ATtiny13A Data Sheet Appendix B

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8126_125-html.html
background image

Appendix B – ATtiny13A Specification at 125°C

This document contains information specific to devices operating at temperatures up
to 125°C. Only deviations are covered in this appendix, all other information can be
found in the complete datasheet. The complete datasheet can be found at
www.atmel.com.

8-bit  
Microcontroller 
with 1K Bytes 
In-System
Programmable 
Flash

ATtiny13A

Appendix B

Rev. 8126F-Appendix B–AVR–05/12

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8126_125-html.html
background image

2

8126F-Appendix B–AVR–05/12

ATtiny13A

1.

Electrical Characteristics

1.1

Absolute Maximum Ratings*

1.2

DC Characteristics

Operating Temperature.................................. -55°C to +125°C

*NOTICE:

Stresses beyond those listed under “Absolute 
Maximum Ratings” may cause permanent dam-
age to the device. This is a stress rating only and 
functional operation of the device at these or 
other conditions beyond those indicated in the 
operational sections of this specification is not 
implied. Exposure to absolute maximum rating 
conditions for extended periods may affect 
device reliability.

Storage Temperature ..................................... -65°C to +150°C

Voltage on any Pin except RESET
with respect to Ground ................................-0.5V to V

CC

+0.5V

Voltage on RESET with respect to Ground......-0.5V to +13.0V

Maximum Operating Voltage ............................................ 6.0V

DC Current per I/O Pin ............................................... 40.0 mA

DC Current V

CC

 and GND Pins ................................ 200.0 mA

Table 1-1.

 DC Characteristics, T

A

 = -40°C to +125°C

Symbol

Parameter

Condition

Min

Typ

(1)

Max

Units

V

IL

Input Low Voltage,
Any Pin as I/O

V

CC

 = 1.8 - 2.4V

-0.5

0.2V

CC

 

(2)

V

V

CC

 = 2.4 - 5.5V

-0.5

0.3V

CC

 

(2)

V

Input Low Voltage,
RESET Pin as Reset 

(4)

V

CC

 = 1.8 - 5.5V

-0.5

0.2V

CC

 

(2)

V

V

IH

Input High Voltage,
Any Pin as I/O

V

CC

 = 1.8 - 2.4V

0.7V

CC

 

(3)

V

CC

 + 0.5

V

V

CC

 = 2.4 - 5.5V

0.6V

CC 

(3)

V

CC

 + 0.5

V

Input High Voltage,
RESET Pin as Reset 

(4)

V

CC

 = 1.8 - 5.5V

0.9V

CC

 

(3)

V

CC

 + 0.5

V

V

OL

Output Low Voltage,
Pins PB0 and PB1 

(5)

I

OL

 = 20 mA, V

CC

 = 5V

0.9

V

I

OL

 = 10 mA, V

CC

 = 3V

0.7

V

Output Low Voltage,
Pins PB2, PB3 and PB4 

(5)

I

OL

 = 10 mA, V

CC

 = 5V

0.8

V

I

OL

 = 5 mA, V

CC

 = 3V

0.6

V

V

OH

Output High Voltage,
Pins PB0 and PB1 

(6)

I

OH

 = -20 mA, V

CC

 = 5V

4.0

V

I

OH

 = -10 mA, V

CC

 = 3V

2.3

V

Output High Voltage,
Pins PB2, PB3 and PB4 

(6)

I

OH

 = -10 mA, V

CC

 = 5V

4.2

V

I

OH

 = -5 mA, V

CC

 = 3V

2.5

V

I

LIL

Input Leakage
Current I/O Pin

V

CC

 = 5.5V, pin low

-1

1

µA

I

LIH

Input Leakage
Current I/O Pin

V

CC

 = 5.5V, pin high

-1

1

µA

R

PU

Pull-Up Resistor, I/O Pin

V

CC

 = 5.5V, input low

20

50

k

Ω

Pull-Up Resistor, Reset Pin

V

CC

 = 5.5V, input low

30

80

k

Ω

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8126_125-html.html
background image

3

8126F-Appendix B–AVR–05/12

ATtiny13A

Notes:

1. Typical values at +25°C.

2. “Max” means the highest value where the pin is guaranteed to be read as low.

3. “Min” means the lowest value where the pin is guaranteed to be read as high.

4. Not tested in production.

5. Although each I/O port can under non-transient, steady state conditions sink more than the test conditions, the sum of all I

OL

 

(for all ports) should not exceed 60 mA. If I

OL

 exceeds the test condition, V

OL

 may exceed the related specification. Pins are 

not guaranteed to sink current greater than the listed test condition.

6. Although each I/O port can under non-transient, steady state conditions source more than the test conditions, the sum of all 

I

OH

 (for all ports) should not exceed 60 mA. If I

OH

 exceeds the test condition, V

OH

 may exceed the related specification. Pins 

are not guaranteed to source current greater than the listed test condition.

7. Values are with external clock. Power Reduction is enabled (PRR = 0xFF) and there is no I/O drive.

8. BOD Disabled.

1.3

Clock Characteristics

1.3.1

Accuracy of Calibrated Internal Oscillator

It is possible to manually calibrate the internal oscillator to be more accurate than default factory calibration. Note that the
oscillator frequency depends on temperature and voltage. Voltage and temperature characteristics can be found in 

Figure

2-53 on page 32

Figure 2-54 on page 33

Figure 2-55 on page 33

, and in 

Figure 2-56 on page 34

.

Notes:

1. Accuracy of oscillator frequency at calibration point (fixed temperature and fixed voltage).

I

CC

Supply Current,
Active Mode 

(7)

f = 1MHz, V

CC

 = 2V

0.2

0.35

mA

f = 4MHz, V

CC

 = 3V

1.2

1.8

mA

f = 8MHz, V

CC

 = 5V

3.6

6

mA

Supply Current,
Idle Mode 

(7)

f = 1MHz, V

CC

 = 2V

0.03

0.2

mA

f = 4MHz, V

CC

 = 3V

0.2

1

mA

f = 8MHz, V

CC

 = 5V

0.7

3

mA

Supply Current,
Power-Down Mode 

(8)

WDT enabled, V

CC

 = 3V

3.9

20

µA

WDT disabled, V

CC

 = 3V

0.15

10

µA

Table 1-1.

 DC Characteristics, T

A

 = -40°C to +125°C (Continued)

Symbol

Parameter

Condition

Min

Typ

(1)

Max

Units

Table 1-2.

Calibration Accuracy of Internal Oscillator

Calibration
Method

Target Frequency

V

CC

 

Temperature

Accuracy at given Voltage 

& Temperature

(1)

Factory
Calibration

4.8 / 9.6 MHz

3V

25°C

±10%

User
Calibration

Fixed frequency within:

4 – 5 MHz / 8 – 10 MHz

Fixed voltage within:

1.8 – 5.5V

Fixed temperature 

within:

-40°C to +125°C

±2%

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8126_125-html.html
background image

4

8126F-Appendix B–AVR–05/12

ATtiny13A

1.4

System and Reset Characteristics

1.4.1

Enhanced Power-On Reset

Note:

1. Values are guidelines only.

2. Threshold where device is released from reset when voltage is rising.

3. The Power-on Reset will not work unless the supply voltage has been below V

POA

.

1.5

ADC Characteristics

Table 1-3.

Characteristics of Enhanced Power-On Reset. T

A

 = -40 to +125°C

Symbol

Parameter

Min

(1)

Typ

(1)

Max

(1)

Units

V

POR

Release threshold of power-on reset 

(2)

1.1

1.4

1.7

V

V

POA

Activation threshold of power-on reset 

(3)

0.6

1.3

1.7

V

SR

ON

Power-On Slope Rate

0.01

V/ms

Table 1-4.

ADC Characteristics, Single Ended Channels. T

A

 = -40°C to +125°C

Symbol

Parameter

Condition

Min

Typ

Max

Units

Resolution

10

Bits

Absolute accuracy
(Including INL, DNL, and 
Quantization, Gain and Offset 
Errors)

V

REF

 = 4V, V

CC

 = 4V,

ADC clock = 200 kHz

3

LSB

V

REF

 = 4V, V

CC

 = 4V,

ADC clock = 1 MHz

4

LSB

V

REF

 = 4V, V

CC

 = 4V,

ADC clock = 200 kHz,
Noise Reduction Mode

2.5

LSB

V

REF

 = 4V, V

CC

 = 4V,

ADC clock = 1 MHz,
Noise Reduction Mode

3.5

LSB

Integral Non-Linearity (INL)
(Accuracy after Offset and 
Gain Calibration)

V

REF

 = 4V, V

CC

 = 4V,

ADC clock = 200 kHz

1

LSB

Differential Non-linearity 
(DNL)

V

REF

 = 4V, V

CC

 = 4V,

ADC clock = 200 kHz

0.5

LSB

Gain Error

V

REF

 = 4V, V

CC

 = 4V,

ADC clock = 200 kHz

3.5

LSB

Offset Error

V

REF

 = 4V, V

CC

 = 4V,

ADC clock = 200 kHz

2.5

LSB

Conversion Time

Free Running Conversion

13

260

µs

Clock Frequency

50

1000

kHz

V

IN

Input Voltage

GND

V

REF

V

Input Bandwidth

38.5

kHz

V

INT

Internal Voltage Reference

1.0

1.1

1.2

V

R

AIN

Analog Input Resistance

100

M

Ω

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8126_125-html.html
background image

5

8126F-Appendix B–AVR–05/12

ATtiny13A

1.6

Analog Comparator Characteristics

Note:

All parameters are based on simulation results.

1.7

Serial Programming Characteristics

Note:

1. 2 t

CLCL

 for f

ck

 < 12 MHz, 3 t

CLCL

 for f

ck

 >= 12 MHz

Table 1-5.

Analog Comparator Characteristics, T

A

 = -40°C to +125°C

Symbol

Parameter

Condition

Min

Typ

Max

Units

V

AIO

Input Offset Voltage

V

CC

 = 5V, V

IN

 = V

CC

 / 2

< 10

40

mV

I

LAC

Input Leakage Current

V

CC

 = 5V, V

IN

 = V

CC

 / 2

-250

250

nA

t

APD

Analog Propagation Delay
(from saturation to slight overdrive)

V

CC

 = 2.7V

750

ns

V

CC

 = 4.0V

500

Analog Propagation Delay
(large step change)

V

CC

 = 2.7V

100

V

CC

 = 4.0V

75

t

DPD

Digital Propagation Delay

V

CC

 = 1.8 - 5.5V

1

2

CLK

Table 1-6.

Serial Programming Characteristics, T

A

 = -40°C to +125°C

Symbol

Parameter

Condition

Min

Typ

Max

Units

1/t

CLCL

Oscillator Frequency

V

CC

 = 1.8 – 5.5V

0

1

MHz

t

CLCL

Oscillator Period

1000

ns

1/t

CLCL

Oscillator Frequency

V

CC

 = 2.7 – 5.5V

0

9.6

MHz

t

CLCL

Oscillator Period

104

ns

1/t

CLCL

Oscillator Frequency

V

CC

 = 4.5 – 5.5V

0

20

MHz

t

CLCL

Oscillator Period

50

ns

t

SHSL

SCK Pulse Width High

V

CC

 = 1.8 – 5.5V

2 t

CLCL

(1)

ns

t

SLSH

SCK Pulse Width Low

2 t

CLCL

(1)

ns

t

OVSH

MOSI Setup to SCK High

t

CLCL

ns

t

SHOX

MOSI Hold after SCK High

2 t

CLCL

ns

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8126_125-html.html
background image

6

8126F-Appendix B–AVR–05/12

ATtiny13A

2.

Typical Characteristics

The data contained in this section is largely based on simulations and characterization of similar
devices in the same process and design methods. Thus, the data should be treated as indica-
tions of how the part will behave.

The following charts show typical behavior. These figures are not tested during manufacturing.
During characterisation devices are operated at frequencies higher than test limits but they are
not guaranteed to function properly at frequencies higher than the ordering code indicates.

All current consumption measurements are performed with all I/O pins configured as inputs and
with internal pull-ups enabled. Current consumption is a function of several factors such as oper-
ating voltage, operating frequency, loading of I/O pins, switching rate of I/O pins, code executed
and ambient temperature. The dominating factors are operating voltage and frequency.

A sine wave generator with rail-to-rail output is used as clock source but current consumption in
Power-Down mode is independent of clock selection. The difference between current consump-
tion in Power-Down mode with Watchdog Timer enabled and Power-Down mode with Watchdog
Timer disabled represents the differential current drawn by the Watchdog Timer.

The current drawn from pins with a capacitive load may be estimated (for one pin) as follows:

where V

CC

 = operating voltage, C

L

 = load capacitance and f

SW

 = average switching frequency of

I/O pin.

2.1

Current Consumption in Active Mode

Figure 2-1.

Active Supply Current vs. V

CC

 (Internal Calibrated Oscillator, 9.6 MHz)

I

CP

V

CC

C

L

f

×

×

SW

ACTIVE SUPPLY CURRENT vs. V

CC

INTERNAL OSCILLATOR, 9.6 MHz

125 °C

85 °C
25 °C

-40 °C

0

1

2

3

4

5

6

1,5

2

2,5

3

3,5

4

4,5

5

5,5

V

CC

 (V)

I

CC

 (mA)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8126_125-html.html
background image

7

8126F-Appendix B–AVR–05/12

ATtiny13A

Figure 2-2.

Active Supply Current vs. V

CC

 (Internal Calibrated Oscillator, 4.8 MHz)

Figure 2-3.

Active Supply Current vs. V

CC

 (Internal WDT Oscillator, 128 kHz)

ACTIVE SUPPLY CURRENT vs. V

CC

INTERNAL OSCILLATOR, 4.8 MHz

125 °C

85 °C
25 °C

-40 °C

0

0,5

1

1,5

2

2,5

3

3,5

1,5

2

2,5

3

3,5

4

4,5

5

5,5

V

CC

 (V)

I

CC

 (mA)

ACTIVE SUPPLY CURRENT vs. V

CC

INTERNAL OSCILLATOR, 128 kHz

125 °C

85 °C

25 °C

-40 °C

0

0,02

0,04

0,06

0,08

0,1

0,12

1,5

2

2,5

3

3,5

4

4,5

5

5,5

V

CC

 (V)

I

CC

 (mA)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8126_125-html.html
background image

8

8126F-Appendix B–AVR–05/12

ATtiny13A

Figure 2-4.

Active Supply Current vs. V

CC

 (32 kHz External Clock)

2.2

Current Consumption in Idle Mode

Figure 2-5.

Idle Supply Current vs. V

CC

 (Internal Calibrated Oscillator, 9.6 MHz)

ACTIVE SUPPLY CURRENT vs. V

CC

32 KHz EXTERNAL CLOCK, PRR = 0xFF

125 °C

85 °C
25 °C

-40 °C

0

0,005

0,01

0,015

0,02

0,025

0,03

1,5

2

2,5

3

3,5

4

4,5

5

5,5

V

CC

 (V)

I

CC

 (mA)

IDLE SUPPLY CURRENT vs. V

CC

INTERNAL OSCILLATOR, 9.6 MHz

125 °C

85 °C
25 °C

-40 °C

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,5

2

2,5

3

3,5

4

4,5

5

5,5

V

CC

 (V)

ICC (mA)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8126_125-html.html
background image

9

8126F-Appendix B–AVR–05/12

ATtiny13A

Figure 2-6.

Idle Supply Current vs. V

CC

 (Internal Calibrated Oscillator, 4.8 MHz)

Figure 2-7.

Idle Supply Current vs. V

CC

 (Internal Oscillator, 128 kHz)

IDLE SUPPLY CURRENT vs. V

CC

INTERNAL OSCILLATOR, 4.8 MHz

125 °C

85 °C

25 °C

-40 °C

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

1,5

2

2,5

3

3,5

4

4,5

5

5,5

V

CC

 (V)

I

CC

 (mA)

IDLE SUPPLY CURRENT vs. V

CC

INTERNAL OSCILLATOR, 128 kHz

125 °C

85 °C

25 °C

-40 °C

0

0,005

0,01

0,015

0,02

0,025

1,5

2

2,5

3

3,5

4

4,5

5

5,5

V

CC

 (V)

I

CC

 (mA)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8126_125-html.html
background image

10

8126F-Appendix B–AVR–05/12

ATtiny13A

Figure 2-8.

Idle Supply Current vs. V

CC

 (32 kHz External Clock)

2.3

Current Consumption in Power-down Mode

Figure 2-9.

Power-down Supply Current vs. V

CC

 (Watchdog Timer Disabled)

IDLE SUPPLY CURRENT vs. V

CC

32 KHz EXTERNAL OSCILLATOR, PRR=0xFF

125 °C

85 °C

25 °C

-40 °C

0

0,002

0,004

0,006

0,008

1,5

2

2,5

3

3,5

4

4,5

5

5,5

V

CC

 (V)

I

CC

 (mA)

POWER-DOWN SUPPLY CURRENT vs. V

CC

WATCHDOG TIMER DISABLED

125 °C

85 °C

25 °C

-40 °C

0

0,5

1

1,5

2

2,5

3

3,5

1,5

2

2,5

3

3,5

4

4,5

5

5,5

V

CC

 (V)

I

CC

 (uA)

Maker
Microchip Technology Inc.
Datasheet PDF Download