html.html
background image

5

8127D–Appendix A–AVR–08/11

ATtiny4/5/9/10

1.5

System and Reset Characteristics

Note:

1. Values are guidelines, only

1.5.1

Power-On Reset

Notes:

1. Values are guidelines, only

2. Threshold where device is released from reset when voltage is rising

3. The Power-on Reset will not work unless the supply voltage has been below V

POT 

(falling)

1.5.2

V

CC

 Level Monitor

Note:

1. Typical values at room temperature

Table 1-4.

Reset and Internal Voltage Characteristics

Symbol

Parameter

Condition

Min

(1)

Typ

(1)

Max

(1)

Units

V

RST

RESET Pin Threshold 
Voltage

0.2 V

CC

0.9V

CC

V

t

RST

Minimum pulse width on 
RESET Pin

V

CC

 = 1.8V

V

CC

 = 3V

V

CC

 = 5V

2000

700
400

ns

t

TOUT

Time-out after reset

64

128

ms

Table 1-5.

Characteristics of Enhanced Power-On Reset. 

T

A

 = -40 - 125

°

C

Symbol

Parameter

Min

(1)

Typ

(1)

Max

(1)

Units

V

POR

Release threshold of power-on reset 

(2)

1.1

1.4

1.7

V

V

POA

Activation threshold of power-on reset 

(3)

0.6

1.3

1.7

V

SR

ON

Power-On Slope Rate

0.01

V/ms

Table 1-6.

Voltage Level Monitor Thresholds

Parameter

Min

Typ

(1)

Max

Units

Trigger level VLM1L

1.1

1.4

1.7

V

Trigger level VLM1H

1.4

1.6

1.9

Trigger level VLM2

2.0

2.5

2.7

Trigger level VLM3

3.0

3.7

4.5

Settling time VMLM2,VLM3 (VLM1H,VLM1L)

5 (50)

µs

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8127_125-html.html
background image

6

8127D–Appendix A–AVR–08/11

ATtiny4/5/9/10

1.6

Analog Comparator Characteristics

Note:

All parameters are based on simulation results. None are tested in production

1.7

ADC Characteristics (ATtiny5/10, only)

Table 1-7.

Analog Comparator Characteristics, T

A

 = -40

°

C - 125

°

C

Symbol

Parameter

Condition

Min

Typ

Max

Units

V

AIO

Input Offset Voltage

V

CC

 = 5V, V

IN

 = V

CC

 / 2

< 10

40

mV

I

LAC

Input Leakage Current

V

CC

 = 5V, V

IN

 = V

CC

 / 2

-0.5

0.5

µA

t

APD

Analog Propagation Delay
(from saturation to slight overdrive)

V

CC

 = 2.7V

750

ns

V

CC

 = 4.0V

500

Analog Propagation Delay
(large step change)

V

CC

 = 2.7V

100

V

CC

 = 4.0V

75

t

DPD

Digital Propagation Delay

V

CC

 = 1.8V - 5.5

1

2

CLK

Table 1-8.

ADC Characteristics. T = -40

°

C – 125

°

C. V

CC

 = 2.5V – 5.5V

Symbol

Parameter

Condition

Min

Typ

Max

Units

Resolution

8

Bits

Absolute accuracy
(Including INL, DNL, and 
Quantization, Gain and Offset 
Errors)

V

REF

 = V

CC

 = 4V,

ADC clock = 200 kHz

1.0

LSB

V

REF

 = V

CC

 = 4V,

ADC clock = 1 MHz

2.0

LSB

V

REF

 = V

CC

 = 4V,

ADC clock = 200 kHz
Noise Reduction Mode

1.0

LSB

V

REF

 = V

CC

 = 4V,

ADC clock = 1 MHz
Noise Reduction Mode

2.0

LSB

Integral Non-Linearity (INL)
(Accuracy after Offset and 
Gain Calibration)

V

REF

 = V

CC

 = 4V,

ADC clock = 200 kHz

1.0

LSB

Differential Non-linearity 
(DNL)

V

REF

 = V

CC

 = 4V,

ADC clock = 200 kHz

0.5

LSB

Gain Error

V

REF

 = V

CC

 = 4V,

ADC clock = 200 kHz

1.0

LSB

Offset Error

V

REF

 = V

CC

 = 4V,

ADC clock = 200 kHz

1.0

LSB

Conversion Time

Free Running Conversion

65

260

µs

Clock Frequency

50

200

kHz

V

IN

Input Voltage

GND

V

REF

V

Input Bandwidth

7.7

kHz

R

AIN

Analog Input Resistance

100

M

Ω

ADC Conversion Output

0

255

LSB

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8127_125-html.html
background image

7

8127D–Appendix A–AVR–08/11

ATtiny4/5/9/10

1.8

Serial Programming Characteristics

Figure 1-3.

Serial Programming Timing

Table 1-9.

Serial Programming Characteristics, T

A

 = -40

°

C to 125

°

C, V

CC

 = 5V (Unless Oth-

erwise Noted)

Symbol

Parameter

Min

Typ

Max

Units

1/t

CLCL

Clock Frequency

2

MHz

t

CLCL

Clock Period

500

ns

t

CLCH

Clock Low Pulse Width

200

ns

t

CHCH

Clock High Pulse Width

200

ns

t

IVCH

Data Input to Clock High Setup Time

50

ns

t

CHIX

Data Input Hold Time After Clock High

100

ns

t

CLOV

Data Output Valid After Clock Low Time

200

ns

t

CHIX

TPIDATA

t

IVCH

t

CHCL

t

CLCH

t

CLCL

TPICLK

t

CLOV

Transmit Mode

Receive Mode

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8127_125-html.html
background image

8

8127D–Appendix A–AVR–08/11

ATtiny4/5/9/10

2.

Typical Characteristics

The data contained in this section is largely based on simulations and characterization of similar
devices in the same process and design methods. Thus, the data should be treated as indica-
tions of how the part will behave.

The following charts show typical behavior. These figures are not tested during manufacturing.
During characterisation devices are operated at frequencies higher than test limits but they are
not guaranteed to function properly at frequencies higher than the ordering code indicates.

All current consumption measurements are performed with all I/O pins configured as inputs and
with internal pull-ups enabled. Current consumption is a function of several factors such as oper-
ating voltage, operating frequency, loading of I/O pins, switching rate of I/O pins, code executed
and ambient temperature. The dominating factors are operating voltage and frequency.

A sine wave generator with rail-to-rail output is used as clock source but current consumption in
Power-Down mode is independent of clock selection. The difference between current consump-
tion in Power-Down mode with Watchdog Timer enabled and Power-Down mode with Watchdog
Timer disabled represents the differential current drawn by the Watchdog Timer.

The current drawn from pins with a capacitive load may be estimated (for one pin) as follows:

where V

CC

 = operating voltage, C

L

 = load capacitance and f

SW

 = average switching frequency of

I/O pin.

2.1

Active Supply Current

Figure 2-1.

Active Supply Current vs. V

CC

 (Internal Oscillator, 8 MHz)

I

CP

V

CC

C

L

f

×

×

SW

ACTIVE SUPPLY CURRENT vs. V

CC

INTERNAL OSCILLATOR, 8 MHz

125 °C

85 °C

25 °C

-40 °C

0

0,5

1

1,5

2

2,5

3

3,5

1,5

2

2,5

3

3,5

4

4,5

5

5,5

V

CC

 (V)

I

CC

 (mA)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8127_125-html.html
background image

9

8127D–Appendix A–AVR–08/11

ATtiny4/5/9/10

Figure 2-2.

Active Supply Current vs. V

CC

 (Internal Oscillator, 1 MHz)

Figure 2-3.

Active Supply Current vs. V

CC

 (Internal Oscillator, 128 kHz)

ACTIVE SUPPLY CURRENT vs. V

CC

INTERNAL OSCILLATOR, 1 MHz

125 °C

85 °C

25 °C

-40 °C

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1,5

2

2,5

3

3,5

4

4,5

5

5,5

V

CC

 (V)

I

CC

 (mA)

ACTIVE SUPPLY CURRENT vs. V

CC

INTERNAL OSCILLATOR, 128 KHz

125 °C

85 °C

25 °C

-40 °C

0

0,02

0,04

0,06

0,08

0,1

0,12

1,5

2

2,5

3

3,5

4

4,5

5

5,5

V

CC

 (V)

I

CC

 (mA)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8127_125-html.html
background image

10

8127D–Appendix A–AVR–08/11

ATtiny4/5/9/10

Figure 2-4.

Active Supply Current vs. V

CC

 (External Clock, 32 kHz)

2.2

Idle Supply Current

Figure 2-5.

Idle Supply Current vs. V

CC

 (Internal Oscillator, 8 MHz)

ACTIVE SUPPLY CURRENT vs. V

CC

INTERNAL OSCILLATOR, 32 KHz

125 °C

85 °C
25 °C

-40 °C

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0,04

1,5

2

2,5

3

3,5

4

4,5

5

5,5

V

CC

 (V)

I

CC

 (mA)

IDLE SUPPLY CURRENT vs. V

CC

INTERNAL RC OSCILLATOR, 8 MHz

125 °C

85 °C
25 °C

-40 °C

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

1,5

2

2,5

3

3,5

4

4,5

5

5,5

V

CC

 (V)

I

CC

 (mA)

Maker
Microchip Technology Inc.
Datasheet PDF Download