ATtiny24A/44A/84A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8183S-html.html
background image

Features

High Performance, Low Power AVR

® 

8-bit Microcontroller

Advanced RISC Architecture

– 120 Powerful Instructions – Most Single Clock Cycle Execution

– 32 x 8 General Purpose Working Registers

– Fully Static Operation

High Endurance, Non-volatile Memory Segments

– 2K/4K/8K Bytes of In-System, Self-programmable Flash Program Memory

• Endurance: 10,000 Write/Erase Cycles

– 128/256/512 Bytes of In-System Programmable EEPROM

• Endurance: 100,000 Write/Erase Cycles

– 128/256/512 Bytes of Internal SRAM

– Data Retention: 20 years at 85

°C / 100 years at 25°C

– Programming Lock for Self-programming Flash & EEPROM Data Security

Peripheral Features

– One 8-bit and One 16-bit Timer/Counter with Two PWM Channels, Each

– 10-bit ADC

• 8 Single-ended Channels

• 12 Differential ADC Channel Pairs with Programmable Gain (1x / 20x)

– Programmable Watchdog Timer with Separate On-chip Oscillator

– On-chip Analog Comparator

– Universal Serial Interface

Special Microcontroller Features

– debugWIRE On-chip Debug System

– In-System Programmable via SPI Port

– Internal and External Interrupt Sources

• Pin Change Interrupt on 12 Pins

– Low Power Idle, ADC Noise Reduction, Standby and Power-down Modes

– Enhanced Power-on Reset Circuit

– Programmable Brown-out Detection Circuit with Software Disable Function

– Internal Calibrated Oscillator

– On-chip Temperature Sensor

I/O and Packages

– Available in 20-pin QFN/MLF/VQFN, 14-pin SOIC, 14-pin PDIP and 15-ball UFBGA

– Twelve Programmable I/O Lines

Operating Voltage:

– 1.8 – 5.5V

Speed Grade:

– 0 – 4 MHz @ 1.8 – 5.5V

– 0 – 10 MHz @ 2.7 – 5.5V

– 0 – 20 MHz @ 4.5 – 5.5V

Industrial Temperature Range: -40

°C to +85°C

Low Power Consumption

– Active Mode:

• 210 µA at 1.8V and 1 MHz

– Idle  Mode:

• 33 µA at 1.8V and 1 MHz

– Power-down Mode:

• 0.1 µA at 1.8V and 25

°C

8-bit  
Microcontroller 
with 2K/4K/8K 
Bytes In-System
Programmable 
Flash

ATtiny24A
ATtiny44A
ATtiny84A

Summary

Rev. 8183FS–AVR–06/12

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8183S-html.html
background image

2

8183FS–AVR–06/12

ATtiny24A/44A/84A

1.

Pin Configurations

Figure 1-1.

Pinout of ATtiny24A/44A/84A

Table 1-1.

UFBGA - Pinout ATtiny24A/44A/84A (top view)

1

2

3

4

A

PA5

PA6

PB2

B

PA4

PA7

PB1

PB3

C

PA3

PA2

PA1

PB0

D

PA0

GND

GND

VCC

1

2

3

4

5

6

7

14

13

12

11

10

9

8

VCC

(PCINT8/XTAL1/CLKI) PB0

(PCINT9/XTAL2) PB1

(PCINT11/RESET/dW) PB3

(PCINT10/INT0/OC0A/CKOUT) PB2

(PCINT7/ICP/OC0B/ADC7) PA7

(PCINT6/OC1A/SDA/MOSI/DI/ADC6) PA6

GND

PA0 (ADC0/AREF/PCINT0)

PA1 (ADC1/AIN0/PCINT1)

PA2 (ADC2/AIN1/PCINT2)

PA3 (ADC3/T0/PCINT3)

PA4 (ADC4/USCK/SCL/T1/PCINT4)

PA5 (ADC5/DO/MISO/OC1B/PCINT5)

PDIP/SOIC

1

2

3

4

5

QFN/MLF/VQFN

15

14

13

12

11

20

19

18

17

16

6

7

8

9

10

NOTE 

Bottom pad should be

soldered to ground.

DNC: Do Not Connect

DNC

DNC

GND

VCC

DNC

PA7 (PCINT7/ICP/OC0B/ADC7)

PB2 (PCINT10/INT0/OC0A/CKOUT)

PB3 (PCINT11/RESET/dW)

PB1 (PCINT9/XTAL2)

PB0 (PCINT8/XTAL1/CLKI)

PA

5

DNC

DNC

DNC

PA

6

Pin 16:  PA6 (PCINT6/OC1A/SDA/MOSI/DI/ADC6)

Pin 20:  PA5 (ADC5/DO/MISO/OC1B/PCINT5)

(ADC4/USCK/SCL/T1/PCINT4) PA4

(ADC3/T0/PCINT3) PA3

(ADC2/AIN1/PCINT2) PA2

(ADC1/AIN0/PCINT1) PA1

(ADC0/AREF/PCINT0) PA0

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8183S-html.html
background image

3

8183FS–AVR–06/12

ATtiny24A/44A/84A

1.1

Pin Descriptions

1.1.1

VCC

Supply voltage.

1.1.2

GND

Ground.

1.1.3

Port B (PB3:PB0)

Port B is a 4-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port B output buffers have symmetrical drive characteristics with both high sink and source
capability except PB3 which has the RESET capability. To use pin PB3 as an I/O pin, instead of
RESET pin, program (‘0’) RSTDISBL fuse. As inputs, Port B pins that are externally pulled low
will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a
reset condition becomes active, even if the clock is not running.

Port B also serves the functions of various special features of the ATtiny24A/44A/84A as listed
in 

Section 10.2 “Alternate Port Functions” on page 58

.

1.1.4

RESET

Reset input. A low level on this pin for longer than the minimum pulse length will generate a
reset, even if the clock is not running and provided the reset pin has not been disabled. The min-
imum pulse length is given in 

Table 20-4 on page 176

. Shorter pulses are not guaranteed to

generate a reset.

The reset pin can also be used as a (weak) I/O pin.

1.1.5

Port A (PA7:PA0)

Port A is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port A output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port A pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port A has alternate functions as analog inputs for the ADC, analog comparator, timer/counter,
SPI and pin change interrupt as described in 

“Alternate Port Functions” on page 58

.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8183S-html.html
background image

4

8183FS–AVR–06/12

ATtiny24A/44A/84A

2.

Overview

ATtiny24A/44A/84A are low-power CMOS 8-bit microcontrollers based on the AVR enhanced
RISC architecture. By executing powerful in structions in a single clock cycle, the
ATtiny24A/44A/84A achieves throughputs approaching 1 MIPS per MHz allowing the system
designer to optimize power consumption versus processing speed.

Figure 2-1.

Block Diagram

The AVR core combines a rich instruction set with 32 general purpose working registers. All 32
registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in one single instruction executed in one clock cycle. The resulting
architecture is more code efficient while achieving throughputs up to ten times faster than con-
ventional CISC microcontrollers.

WATCHDOG

TIMER

MCU CONTROL

REGISTER

TIMER/

COUNTER0

DATA DIR.

REG.PORT A

DATA REGISTER

PORT A

PROGRAMMING

LOGIC

TIMING AND

CONTROL

MCU STATUS

REGISTER

PORT A DRIVERS

PA[7:0]

VCC

GND

+

_

ANALOG

COMP

ARA

T

O

R

8-BIT DATABUS

ADC

ISP INTERFACE

INTERRUPT

UNIT

EEPROM

INTERNAL

OSCILLATOR

OSCILLATORS

CALIBRATED
OSCILLATOR

INTERNAL

DATA DIR.

REG.PORT B

DATA REGISTER

PORT B

PORT B DRIVERS

PB[3:0]

PROGRAM

COUNTER

STACK

POINTER

PROGRAM

FLASH

SRAM

GENERAL

PURPOSE

REGISTERS

INSTRUCTION

REGISTER

INSTRUCTION

DECODER

STATUS

REGISTER

Z

Y

X

ALU

CONTROL

LINES

TIMER/

COUNTER1

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8183S-html.html
background image

5

8183FS–AVR–06/12

ATtiny24A/44A/84A

The ATtiny24A/44A/84A provides the following features: 2K/4K/8K byte of In-System Program-
mable Flash, 128/256/512 bytes EEPROM, 128/256/512 bytes SRAM, 12 general purpose I/O
lines, 32 general purpose working registers, an 8-bit Timer/Counter with two PWM channels, a
16-bit timer/counter with two PWM channels, Internal and External Interrupts, a 8-channel 10-bit
ADC, programmable gain stage (1x, 20x) for 12 differential ADC channel pairs, a programmable
Watchdog Timer with internal oscillator, internal calibrated oscillator, and four software select-
able power saving modes. Idle mode stops the CPU while allowing the SRAM, Timer/Counter,
ADC, Analog Comparator, and Interrupt system to continue functioning. ADC Noise Reduction
mode minimizes switching noise during ADC conversions by stopping the CPU and all I/O mod-
ules except the ADC. In Power-down mode registers keep their contents and all chip functions
are disbaled until the next interrupt or hardware reset. In Standby mode, the crystal/resonator
oscillator is running while the rest of the device is sleeping, allowing very fast start-up combined
with low power consumption.

The device is manufactured using Atmel’s high density non-volatile memory technology. The on-
chip ISP Flash allows the Program memory to be re-programmed in-system through an SPI
serial interface, by a conventional non-volatile memory programmer or by an on-chip boot code
running on the AVR core.

The ATtiny24A/44A/84A AVR is supported with a full suite of program and system development
tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators and Evaluation
kits.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8183S-html.html
background image

6

8183FS–AVR–06/12

ATtiny24A/44A/84A

3.

General Information

3.1

Resources

A comprehensive set of drivers, application notes, data sheets and descriptions on development
tools are available for download at http://www.atmel.com/avr.

3.2

Code Examples

This documentation contains simple code examples that briefly show how to use various parts of
the device. These code examples assume that the part specific header file is included before
compilation. Be aware that not all C compiler vendors include bit definitions in the header files
and interrupt handling in C is compiler dependent. Please confirm with the C compiler documen-
tation for more details.

For I/O Registers located in the extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”
instructions must be replaced with instructions that allow access to extended I/O. Typically, this
means “LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”. Note that not all
AVR devices include an extended I/O map.

3.3

Capacitive Touch Sensing

Atmel QTouch Library provides a simple to use solution for touch sensitive interfaces on Atmel
AVR microcontrollers. The QTouch Library includes support for QTouch

®

 and QMatrix

®

 acquisi-

tion methods.

Touch sensing is easily added to any application by linking the QTouch Library and using the
Application Programming Interface (API) of the library to define the touch channels and sensors.
The application then calls the API to retrieve channel information and determine the state of the
touch sensor.

The QTouch Library is free and can be downloaded from the Atmel website. For more informa-
tion and details of implementation, refer to the QTouch Library User Guide – also available from
the Atmel website.

3.4

Data Retention

Reliability Qualification results show that the projected data retention failure rate is much less
than 1 PPM over 20 years at 85°C or 100 years at 25°C.

3.5

Disclaimer

Typical values contained in this datasheet are based on simulations and characterization of
other AVR microcontrollers manufactured on the same process technology. Min and Max values
will be available after the device has been characterized.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8183S-html.html
background image

7

8183FS–AVR–06/12

ATtiny24A/44A/84A

4.

Register Summary

Address

Name

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

Page

0x3F (0x5F)

SREG

I

T

H

S

V

N

Z

C

Page 14

0x3E (0x5E)

SPH

SP9

SP8

Page 13

0x3D (0x5D)

SPL

SP7

SP6

SP5

SP4

SP3

SP2

SP1

SP0

Page 13

0x3C (0x5C)

OCR0B

Timer/Counter0 – Output Compare Register B

Page 83

0x3B (0x5B)

GIMSK

INT0

PCIE1

PCIE0

Page 50

0x3A (0x5A)

GIFR

INTF0

PCIF1

PCIF0

Page 51

0x39 (0x59)

TIMSK0

OCIE0B

OCIE0A

TOIE0

Page 83

0x38 (0x58)

TIFR0

OCF0B

OCF0A

TOV0

Page 84

0x37 (0x57)

SPMCSR

RSIG

CTPB

RFLB

PGWRT

PGERS

SPMEN

Page 156

0x36 (0x56)

OCR0A

Timer/Counter0 – Output Compare Register A

Page 83

0x35 (0x55)

MCUCR

BODS

PUD

SE

SM1

SM0

BODSE

ISC01

ISC00

Pages 

36

50

66

0x34 (0x54)

MCUSR

WDRF

BORF

EXTRF

PORF

Page 44

0x33 (0x53)

TCCR0B

FOC0A

FOC0B

WGM02

CS02

CS01

CS00

Page 82

0x32 (0x52)

TCNT0

Timer/Counter0

Page 83

0x31  (0x51)

OSCCAL

CAL7

CAL6

CAL5

CAL4

CAL3

CAL2

CAL1

CAL0

Page  31

0x30 (0x50)

TCCR0A

COM0A1

COM0A0

COM0B1

COM0B0

WGM01

WGM00

Page 79

0x2F (0x4F)

TCCR1A

COM1A1

COM1A0

COM1B1

COM1B0

WGM11

WGM10

Page 106

0x2E (0x4E)

TCCR1B

ICNC1

ICES1

WGM13

WGM12

CS12

CS11

CS10

Page 108

0x2D (0x4D)

TCNT1H

Timer/Counter1 – Counter Register High Byte

Page 110

0x2C (0x4C)

TCNT1L

Timer/Counter1 – Counter Register Low Byte

Page 110

0x2B (0x4B)

OCR1AH

Timer/Counter1 – Compare Register A High Byte

Page 110

0x2A (0x4A)

OCR1AL

Timer/Counter1 – Compare Register A Low Byte

Page 110

0x29 (0x49)

OCR1BH

Timer/Counter1 – Compare Register B High Byte

Page 110

0x28 (0x48)

OCR1BL

Timer/Counter1 – Compare Register B Low Byte

Page 110

0x27 (0x47)

DWDR

DWDR[7:0]

Page 151

0x26 (0x46)

CLKPR

CLKPCE

CLKPS3

CLKPS2

CLKPS1

CLKPS0

Page 31

0x25 (0x45)

ICR1H

Timer/Counter1 - Input Capture Register High Byte

Page 111

0x24 (0x44)

ICR1L

Timer/Counter1 - Input Capture Register Low Byte

Page 111

0x23 (0x43)

GTCCR

TSM

PSR10

Page 114

0x22 (0x42)

TCCR1C

FOC1A

FOC1B

Page 109

0x21 (0x41)

WDTCSR

WDIF

WDIE

WDP3

WDCE

WDE

WDP2

WDP1

WDP0

Page 44

0x20 (0x40)

PCMSK1

PCINT11

PCINT10

PCINT9

PCINT8

Page 51

0x1F (0x3F)

EEARH

EEAR8

Page  20

0x1E (0x3E)

EEARL

EEAR7

EEAR6

EEAR5

EEAR4

EEAR3

EEAR2

EEAR1

EEAR0

Page 21

0x1D (0x3D)

EEDR

EEPROM Data Register

Page 21

0x1C (0x3C)

EECR

EEPM1

EEPM0

EERIE

EEMPE

EEPE

EERE

Page 23

0x1B (0x3B)

PORTA

PORTA7

PORTA6

PORTA5

PORTA4

PORTA3

PORTA2

PORTA1

PORTA0

Page 66

0x1A (0x3A)

DDRA

DDA7

DDA6

DDA5

DDA4

DDA3

DDA2

DDA1

DDA0

Page 66

0x19 (0x39)

PINA

PINA7

PINA6

PINA5

PINA4

PINA3

PINA2

PINA1

PINA0

Page 67

0x18 (0x38)

PORTB

PORTB3

PORTB2

PORTB1

PORTB0

Page 67

0x17 (0x37)

DDRB

DDB3

DDB2

DDB1

DDB0

Page 67

0x16 (0x36)

PINB

PINB3

PINB2

PINB1

PINB0

Page 67

0x15 (0x35)

GPIOR2

General Purpose I/O Register 2

Page 22

0x14 (0x34)

GPIOR1

General Purpose I/O Register 1

Page 23

0x13 (0x33)

GPIOR0

General Purpose I/O Register 0

Page 23

0x12 (0x32)

PCMSK0

PCINT7

PCINT6

PCINT5

PCINT4

PCINT3

PCINT2

PCINT1

PCINT0

Page 52

0x11 (0x31))

Reserved

0x10 (0x30)

USIBR

USI Buffer Register

Page 127

0x0F (0x2F)

USIDR

USI Data Register

Page 126

0x0E (0x2E)

USISR

USISIF

USIOIF

USIPF

USIDC

USICNT3

USICNT2

USICNT1

USICNT0

Page 125

0x0D (0x2D)

USICR

USISIE

USIOIE

USIWM1

USIWM0

USICS1

USICS0

USICLK

USITC

Page 123

0x0C (0x2C)

TIMSK1

ICIE1

OCIE1B

OCIE1A

TOIE1

Page 111

0x0B (0x2B)

TIFR1

ICF1

OCF1B

OCF1A

TOV1

Page 112

0x0A (0x2A)

Reserved

0x09 (0x29)

Reserved

0x08 (0x28)

ACSR

ACD

ACBG

ACO

ACI

ACIE

ACIC

ACIS1

ACIS0

Page 129

0x07 (0x27)

ADMUX

REFS1

REFS0

MUX5

MUX4

MUX3

MUX2

MUX1

MUX0

Page 144

0x06 (0x26)

ADCSRA

ADEN

ADSC

ADATE

ADIF

ADIE

ADPS2

ADPS1

ADPS0

Page 146

0x05 (0x25)

ADCH

ADC Data Register High Byte

Page 148

0x04 (0x24)

ADCL

ADC Data Register Low Byte

Page 148

0x03 (0x23)

ADCSRB

BIN

ACME

ADLAR

ADTS2

ADTS1

ADTS0

Pages 

130

148

0x02 (0x22)

Reserved

0x01 (0x21)

DIDR0

ADC7D

ADC6D

ADC5D

ADC4D

ADC3D

ADC2D

ADC1D

ADC0D

Pages 

131

149

0x00 (0x20)

PRR

PRTIM1

PRTIM0

PRUSI

PRADC

Page 37

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8183S-html.html
background image

8

8183FS–AVR–06/12

ATtiny24A/44A/84A

Note:

1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses 

should never be written.

2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these 

registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI 

instructions will only operation the specified bit, and can therefore be used on registers containing such Status Flags. The 
CBI and SBI instructions work with registers 0x00 to 0x1F only.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8183S-html.html
background image

9

8183FS–AVR–06/12

ATtiny24A/44A/84A

5.

Instruction Set Summary

Mnemonics

Operands

Description

Operation

Flags

#Clocks

ARITHMETIC AND LOGIC INSTRUCTIONS

ADD

Rd, Rr

Add two Registers

Rd 

← Rd + Rr

Z,C,N,V,H

1

ADC

Rd, Rr

Add with Carry two Registers

Rd 

← Rd + Rr + C

Z,C,N,V,H

1

ADIW

Rdl,K

Add Immediate to Word

Rdh:Rdl 

← Rdh:Rdl + K

Z,C,N,V,S

2

SUB

Rd, Rr

Subtract two Registers

Rd 

← Rd - Rr

Z,C,N,V,H

1

SUBI

Rd, K

Subtract Constant from Register 

Rd 

← Rd - K

Z,C,N,V,H

1

SBC

Rd, Rr

Subtract with Carry two Registers

Rd 

← Rd - Rr - C

Z,C,N,V,H

1

SBCI

Rd, K

Subtract with Carry Constant from Reg.

Rd 

← Rd - K - C

Z,C,N,V,H

1

SBIW

Rdl,K

Subtract Immediate from Word

Rdh:Rdl 

← Rdh:Rdl - K

Z,C,N,V,S

2

AND

Rd, Rr

Logical AND Registers

Rd 

← Rd • Rr

Z,N,V

1

ANDI

Rd, K

Logical AND Register and Constant

Rd 

← Rd • K

Z,N,V

1

OR

Rd, Rr

Logical OR Registers

Rd 

← Rd v Rr

Z,N,V

1

ORI

Rd, K

Logical OR Register and Constant

Rd 

← Rd v K

Z,N,V

1

EOR

Rd, Rr

Exclusive OR Registers

Rd 

← Rd ⊕ Rr

Z,N,V

1

COM

Rd

One’s Complement

Rd 

← 0xFF − Rd

Z,C,N,V

1

NEG

Rd

Two’s Complement

Rd 

← 0x00 − Rd

Z,C,N,V,H

1

SBR

Rd,K

Set Bit(s) in Register

Rd 

← Rd v K

Z,N,V

1

CBR

Rd,K

Clear Bit(s) in Register

Rd 

← Rd • (0xFF - K)

Z,N,V

1

INC

Rd

Increment

Rd 

← Rd + 1

Z,N,V

1

DEC

Rd

Decrement

Rd 

← Rd − 1 

Z,N,V

1

TST

Rd

Test for Zero or Minus

Rd 

← Rd • Rd 

Z,N,V

1

CLR

Rd

Clear Register

Rd  

← Rd ⊕ Rd

Z,N,V

1

SER

Rd

Set Register

Rd 

← 0xFF

None

1

BRANCH INSTRUCTIONS

RJMP

k

Relative Jump

PC

 ← PC + k  + 1

None

2

IJMP

Indirect Jump to (Z)

PC 

← Z 

None

2

RCALL

k

Relative Subroutine Call 

PC 

← PC + k + 1

None

3

ICALL

Indirect Call to (Z)

PC 

←  Z

None

3

RET

Subroutine Return

PC 

← STACK

None

4

RETI

Interrupt Return

PC 

← STACK

I

4

CPSE

Rd,Rr

Compare, Skip if Equal

if (Rd = Rr) PC

 ← PC + 2 or 3

None

1/2/3

CP

Rd,Rr

Compare

Rd 

− Rr

Z, N,V,C,H

CPC

Rd,Rr

Compare with Carry

Rd 

− Rr − C

Z, N,V,C,H

1

CPI

Rd,K

Compare Register with Immediate

Rd 

− K

Z, N,V,C,H

1

SBRC

Rr, b

Skip if Bit in Register Cleared

if (Rr(b)=0) PC 

← PC + 2 or 3 

None

1/2/3

SBRS

Rr, b

Skip if Bit in Register is Set

if (Rr(b)=1) PC 

← PC + 2 or 3

None

1/2/3

SBIC

P, b

Skip if Bit in I/O Register Cleared

if (P(b)=0) PC 

← PC + 2 or 3 

None

1/2/3

SBIS

P, b

Skip if Bit in I/O Register is Set

if (P(b)=1) PC 

← PC + 2 or 3

None

1/2/3

BRBS

s, k

Branch if Status Flag Set

if (SREG(s) = 1) then PC

←PC+k + 1

None

1/2

BRBC

s, k

Branch if Status Flag Cleared

if (SREG(s) = 0) then PC

←PC+k + 1

None

1/2

BREQ

 k

Branch if Equal 

if (Z = 1) then PC 

← PC + k + 1

None

1/2

BRNE

 k

Branch if Not Equal

if (Z = 0) then PC 

← PC + k + 1

None

1/2

BRCS

 k

Branch if Carry Set

if (C = 1) then PC 

← PC + k + 1

None

1/2

BRCC

 k

Branch if Carry Cleared

if (C = 0) then PC 

← PC + k + 1

None

1/2

BRSH

 k

Branch if Same or Higher 

if (C = 0) then PC 

← PC + k + 1

None

1/2

BRLO

 k

Branch if Lower

if (C = 1) then PC 

← PC + k + 1

None

1/2

BRMI

 k

Branch if Minus

if (N = 1) then PC 

← PC + k + 1

None

1/2

BRPL

 k

Branch if Plus 

if (N = 0) then PC 

← PC + k + 1

None

1/2

BRGE

 k

Branch if Greater or Equal, Signed

if (N 

⊕ V= 0) then PC ← PC + k + 1

None

1/2

BRLT

 k

Branch if Less Than Zero, Signed

if (N 

⊕ V= 1) then PC ← PC + k + 1

None

1/2

BRHS

 k

Branch if Half Carry Flag Set

if (H = 1) then PC 

← PC + k + 1

None

1/2

BRHC

 k

Branch if Half Carry Flag Cleared

if (H = 0) then PC 

← PC + k + 1

None

1/2

BRTS

 k

Branch if T Flag Set

if (T = 1) then PC 

← PC + k  + 1

None

1/2

BRTC

 k

Branch if T Flag Cleared

if (T = 0) then PC 

← PC + k + 1

None

1/2

BRVS

 k

Branch if Overflow Flag is Set

if (V = 1) then PC 

← PC + k + 1

None

1/2

BRVC

 k

Branch if Overflow Flag is Cleared

if (V = 0) then PC 

← PC + k + 1

None

1/2

BRIE

 k

Branch if Interrupt Enabled

if ( I = 1) then PC 

← PC + k + 1

None

1/2

BRID

 k

Branch if Interrupt Disabled

if ( I = 0) then PC 

← PC + k + 1

None

1/2

BIT AND BIT-TEST INSTRUCTIONS

SBI

P,b

Set Bit in I/O Register

I/O(P,b) 

←  1

None

2

CBI

P,b

Clear Bit in I/O Register

I/O(P,b) 

←  0

None

2

LSL

Rd

Logical Shift Left

Rd(n+1) 

← Rd(n), Rd(0) ← 0

Z,C,N,V

1

LSR

Rd

Logical Shift Right

Rd(n) 

← Rd(n+1), Rd(7) ← 0

Z,C,N,V

1

ROL

Rd

Rotate Left Through Carry

Rd(0)

←C,Rd(n+1)← Rd(n),C←Rd(7)

Z,C,N,V

1

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8183S-html.html
background image

10

8183FS–AVR–06/12

ATtiny24A/44A/84A

ROR

Rd

Rotate Right Through Carry

Rd(7)

←C,Rd(n)← Rd(n+1),C←Rd(0)

Z,C,N,V

1

ASR

Rd

Arithmetic Shift Right

Rd(n) 

← Rd(n+1), n=0..6

Z,C,N,V

1

SWAP

Rd

Swap Nibbles

Rd(3..0)

←Rd(7..4),Rd(7..4)←Rd(3..0)

None

1

BSET

s

Flag Set

SREG(s) 

← 1

SREG(s)

1

BCLR

s

Flag Clear

SREG(s) 

← 0 

SREG(s)

1

BST

Rr, b

Bit Store from Register to T

← Rr(b)

T

1

BLD

Rd, b

Bit load from T to Register

Rd(b) 

←  T

None

1

SEC

Set Carry

←  1

C

1

CLC

Clear Carry

← 0 

C

1

SEN

Set Negative Flag

←  1

N

1

CLN

Clear Negative Flag

← 0 

N

1

SEZ

Set Zero Flag

←  1

Z

1

CLZ

Clear Zero Flag

← 0 

Z

1

SEI

Global Interrupt Enable

←  1

I

1

CLI

Global Interrupt Disable

I

 ← 0 

I

1

SES

Set Signed Test Flag

←  1

S

1

CLS

Clear Signed Test Flag

← 0 

S

1

SEV

Set Twos Complement Overflow.

←  1

V

1

CLV

Clear Twos Complement Overflow

← 0 

V

1

SET

Set T in SREG

←  1

T

1

CLT

Clear T in SREG

← 0 

T

1

SEH

Set Half Carry Flag in SREG

←  1

H

1

CLH

Clear Half Carry Flag in SREG

← 0 

H

1

DATA TRANSFER INSTRUCTIONS

MOV

Rd, Rr

Move Between Registers

Rd 

← Rr

None

1

MOVW

Rd, Rr

Copy Register Word

Rd+1:Rd 

← Rr+1:Rr

None

1

LDI

Rd, K

Load Immediate

Rd  

←  K

None

1

LD

Rd, X

Load Indirect

Rd 

← (X)

None

2

LD

Rd, X+

Load Indirect and Post-Inc.

Rd 

← (X), X ← X + 1

None

2

LD

Rd, - X

Load Indirect and Pre-Dec.

← X - 1, Rd ← (X)

None

2

LD

Rd, Y

Load Indirect

Rd 

← (Y)

None

2

LD

Rd, Y+

Load Indirect and Post-Inc.

Rd 

← (Y), Y ← Y + 1

None

2

LD

Rd, - Y

Load Indirect and Pre-Dec.

← Y - 1, Rd ← (Y)

None

2

LDD

Rd,Y+q

Load Indirect with Displacement

Rd 

← (Y + q)

None

2

LD

Rd, Z

Load Indirect 

Rd 

← (Z)

None

2

LD

Rd, Z+

Load Indirect and Post-Inc.

Rd 

← (Z), Z ← Z+1

None

2

LD

Rd, -Z

Load Indirect and Pre-Dec.

← Z - 1, Rd ← (Z)

None

2

LDD

Rd, Z+q

Load Indirect with Displacement

Rd 

← (Z + q)

None

2

LDS

Rd, k

Load Direct from SRAM

Rd  

← (k)

None

2

ST

X, Rr

Store Indirect

(X)

 ← Rr

None

2

ST

X+, Rr

Store Indirect and Post-Inc.

(X)

 ← Rr, X ← X + 1

None

2

ST

- X, Rr

Store Indirect and Pre-Dec.

← X - 1, (X) ← Rr

None

2

ST

Y, Rr

Store Indirect

(Y) 

← Rr

None

2

ST

Y+, Rr

Store Indirect and Post-Inc.

(Y) 

← Rr, Y ← Y + 1

None

2

ST

- Y, Rr

Store Indirect and Pre-Dec.

← Y - 1, (Y) ← Rr

None

2

STD

Y+q,Rr

Store Indirect with Displacement

(Y + q) 

← Rr

None

2

ST

Z, Rr

Store Indirect

(Z) 

← Rr

None

2

ST

Z+, Rr

Store Indirect and Post-Inc.

(Z) 

← Rr, Z ← Z + 1

None

2

ST

-Z, Rr

Store Indirect and Pre-Dec.

← Z - 1, (Z) ← Rr

None

2

STD

Z+q,Rr

Store Indirect with Displacement

(Z + q) 

← Rr

None

2

STS

k, Rr

Store Direct to SRAM

(k) 

← Rr

None

2

LPM

Load Program Memory

R0 

← (Z)

None

3

LPM

Rd, Z

Load Program Memory

Rd 

← (Z)

None

3

LPM

Rd, Z+

Load Program Memory and Post-Inc

Rd 

← (Z), Z ← Z+1

None

3

SPM

Store Program Memory

(z) 

← R1:R0

None

IN

Rd, P

In Port

Rd 

←  P

None

1

OUT

P, Rr

Out Port

← Rr

None

1

PUSH

Rr

Push Register on Stack

STACK 

← Rr

None

2

POP

Rd

Pop Register from Stack

Rd 

← STACK

None

2

MCU CONTROL INSTRUCTIONS

NOP

No Operation

None

1

SLEEP

Sleep

(see specific descr. for Sleep function)

None

1

WDR

Watchdog Reset

(see specific descr. for WDR/Timer)

None

1

BREAK

Break

For On-chip Debug Only

None

N/A

Mnemonics

Operands

Description

Operation

Flags

#Clocks

Maker
Microchip Technology Inc.
Datasheet PDF Download