ATmega8535

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2502S-html.html
background image

Features

High-performance, Low-power AVR

® 

8-bit Microcontroller

Advanced RISC Architecture

– 130 Powerful Instructions – Most Single Clock Cycle Execution
– 32 x 8 General Purpose Working Registers
– Fully Static Operation
– Up to 16 MIPS Throughput at 16 MHz
– On-chip 2-cycle Multiplier

Nonvolatile Program and Data Memories

– 8K Bytes of In-System Self-Programmable Flash

Endurance: 10,000 Write/Erase Cycles

– Optional Boot Code Section with Independent Lock Bits

In-System Programming by On-chip Boot Program
True Read-While-Write Operation

– 512 Bytes EEPROM

Endurance: 100,000 Write/Erase Cycles

– 512 Bytes Internal SRAM
– Programming Lock for Software Security

Peripheral Features

– Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes
– One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture 

Mode

– Real Time Counter with Separate Oscillator
– Four PWM Channels
– 8-channel, 10-bit ADC

8 Single-ended Channels
7 Differential Channels for TQFP Package Only
2 Differential Channels with Programmable Gain at 1x, 10x, or 200x for TQFP 
Package Only

– Byte-oriented Two-wire Serial Interface
– Programmable Serial USART
– Master/Slave SPI Serial Interface
– Programmable Watchdog Timer with Separate On-chip Oscillator
– On-chip Analog Comparator

Special Microcontroller Features

– Power-on Reset and Programmable Brown-out Detection
– Internal Calibrated RC Oscillator
– External and Internal Interrupt Sources
– Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby 

and Extended Standby

I/O and Packages

– 32 Programmable I/O Lines
– 40-pin PDIP, 44-lead TQFP, 44-lead PLCC, and 44-pad QFN/MLF

Operating Voltages

– 2.7 - 5.5V for ATmega8535L
– 4.5 - 5.5V for ATmega8535

Speed Grades

– 0 - 8 MHz for ATmega8535L
– 0 - 16 MHz for ATmega8535

8-bit  
Microcontroller 
with 8K Bytes 
In-System
Programmable 
Flash

ATmega8535
ATmega8535L

Summary

 2502KS–AVR–10/06

Note: This is a summary document. A complete document
is available on our Web site at www.atmel.com.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2502S-html.html
background image

2

ATmega8535(L) 

2502KS–AVR–10/06

Pin Configurations

Figure 1.  Pinout ATmega8535

Disclaimer

Typical values contained in this data sheet are based on simulations and characteriza-
tion of other AVR microcontrollers manufactured on the same process technology. Min
and Max values will be available after the device is characterized.

(XCK/T0)  PB0

(T1)  PB1

(INT2/AIN0)  PB2

(OC0/AIN1)  PB3

(SS)  PB4

(MOSI)  PB5
(MISO)  PB6

(SCK)  PB7

RESET

VCC

GND

XTAL2
XTAL1

(RXD)  PD0

(TXD)  PD1

(INT0)  PD2
(INT1)  PD3

(OC1B)  PD4
(OC1A)  PD5

(ICP1)  PD6

PA0  (ADC0)
PA1  (ADC1)
PA2  (ADC2)
PA3  (ADC3)
PA4  (ADC4)
PA5  (ADC5)
PA6  (ADC6)
PA7  (ADC7)
AREF
GND
AVCC
PC7  (TOSC2)
PC6  (TOSC1)
PC5  
PC4 
PC3  
PC2  
PC1  (SDA)
PC0  (SCL)
PD7  (OC2)

1

2

3

4

5

6

7

8

9

10

11

33

32

31

30

29

28

27

26

25

24

23

(MOSI)  PB5

(MISO)  PB6

(SCK)  PB7

RESET

VCC

GND

XTAL2

XTAL1

(RXD)  PD0

(TXD)  PD1

(INT0)  PD2

PA4  (ADC4)

PA5  (ADC5)

PA6  (ADC6)

PA7  (ADC7)

AREF

GND

AVCC

PC7  (TOSC2)

PC6  (TOSC1)

PC5  

PC4 

44

43

42

41

40

39

38

37

36

35

34

12

13

14

15

16

17

18

19

20

21

22

(INT1)  PD3

(OC1B)  PD4

(OC1A)  PD5

(ICP1)  PD6

(OC2)  PD7

VCC

GND

(SCL)  PC0

(SDA)  PC1

  PC2

  PC3

PB4  (SS)

PB3  (AIN1/OC0)

PB2  (AIN0/INT2)

PB1  (T1)

PB0  (XCK/T0)

GND

VCC

P

A0  (ADC0)

P

A1  (ADC1)

P

A2  (ADC2)

P

A3  (ADC3)

7

8

9

10

11

12

13

14

15

16

17

39

38

37

36

35

34

33

32

31

30

29

(MOSI)  PB5

(MISO)  PB6

(SCK)  PB7

RESET

VCC

GND

XTAL2

XTAL1

(RXD)  PD0

(TXD)  PD1

(INT0)  PD2

PA4  (ADC4)

PA5  (ADC5)

PA6  (ADC6)

PA7  (ADC7)

AREF

GND

AVCC

PC7  (TOSC2)

PC6  (TOSC1)

PC5  

PC4 

6

5

4

3

2

1

44

43

42

41

40

18

19

20

21

22

23

24

25

26

27

28

(INT1)  PD3

(OC1B)  PD4

(OC1A)  PD5

(ICP1)  PD6

(OC2)  PD7

VCC

GND

(SCL)  PC0

(SDA)  PC1

  PC2

  PC3

PB4  (SS)

PB3  (AIN1/OC0)

PB2  (AIN0/INT2)

PB1  (T1)

PB0  (XCK/T0)

GND

VCC

P

A0  (ADC0)

P

A1  (ADC1)

P

A2  (ADC2)

P

A3  (ADC3)

PLCC

NOTE: MLF Bottom pad should be soldered to ground.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2502S-html.html
background image

3

ATmega8535(L)

2502KS–AVR–10/06

Overview

The ATmega8535 is a low-power CMOS 8-bit microcontroller based on the AVR
enhanced RISC architecture. By executing instructions in a single clock cycle, the
ATmega8535 achieves throughputs approaching 1 MIPS per MHz allowing the system
designer to optimize power consumption versus processing speed.

Block Diagram

Figure 2.  Block Diagram

INTERNAL

OSCILLATOR

OSCILLATOR

WATCHDOG

TIMER

MCU CTRL.

& TIMING

OSCILLATOR

TIMERS/

COUNTERS

INTERRUPT

UNIT

STACK

POINTER

EEPROM

SRAM

STATUS

REGISTER

USART

PROGRAM

COUNTER

PROGRAM

FLASH

INSTRUCTION

REGISTER

INSTRUCTION

DECODER

PROGRAMMING

LOGIC

SPI

ADC

INTERFACE

COMP.

INTERFACE

PORTA DRIVERS/BUFFERS

PORTA DIGITAL INTERFACE

GENERAL

PURPOSE

REGISTERS

X

Y

Z

ALU

+

-

PORTC DRIVERS/BUFFERS

PORTC DIGITAL INTERFACE

PORTB DIGITAL INTERFACE

PORTB DRIVERS/BUFFERS

PORTD DIGITAL INTERFACE

PORTD DRIVERS/BUFFERS

XTAL1

XTAL2

RESET

CONTROL

LINES

V

CC

GND

MUX &

ADC

AREF

PA0 - PA7

PC0 - PC7

PD0 - PD7

PB0 - PB7

AVR CPU

TWI

AVCC

INTERNAL

CALIBRATED
OSCILLATOR

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2502S-html.html
background image

4

ATmega8535(L) 

2502KS–AVR–10/06

The AVR core combines a rich instruction set with 32 general purpose working registers.
All 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two
independent registers to be accessed in one single instruction executed in one clock
cycle. The resulting architecture is more code efficient while achieving throughputs up to
ten times faster than conventional CISC microcontrollers.

The ATmega8535 provides the following features: 8K bytes of In-System Programmable
Flash with Read-While-Write capabilities, 512 bytes EEPROM, 512 bytes SRAM, 32
general purpose I/O lines, 32 general purpose working registers, three flexible
Timer/Counters with compare modes, internal and external interrupts, a serial program-
mable USART, a byte oriented Two-wire Serial Interface, an 8-channel, 10-bit ADC with
optional differential input stage with programmable gain in TQFP package, a program-
mable Watchdog Timer with Internal Oscillator, an SPI serial port, and six software
selectable power saving modes. The Idle mode stops the CPU while allowing the
SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The
Power-down mode saves the register contents but freezes the Oscillator, disabling all
other chip functions until the next interrupt or Hardware Reset. In Power-save mode, the
asynchronous timer continues to run, allowing the user to maintain a timer base while
the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and
all I/O modules except asynchronous timer and ADC, to minimize switching noise during
ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the
rest of the device is sleeping. This allows very fast start-up combined with low-power
consumption. In Extended Standby mode, both the main Oscillator and the asynchro-
nous timer continue to run. 

The device is manufactured using Atmel’s high density nonvolatile memory technology.
The On-chip ISP Flash allows the program memory to be reprogrammed In-System
through an SPI serial interface, by a conventional nonvolatile memory programmer, or
by an On-chip Boot program running on the AVR core. The boot program can use any
interface to download the application program in the Application Flash memory. Soft-
ware in the Boot Flash section will continue to run while the Application Flash section is
updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU
with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega8535
is a powerful microcontroller that provides a highly flexible and cost effective solution to
many embedded control applications.

The ATmega8535 AVR is supported with a full suite of program and system develop-
ment tools including: C compilers, macro assemblers, program debugger/simulators, In-
Circuit Emulators, and evaluation kits.

AT90S8535 Compatibility

The ATmega8535 provides all the features of the AT90S8535. In addition, several new
features are added. The ATmega8535 is backward compatible with AT90S8535 in most
cases. However, some incompatibilities between the two microcontrollers exist. To
solve this problem, an AT90S8535 compatibility mode can be selected by programming
the S8535C fuse. ATmega8535 is pin compatible with AT90S8535, and can replace the
AT90S8535 on current Printed Circuit Boards. However, the location of fuse bits and the
electrical characteristics differs between the two devices.

AT90S8535 Compatibility 
Mode

Programming the S8535C fuse will change the following functionality:

The timed sequence for changing the Watchdog Time-out period is disabled. See 
“Timed Sequences for Changing the Configuration of the Watchdog Timer” on page 
45 for details.

The double buffering of the USART Receive Register is disabled. See “AVR USART 
vs. AVR UART – Compatibility” on page 146 for details.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2502S-html.html
background image

5

ATmega8535(L)

2502KS–AVR–10/06

Pin Descriptions

V

CC

Digital supply voltage.

GND

Ground.

Port A (PA7..PA0)

Port A serves as the analog inputs to the A/D Converter.

Port A also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used.
Port pins can provide internal pull-up resistors (selected for each bit). The Port A output
buffers have symmetrical drive characteristics with both high sink and source capability.
When pins PA0 to PA7 are used as inputs and are externally pulled low, they will source
current if the internal pull-up resistors are activated. The Port A pins are tri-stated when
a reset condition becomes active, even if the clock is not running.

Port B (PB7..PB0)

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port B output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port B pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port B also serves the functions of various special features of the ATmega8535 as listed
on page 60.

Port C (PC7..PC0)

Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port C output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port C pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port D (PD7..PD0)

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port D output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port D pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port D also serves the functions of various special features of the ATmega8535 as listed
on page 64. 

RESET

Reset input. A low level on this pin for longer than the minimum pulse length will gener-
ate a reset, even if the clock is not running. The minimum pulse length is given in Table
15 on page 37. Shorter pulses are not guaranteed to generate a reset.

XTAL1

Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

XTAL2

Output from the inverting Oscillator amplifier.

AVCC

AVCC is the supply voltage pin for Port A and the A/D Converter. It should be externally
connected to V

CC

, even if the ADC is not used. If the ADC is used, it should be con-

nected to V

CC

 through a low-pass filter. 

AREF

AREF is the analog reference pin for the A/D Converter.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2502S-html.html
background image

6

ATmega8535(L) 

2502KS–AVR–10/06

Resources 

A comprehensive set of development tools, application notes and datasheets are avail-
able for download on http://www.atmel.com/avr.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2502S-html.html
background image

7

ATmega8535(L)

2502KS–AVR–10/06

About Code 
Examples 

This documentation contains simple code examples that briefly show how to use various
parts of the device. These code examples assume that the part specific header file is
included before compilation. Be aware that not all C compiler vendors include bit defini-
tions in the header files and interrupt handling in C is compiler dependent. Please
confirm with the C Compiler documentation for more details.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2502S-html.html
background image

8

ATmega8535(L) 

2502KS–AVR–10/06

.

Register Summary 

Address

Name

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

Page

0x3F (0x5F)

SREG

I

T

H

S

V

N

Z

C

10

0x3E (0x5E)

SPH

SP9

SP8

12

0x3D (0x5D)

SPL

SP7

SP6

SP5

SP4

SP3

SP2

SP1

SP0

12

0x3C (0x5C)

OCR0

Timer/Counter0 Output Compare Register

85

0x3B (0x5B)

GICR

INT1

INT0

INT2

IVSEL

IVCE

49, 69 

0x3A (0x5A)

GIFR

INTF1

INTF0

INTF2

70

0x39 (0x59)

TIMSK

OCIE2

TOIE2

TICIE1

OCIE1A

OCIE1B

TOIE1

OCIE0

TOIE0

85, 115, 133

0x38 (0x58)

TIFR

OCF2

TOV2

ICF1

OCF1A

OCF1B

TOV1

OCF0

TOV0

86, 116, 134

0x37 (0x57)

SPMCR

SPMIE

RWWSB

RWWSRE

BLBSET

PGWRT

PGERS

SPMEN

228

0x36 (0x56)

TWCR

TWINT

TWEA

TWSTA

TWSTO

TWWC

TWEN

TWIE

181

0x35 (0x55)

MCUCR

SM2

SE

SM1

SM0

ISC11

ISC10

ISC01

ISC00

32, 68

0x34 (0x54)

MCUCSR

ISC2

WDRF

BORF

EXTRF

PORF

40, 69

0x33 (0x53)

TCCR0

FOC0

WGM00

COM01

COM00

WGM01

CS02

CS01

CS00

83

0x32 (0x52)

TCNT0

Timer/Counter0 (8 Bits)

85

0x31 (0x51)

OSCCAL

Oscillator Calibration Register

30

0x30 (0x50)

SFIOR

ADTS2

ADTS1

ADTS0

ACME

PUD

PSR2

PSR10

59,88,135,203,223

0x2F (0x4F)

TCCR1A

COM1A1

COM1A0

COM1B1

COM1B0

FOC1A

FOC1B

WGM11

WGM10

110

0x2E (0x4E)

TCCR1B

ICNC1

ICES1

WGM13

WGM12

CS12

CS11

CS10

113

0x2D (0x4D)

TCNT1H

Timer/Counter1 – Counter Register High Byte

114

0x2C (0x4C)

TCNT1L

Timer/Counter1 – Counter Register Low Byte

114

0x2B (0x4B)

OCR1AH

Timer/Counter1 – Output Compare Register A High Byte

114

0x2A (0x4A)

OCR1AL

Timer/Counter1 – Output Compare Register A Low Byte

114

0x29 (0x49)

OCR1BH

Timer/Counter1 – Output Compare Register B High Byte

114

0x28 (0x48)

OCR1BL

Timer/Counter1 – Output Compare Register B Low Byte

114

0x27 (0x47)

ICR1H

Timer/Counter1 – Input Capture Register High Byte

114

0x26 (0x46)

ICR1L

Timer/Counter1 – Input Capture Register Low Byte

114

0x25 (0x45)

TCCR2

FOC2

WGM20

COM21

COM20

WGM21

CS22

CS21

CS20

128

0x24 (0x44)

TCNT2

Timer/Counter2 (8 Bits)

130

0x23 (0x43)

OCR2

Timer/Counter2 Output Compare Register

131

0x22 (0x42)

ASSR

AS2

TCN2UB

OCR2UB

TCR2UB

131

0x21 (0x41)

WDTCR

WDCE

WDE

WDP2

WDP1

WDP0

42

0x20

(1)

 (0x40)

(1)

UBRRH

URSEL

UBRR[11:8]

169

UCSRC

URSEL

UMSEL

UPM1

UPM0

USBS

UCSZ1

UCSZ0

UCPOL

167

0x1F (0x3F)

EEARH

EEAR8

19

0x1E (0x3E)

EEARL

EEPROM Address Register Low Byte

19

0x1D (0x3D)

EEDR

EEPROM Data Register

19

0x1C (0x3C)

EECR

EERIE

EEMWE

EEWE

EERE

19

0x1B (0x3B)

PORTA

PORTA7

PORTA6

PORTA5

PORTA4

PORTA3

PORTA2

PORTA1

PORTA0

66

0x1A (0x3A)

DDRA

DDA7

DDA6

DDA5

DDA4

DDA3

DDA2

DDA1

DDA0

66

0x19 (0x39)

PINA

PINA7

PINA6

PINA5

PINA4

PINA3

PINA2

PINA1

PINA0

66

0x18 (0x38)

PORTB

PORTB7

PORTB6

PORTB5

PORTB4

PORTB3

PORTB2

PORTB1

PORTB0

66

0x17 (0x37)

DDRB

DDB7

DDB6

DDB5

DDB4

DDB3

DDB2

DDB1

DDB0

66

0x16 (0x36)

PINB

PINB7

PINB6

PINB5

PINB4

PINB3

PINB2

PINB1

PINB0

67

0x15 (0x35)

PORTC

PORTC7

PORTC6

PORTC5

PORTC4

PORTC3

PORTC2

PORTC1

PORTC0

67

0x14 (0x34)

DDRC

DDC7

DDC6

DDC5

DDC4

DDC3

DDC2

DDC1

DDC0

67

0x13 (0x33)

PINC

PINC7

PINC6

PINC5

PINC4

PINC3

PINC2

PINC1

PINC0

67

0x12 (0x32)

PORTD

PORTD7

PORTD6

PORTD5

PORTD4

PORTD3

PORTD2

PORTD1

PORTD0

67

0x11 (0x31)

DDRD

DDD7

DDD6

DDD5

DDD4

DDD3

DDD2

DDD1

DDD0

67

0x10 (0x30)

PIND

PIND7

PIND6

PIND5

PIND4

PIND3

PIND2

PIND1

PIND0

67

0x0F (0x2F)

SPDR

 SPI Data Register

143

0x0E (0x2E)

SPSR

SPIF

WCOL

SPI2X

143

0x0D (0x2D)

SPCR

SPIE

SPE

DORD

MSTR

CPOL

CPHA

SPR1

SPR0

141

0x0C (0x2C)

UDR

 USART I/O Data Register

164

0x0B (0x2B)

UCSRA

RXC

TXC

UDRE

FE

DOR

PE

U2X

MPCM

165

0x0A (0x2A)

UCSRB

RXCIE

TXCIE

UDRIE

RXEN

TXEN

UCSZ2

RXB8

TXB8

166

0x09 (0x29)

UBRRL

 USART Baud Rate Register Low Byte

169

0x08 (0x28)

ACSR

ACD

ACBG

ACO

ACI

ACIE

ACIC

ACIS1

ACIS0

203

0x07 (0x27)

ADMUX

REFS1

REFS0

ADLAR

MUX4

MUX3

MUX2

MUX1

MUX0

219

0x06 (0x26)

ADCSRA

ADEN

ADSC

ADATE

ADIF

ADIE

ADPS2

ADPS1

ADPS0

221

0x05 (0x25)

ADCH

ADC Data Register High Byte

222

0x04 (0x24)

ADCL

ADC Data Register Low Byte

222

0x03 (0x23)

TWDR

Two-wire Serial Interface Data Register

183

0x02 (0x22)

TWAR

TWA6

TWA5

TWA4

TWA3

TWA2

TWA1

TWA0

TWGCE

183

0x01 (0x21)

TWSR

TWS7

TWS6

TWS5

TWS4

TWS3

TWPS1

TWPS0

183

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2502S-html.html
background image

9

ATmega8535(L)

2502KS–AVR–10/06

Notes:

1. Refer to the USART description for details on how to access UBRRH and UCSRC.
2. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses

should never be written.

3. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on

all bits in the I/O Register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions
work with registers 0x00 to 0x1F only.

0x00 (0x20)

TWBR

Two-wire Serial Interface Bit Rate Register

181

Register Summary  (Continued)

Address

Name

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

Page

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2502S-html.html
background image

10

ATmega8535(L) 

2502KS–AVR–10/06

Instruction Set Summary

Mnemonics

Operands

Description

Operation

Flags

#Clocks

ARITHMETIC AND LOGIC INSTRUCTIONS

ADD

Rd, Rr

Add two Registers

Rd 

← Rd + Rr

Z,C,N,V,H

1

ADC

Rd, Rr

Add with Carry two Registers

Rd 

← Rd + Rr + C

Z,C,N,V,H

1

ADIW

Rdl,K

Add Immediate to Word

Rdh:Rdl 

← Rdh:Rdl + K

Z,C,N,V,S

2

SUB

Rd, Rr

Subtract two Registers

Rd 

← Rd - Rr

Z,C,N,V,H

1

SUBI

Rd, K

Subtract Constant from Register 

Rd 

← Rd - K

Z,C,N,V,H

1

SBC

Rd, Rr

Subtract with Carry two Registers

Rd 

← Rd - Rr - C

Z,C,N,V,H

1

SBCI

Rd, K

Subtract with Carry Constant from Reg.

Rd 

← Rd - K - C

Z,C,N,V,H

1

SBIW

Rdl,K

Subtract Immediate from Word

Rdh:Rdl 

← Rdh:Rdl - K

Z,C,N,V,S

2

AND

Rd, Rr

Logical AND Registers

Rd 

← Rd • Rr

Z,N,V

1

ANDI

Rd, K

Logical AND Register and Constant

Rd 

← Rd • K

Z,N,V

1

OR

Rd, Rr

Logical OR Registers

Rd 

← Rd v Rr

Z,N,V

1

ORI

Rd, K

Logical OR Register and Constant

Rd 

← Rd v K

Z,N,V

1

EOR

Rd, Rr

Exclusive OR Registers

Rd 

← Rd ⊕ Rr

Z,N,V

1

COM

Rd

One’s Complement

Rd 

← 0xFF − Rd

Z,C,N,V

1

NEG

Rd

Two’s Complement

Rd 

← 0x00 − Rd

Z,C,N,V,H

1

SBR

Rd,K

Set Bit(s) in Register

Rd 

← Rd v K

Z,N,V

1

CBR

Rd,K

Clear Bit(s) in Register

Rd 

← Rd • (0xFF - K)

Z,N,V

1

INC

Rd

Increment

Rd 

← Rd + 1

Z,N,V

1

DEC

Rd

Decrement

Rd 

← Rd − 1 

Z,N,V

1

TST

Rd

Test for Zero or Minus

Rd 

← Rd • Rd 

Z,N,V

1

CLR

Rd

Clear Register

Rd  

← Rd ⊕ Rd

Z,N,V

1

SER

Rd

Set Register

Rd 

← 0xFF

None

1

MUL

Rd, Rr

Multiply Unsigned

R1:R0 

← Rd x Rr

Z,C

2

MULS

Rd, Rr

Multiply Signed

R1:R0 

← Rd x Rr

Z,C

2

MULSU

Rd, Rr

Multiply Signed with Unsigned

R1:R0 

← Rd x Rr

Z,C

2

FMUL

Rd, Rr

Fractional Multiply Unsigned

R1:R0 

← (Rd x Rr) 

<< 1

Z,C

2

FMULS

Rd, Rr

Fractional Multiply Signed

R1:R0 

← (Rd x Rr) 

<< 1

Z,C

2

FMULSU

Rd, Rr

Fractional Multiply Signed with Unsigned

R1:R0 

← (Rd x Rr) 

<< 1

Z,C

2

BRANCH INSTRUCTIONS

RJMP

k

Relative Jump

PC

 ← PC + k + 1

None

2

IJMP

Indirect Jump to (Z)

PC 

← Z 

None

2

RCALL

k

Relative Subroutine Call 

PC 

← PC + k + 1

None

3

ICALL

Indirect Call to (Z)

PC 

←  Z

None

3

RET

Subroutine Return

PC 

← STACK

None

4

RETI

Interrupt Return

PC 

← STACK

I

4

CPSE

Rd,Rr

Compare, Skip if Equal

if (Rd = Rr) PC

 ← PC + 2 or 3

None

1 / 2 / 3

CP

Rd,Rr

Compare

Rd 

− Rr

Z, N,V,C,H

CPC

Rd,Rr

Compare with Carry

Rd 

− Rr − C

Z, N,V,C,H

1

CPI

Rd,K

Compare Register with Immediate

Rd 

− K

Z, N,V,C,H

1

SBRC

Rr, b

Skip if Bit in Register Cleared

if (Rr(b)=0) PC 

← PC + 2 or 3 

None

1 / 2 / 3

SBRS

Rr, b

Skip if Bit in Register is Set

if (Rr(b)=1) PC 

← PC + 2 or 3

None

1 / 2 / 3

SBIC

P, b

Skip if Bit in I/O Register Cleared

if (P(b)=0) PC 

← PC + 2 or 3 

None

1 / 2 / 3

SBIS

P, b

Skip if Bit in I/O Register is Set

if (P(b)=1) PC 

← PC + 2 or 3

None

1 / 2 / 3

BRBS

s, k

Branch if Status Flag Set

if (SREG(s) = 1) then PC

←PC+k + 1

None

1 / 2

BRBC

s, k

Branch if Status Flag Cleared

if (SREG(s) = 0) then PC

←PC+k + 1

None

1 / 2

BREQ

 k

Branch if Equal 

if (Z = 1) then PC 

← PC + k + 1

None

1 / 2

BRNE

 k

Branch if Not Equal

if (Z = 0) then PC 

← PC + k + 1

None

1 / 2

BRCS

 k

Branch if Carry Set

if (C = 1) then PC 

← PC + k + 1

None

1 / 2

BRCC

 k

Branch if Carry Cleared

if (C = 0) then PC 

← PC + k + 1

None

1 / 2

BRSH

 k

Branch if Same or Higher 

if (C = 0) then PC 

← PC + k + 1

None

1 / 2

BRLO

 k

Branch if Lower

if (C = 1) then PC 

← PC + k + 1

None

1 / 2

BRMI

 k

Branch if Minus

if (N = 1) then PC 

← PC + k + 1

None

1 / 2

BRPL

 k

Branch if Plus 

if (N = 0) then PC 

← PC + k + 1

None

1 / 2

BRGE

 k

Branch if Greater or Equal, Signed

if (N 

⊕ V= 0) then PC ← PC + k + 1

None

1 / 2

BRLT

 k

Branch if Less Than Zero, Signed

if (N 

⊕ V= 1) then PC ← PC + k + 1

None

1 / 2

BRHS

 k

Branch if Half Carry Flag Set

if (H = 1) then PC 

← PC + k + 1

None

1 / 2

BRHC

 k

Branch if Half Carry Flag Cleared

if (H = 0) then PC 

← PC + k + 1

None

1 / 2

BRTS

 k

Branch if T Flag Set

if (T = 1) then PC 

← PC + k + 1

None

1 / 2

BRTC

 k

Branch if T Flag Cleared

if (T = 0) then PC 

← PC + k + 1

None

1 / 2

BRVS

 k

Branch if Overflow Flag is Set

if (V = 1) then PC 

← PC + k + 1

None

1 / 2

BRVC

 k

Branch if Overflow Flag is Cleared

if (V = 0) then PC 

← PC + k + 1

None

1 / 2

BRIE

 k

Branch if Interrupt Enabled

if ( I = 1) then PC 

← PC + k + 1

None

1 / 2

BRID

 k

Branch if Interrupt Disabled

if ( I = 0) then PC 

← PC + k + 1

None

1 / 2

DATA TRANSFER INSTRUCTIONS

Maker
Microchip Technology Inc.
Datasheet PDF Download