ATtiny25/V Appendix B

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2586_125-html.html
background image

Appendix B — ATtiny25/V Specification at +125

°

C

This document contains information specific to devices operating at temperatures up
to 125°C. Only deviations are covered in this appendix, all other information can be
found in the complete datasheet. The complete datasheet can be found at
www.atmel.com.

8-bit  

Microcontroller 
with 2/4/8K 
Bytes In-System
Programmable 
Flash

ATtiny25
ATtiny25V

Appendix B

Rev. 2586N-Appendix B–AVR–08/11

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2586_125-html.html
background image

2

2586N-Appendix B–AVR–08/11

ATtiny25

1.

Memories

1.1

EEPROM Data Memory

The EEPROM has an endurance of at least 50,000 write/erase cycles.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2586_125-html.html
background image

3

2586N-Appendix B–AVR–08/11

ATtiny25

2.

Electrical Characteristics

2.1

DC Characteristics

Notes:

1. Typical values at 25

°

C.

2. “Min” means the lowest value where the pin is guaranteed to be read as high.

3. “Max” means the highest value where the pin is guaranteed to be read as low.

Table 2-1.

 DC Characteristics. T

A

 = -40

°

C to +125

°

Symbol

Parameter

Condition

Min.

Typ.

(1)

Max.

Units

V

IL

Input Low-voltage, except
XTAL1 and RESET pin

V

CC

 = 1.8V - 2.4V

V

CC

 = 2.4V - 5.5V

-0.5
-0.5

0.2V

CC

(3)

0.3V

CC

(3)

V
V

V

IH

Input High-voltage, except
XTAL1 and RESET pin

V

CC

 = 1.8V - 2.4V

V

CC

 = 2.4V - 5.5V

0.7V

CC

(2)

0.6V

CC

(2)

V

CC

 +0.5

V

CC

 +0.5

V
V

V

IL1

Input Low-voltage, XTAL1 pin, 
External Clock Selected

V

CC

 = 1.8V - 5.5V

-0.5

0.1V

CC

(3)

V

V

IH1

Input High-voltage, XTAL1 pin, 
External Clock Selected

V

CC

 = 1.8V - 2.4V

V

CC

 = 2.4V - 5.5V

0.8V

CC

(2)

0.7V

CC

(2)

V

CC

 +0.5

V

CC

 +0.5

V
V

V

IL2

Input Low-voltage,
RESET pin

V

CC

 = 1.8V - 5.5V

-0.5

0.2V

CC

(3)

V
V

V

IH2

Input High-voltage,
RESET pin

V

CC

 = 1.8V - 5.5V

0.9V

CC

(2)

V

CC

 +0.5

V

V

IL3

Input Low-voltage,
RESET pin as I/O

V

CC

 = 1.8V - 2.4V

V

CC

 = 2.4V - 5.5V

-0.5
-0.5

0.2V

CC

(3)

0.3V

CC

(3)

V
V

V

IH3

Input High-voltage,
RESET pin as I/O

V

CC

 = 1.8V - 2.4V

V

CC

 = 2.4V - 5.5V

0.7V

CC

(2)

0.6V

CC

(2)

V

CC

 +0.5

V

CC

 +0.5

V
V

V

OL

Output Low-voltage,

(4)

Port B (except RESET) 

(6)

I

OL

 = 10 mA, V

CC

 = 5V

I

OL

 = 5 mA, V

CC

 = 3V

0.6
0.5

V
V

V

OH

Output High-voltage, 

(5)

Port B (except RESET) 

(6)

I

OH

 = -10 mA, V

CC

 = 5V

I

OH

 = -5 mA, V

CC

 = 3V

4.3
2.5

V
V

I

IL

Input Leakage
Current I/O Pin

V

CC

 = 5.5V, pin low

(absolute value)

< 0.05

1

µA

I

IH

Input Leakage
Current I/O Pin

V

CC

 = 5.5V, pin high

(absolute value)

< 0.05

1

µA

R

RST

Reset Pull-up Resistor

V

CC

 = 5.5V, input low

30

60

k

Ω

R

pu

I/O Pin Pull-up Resistor

V

CC

 = 5.5V, input low

20

50

k

Ω

I

CC

Power Supply Current 

(7)

Active 1 MHz, V

CC

 = 2V

0.3

0.55

mA

Active 4 MHz, V

CC

 = 3V

1.5

2.5

mA

Active 8 MHz, V

CC

 = 5V

5

8

mA

Idle 1 MHz, V

CC

 = 2V

0.1

0.2

mA

Idle 4 MHz, V

CC

 = 3V

0.35

0.6

mA

Idle 8 MHz, V

CC

 = 5V

1.2

2

mA

Power-down mode 

(8)

WDT enabled, V

CC

 = 3V

4

20

µA

WDT disabled, V

CC

 = 3V

0.2

14

µA

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2586_125-html.html
background image

4

2586N-Appendix B–AVR–08/11

ATtiny25

4. Although each I/O port can sink more than the test conditions (10 mA at V

CC

 = 5V, 5 mA at V

CC

 = 3V) under steady state 

conditions (non-transient), the sum of all I

OL

, for all ports, should not exceed 60 mA. If I

OL

 exceeds the test condition, V

OL

 

may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test condition.

5. Although each I/O port can source more than the test conditions (10 mA at V

CC

 = 5V, 5 mA at V

CC

 = 3V) under steady state 

conditions (non-transient), the sum of all I

OH

, for all ports, should not exceed 60 mA. If I

OH

 exceeds the test condition, V

OH

 

may exceed the related specification. Pins are not guaranteed to source current greater than the listed test condition.

6. The RESET pin must tolerate high voltages when entering and operating in programming modes and, as a consequence, 

has a weak drive strength as compared to regular I/O pins. See 

Figure 3-19

Figure 3-20

Figure 3-21

, and 

Figure 3-22

 

(starting on 

page 18

).

7. Values are with external clock using methods described in 

“Minimizing Power Consumption” on page 37

. Power Reduction is 

enabled (PRR = 0xFF) and there is no I/O drive.

8. Brown-Out Detection (BOD) disabled.

2.2

Clock Characteristics

2.2.1

Calibrated Internal RC Oscillator Accuracy

It is possible to manually calibrate the internal oscillator to be more accurate than default factory
calibration. Please note that the oscillator frequency depends on temperature and voltage. Volt-
age and temperature characteristics can be found in 

Figure 3-36 on page 27

 and 

Figure 3-37 on

page 27

.

Notes:

1. Accuracy of oscillator frequency at calibration point (fixed temperature and fixed voltage).

2. 6.4 MHz in ATtiny15 Compatibility Mode.

3. Voltage range for ATtiny25V.

4. Voltage range for ATtiny25.

2.3

System and Reset Characteristics

2.3.1

Power-On Reset

Note:

1. Values are guidelines, only

2. Threshold where device is released from reset when voltage is rising

3. The Power-on Reset will not work unless the supply voltage has been below V

POT 

(falling)

Table 2-2.

Calibration Accuracy of Internal RC Oscillator

Calibration
Method

Target Frequency

V

CC

 

Temperature

Accuracy at given Voltage 

& Temperature 

(1)

Factory Calibration

8.0 MHz 

(2)

3V

25

°

C

±10%

User
Calibration

Fixed frequency within:

6 – 8 MHz

Fixed voltage within:

1.8V - 5.5V 

(3)

2.7V - 5.5V 

(4)

Fixed temperature 

within:

-40

°

C to +125

°

C

±1%

Table 2-3.

Characteristics of Power-On Reset. T

A

 = -40

°

C to +125

°

C

Symbol

Parameter

Min

(1)

Typ

(1)

Max

(1)

Units

V

POR

Release threshold of power-on reset 

(2)

1.1

1.4

1.7

V

V

POA

Activation threshold of power-on reset 

(3)

0.6

1.3

1.7

V

SR

ON

Power-On Slope Rate

0.01

V/ms

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2586_125-html.html
background image

5

2586N-Appendix B–AVR–08/11

ATtiny25

2.4

Brown-Out Detection

Note:

1. V

BOT

 may be below nominal minimum operating voltage for some devices. For devices where 

this is the case, the device is tested down to V

CC

 = V

BOT

 during the production test. This guar-

antees that a Brown-out Reset will occur before V

CC

 drops to a voltage where correct 

operation of the microcontroller is no longer guaranteed.

2.5

Serial Programming Characteristics

Note:

1. 2 t

CLCL

 for f

ck

 < 12 MHz, 3 t

CLCL

 for f

ck

 >= 12 MHz

Table 2-4.

BODLEVEL Fuse Coding. T

A

 = -40

°

C to +125

°

C

BODLEVEL[2:0] Fuses

Min

(1)

Typ

(1)

Max

(1)

Units

111

BOD Disabled

110

1.7

1.8

2.0

V

101

2.5

2.7

2.9

100

4.1

4.3

4.5

0XX

Reserved

Table 2-5.

Serial Programming Characteristics, T

A

 = -40

°

C to +125

°

C, V

CC

 = 1.8 - 5.5V 

(Unless Otherwise Noted)

Symbol

Parameter

Min

Typ

Max

Units

1/t

CLCL

Oscillator Frequency (V

CC

 = 1.8 - 5.5V)

0

4

MHz

t

CLCL

Oscillator Period (V

CC

 = 1.8 - 5.5V)

250

ns

1/t

CLCL

Oscillator Frequency (V

CC

 = 2.7 - 5.5V)

0

10

MHz

t

CLCL

Oscillator Period (V

CC

 = 2.7 - 5.5V)

100

ns

1/t

CLCL

Oscillator Frequency (V

CC

 = 4.5V - 5.5V)

0

20

MHz

t

CLCL

Oscillator Period (V

CC

 = 4.5V - 5.5V)

50

ns

t

SHSL

SCK Pulse Width High

2 t

CLCL*

ns

t

SLSH

SCK Pulse Width Low

2 t

CLCL*

ns

t

OVSH

MOSI Setup to SCK High

t

CLCL

ns

t

SHOX

MOSI Hold after SCK High

2 t

CLCL

ns

t

SLIV

SCK Low to MISO Valid

100

ns

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2586_125-html.html
background image

6

2586N-Appendix B–AVR–08/11

ATtiny25

2.6

ADC Characteristics

Note:

1. Values are guidelines only.

Table 2-6.

ADC Characteristics, Single Ended Channels. T

A

 = -40

°

C to +125

°

C

Symbol

Parameter

Condition

Min

Typ

Max

Units

Resolution

10

Bits

Absolute accuracy
(Including INL, DNL, and
Quantization, Gain and
Offset errors)

V

REF

 = 4V, V

CC

 = 4V,

ADC clock = 200 kHz

2

LSB

V

REF

 = 4V, V

CC

 = 4V,

ADC clock = 1 MHz

3

LSB

V

REF

 = 4V, V

CC

 = 4V,

ADC clock = 200 kHz
Noise Reduction Mode

1.5

LSB

V

REF

 = 4V, V

CC

 = 4V,

ADC clock = 1 MHz
Noise Reduction Mode

2.5

LSB

Integral Non-linearity (INL)
(Accuracy after offset and gain 
calibration)

V

REF

 = 4V, V

CC

 = 4V,

ADC clock = 200 kHz

1

LSB

Differential Non-linearity (DNL)

V

REF

 = 4V, V

CC

 = 4V,

ADC clock = 200 kHz

0.5

LSB

Gain Error

V

REF

 = 4V, V

CC

 = 4V,

ADC clock = 200 kHz

2.5

LSB

Offset Error

V

REF

 = 4V, V

CC

 = 4V,

ADC clock = 200 kHz

1.5

LSB

Conversion Time

Free Running Conversion

14

280

µs

Clock Frequency

50

1000

kHz

V

IN

Input Voltage

GND

V

REF

V

Input Bandwidth

38.4

kHz

AREF

External Reference Voltage

2.0

V

CC

V

V

INT

Internal Voltage Reference

1.0

1.1

1.2

V

Internal 2.56V Reference 

(1)

V

CC

 > 3.0V

2.3

2.56

2.8

V

R

REF

32

k

Ω

R

AIN

Analog Input Resistance

100

M

Ω

ADC Output

0

1023

LSB

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2586_125-html.html
background image

7

2586N-Appendix B–AVR–08/11

ATtiny25

Note:

1. Values are guidelines only.

Table 2-7.

ADC Characteristics, Differential Channels (Unipolar Mode). T

A

 = -40

°

C to +125

°

C

Symbol

Parameter

Condition

Min

Typ

Max

Units

Resolution

Gain = 1x

10

Bits

Gain = 20x

10

Bits

Absolute accuracy
(Including INL, DNL, and 
Quantization, Gain and Offset 
Errors)

Gain = 1x
V

REF

 = 4V, V

CC

 = 5V

ADC clock = 50 - 200 kHz

10.0

LSB

Gain = 20x
V

REF

 = 4V, V

CC

 = 5V

ADC clock = 50 - 200 kHz

20.0

LSB

Integral Non-Linearity (INL)

(Accuracy after Offset and 
Gain Calibration)

Gain = 1x
V

REF

 = 4V, V

CC

 = 5V

ADC clock = 50 - 200 kHz

4.0

LSB

Gain = 20x
V

REF

 = 4V, V

CC

 = 5V

ADC clock = 50 - 200 kHz

10.0

LSB

Gain Error

Gain =  1x

10.0

LSB

Gain = 20x

15.0

LSB

Offset Error

Gain = 1x
V

REF

 = 4V, V

CC

 = 5V

ADC clock = 50 - 200 kHz

3.0

LSB

Gain = 20x
V

REF

 = 4V, V

CC

 = 5V

ADC clock = 50 - 200 kHz

4.0

LSB

Conversion Time

Free Running Conversion

70

280

µs

Clock Frequency

50

200

kHz

V

IN

Input Voltage

GND

V

CC

V

V

DIFF

Input Differential Voltage

V

REF

/Gain

V

Input Bandwidth

4

kHz

AREF

External Reference Voltage

2.0

V

CC 

- 1.0

V

V

INT

Internal Voltage Reference

1.0

1.1

1.2

V

Internal 2.56V Reference 

(1)

V

CC

 > 3.0V

2.3

2.56

2.8

V

R

REF

Reference Input Resistance

32

k

Ω

R

AIN

Analog Input Resistance

100

M

Ω

ADC Conversion Output

0

1023

LSB

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2586_125-html.html
background image

8

2586N-Appendix B–AVR–08/11

ATtiny25

Note:

1. Values are guidelines only.

Table 2-8.

ADC Characteristics, Differential Channels (Bipolar Mode). T

A

 = -40

°

C to +125

°

C

Symbol

Parameter

Condition

Min

Typ

Max

Units

Resolution

Gain = 1x

10

Bits

Gain = 20x

10

Bits

Absolute accuracy
(Including INL, DNL, and 
Quantization, Gain and Offset 
Errors)

Gain = 1x
V

REF

 = 4V, V

CC

 = 5V

ADC clock = 50 - 200 kHz

8.0

LSB

Gain = 20x
V

REF

 = 4V, V

CC

 = 5V

ADC clock = 50 - 200 kHz

8.0

LSB

Integral Non-Linearity (INL)

(Accuracy after Offset and 
Gain Calibration)

Gain = 1x
V

REF

 = 4V, V

CC

 = 5V

ADC clock = 50 - 200 kHz

4.0

LSB

Gain = 20x
V

REF

 = 4V, V

CC

 = 5V

ADC clock = 50 - 200 kHz

5.0

LSB

Gain Error

Gain =  1x

4.0

LSB

Gain = 20x

5.0

LSB

Offset Error

Gain = 1x
V

REF

 = 4V, V

CC

 = 5V

ADC clock = 50 - 200 kHz

3.0

LSB

Gain = 20x
V

REF

 = 4V, V

CC

 = 5V

ADC clock = 50 - 200 kHz

4.0

LSB

Conversion Time

Free Running Conversion

70

280

µs

Clock Frequency

50

200

kHz

V

IN

Input Voltage

GND

V

CC

V

V

DIFF

Input Differential Voltage

V

REF

/Gain

V

Input Bandwidth

4

kHz

AREF

External Reference Voltage

2.0

V

CC

 - 1.0

V

V

INT

Internal Voltage Reference

1.0

1.1

1.2

V

Internal 2.56V Reference 

(1)

V

CC

 > 3.0V

2.3

2.56

2.8

V

R

REF

Reference Input Resistance

32

k

Ω

R

AIN

Analog Input Resistance

100

M

Ω

ADC Conversion Output

-512

511

LSB

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2586_125-html.html
background image

9

2586N-Appendix B–AVR–08/11

ATtiny25

3.

Typical Characteristics

The data contained in this section is largely based on simulations and characterization of similar
devices in the same process and design methods. Thus, the data should be treated as indica-
tions of how the part will behave.

The following charts show typical behavior. These figures are not tested during manufacturing.
All current consumption measurements are performed with all I/O pins configured as inputs and
with internal pull-ups enabled. A sine wave generator with rail-to-rail output is used as clock
source.

The power consumption in Power-down mode is independent of clock selection.

The current consumption is a function of several factors such as: operating voltage, operating
frequency, loading of I/O pins, switching rate of I/O pins, code executed and ambient tempera-
ture. The dominating factors are operating voltage and frequency.

The current drawn from capacitive loaded pins may be estimated (for one pin) as C

L

*

V

CC

*f

where C

L

 = load capacitance, V

CC

 = operating voltage and f = average switching frequency of

I/O pin.

The parts are characterized at frequencies higher than test limits. Parts are not guaranteed to
function properly at frequencies higher than the ordering code indicates.

The difference between current consumption in Power-down mode with Watchdog Timer
enabled and Power-down mode with Watchdog Timer disabled represents the differential cur-
rent drawn by the Watchdog Timer.

3.1

Active Supply Current

Figure 3-1.

Active Supply Current vs. V

CC

 (Internal RC oscillator, 8 MHz)

125 °C

25 °C

-40 °C

0

1

2

3

4

5

6

7

1.5

2

2.5

3

3

.5

4

4.5

5

5.5

V

CC

 (V)

I

CC

 (mA)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2586_125-html.html
background image

10

2586N-Appendix B–AVR–08/11

ATtiny25

Figure 3-2.

Active Supply Current vs. V

CC

 (Internal RC Oscillator, 1 MHz)

Figure 3-3.

Active Supply Current vs. V

CC

 (Internal RC Oscillator, 128 kHz)

125 °C

25 °C

-40 °C

0

0.2

0.4

0.6

0.

8

1

1.2

1.4

1.6

1.5

2

2.5

3

3

.5

4

4.5

5

5.5

V

CC

 (V)

I

CC

 (mA)

125 °C

25 °C

-40 °C

0

0.05

0.1

0.15

0.2

0.25

1.5

2

2.5

3

3

.5

4

4.5

5

5.5

V

CC

 (V)

I

CC

 (mA)

Maker
Microchip Technology Inc.
Datasheet PDF Download