ATmega8515

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2512S-html.html
background image

Features

High-performance, Low-power AVR

® 

8-bit Microcontroller

RISC Architecture

– 130 Powerful Instructions – Most Single Clock Cycle Execution
– 32 x 8 General Purpose Working Registers
– Fully Static Operation
– Up to 16 MIPS Throughput at 16 MHz
– On-chip 2-cycle Multiplier

Nonvolatile Program and Data Memories

– 8K Bytes of In-System Self-programmable Flash 

Endurance: 10,000 Write/Erase Cycles

– Optional Boot Code Section with Independent Lock bits

In-System Programming by On-chip Boot Program
True Read-While-Write Operation

– 512 Bytes EEPROM

Endurance: 100,000 Write/Erase Cycles

– 512 Bytes Internal SRAM
– Up to 64K Bytes Optional External Memory Space
– Programming Lock for Software Security

Peripheral Features

– One 8-bit Timer/Counter with Separate Prescaler and Compare Mode
– One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture 

Mode

– Three PWM Channels
– Programmable Serial USART
– Master/Slave SPI Serial Interface
– Programmable Watchdog Timer with Separate On-chip Oscillator
– On-chip Analog Comparator

Special Microcontroller Features

– Power-on Reset and Programmable Brown-out Detection
– Internal Calibrated RC Oscillator
– External and Internal Interrupt Sources
– Three Sleep Modes: Idle, Power-down and Standby

I/O and Packages

– 35 Programmable I/O Lines
– 40-pin PDIP, 44-lead TQFP, 44-lead PLCC, and 44-pad QFN/MLF

Operating Voltages

– 2.7 - 5.5V for ATmega8515L
– 4.5 - 5.5V for ATmega8515

Speed Grades

– 0 - 8 MHz for ATmega8515L
– 0 - 16 MHz for ATmega8515

8-bit  
Microcontroller 
with 8K Bytes 
In-System
Programmable 
Flash

ATmega8515
ATmega8515L

Summary

 2512JS–AVR–10/06

Note: This is a summary document. A complete document
is available on our Web site at www.atmel.com.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2512S-html.html
background image

2

ATmega8515(L) 

2512JS–AVR–10/06

Pin Configurations

Figure 1.  Pinout ATmega8515

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

(OC0/T0) PB0

(T1) PB1

(AIN0) PB2

(AIN1) PB3

(SS) PB4

(MOSI) PB5

(MISO) PB6

(SCK) PB7

RESET

(RXD) PD0

(TDX) PD1

(INT0) PD2

(INT1) PD3

(XCK) PD4

(OC1A) PD5

(WR) PD6

(RD) PD7

XTAL2

XTAL1

GND

VCC

PA0 (AD0)

PA1 (AD1)

PA2 (AD2)

PA3 (AD3)

PA4 (AD4)

PA5 (AD5)

PA6 (AD6)

PA7 (AD7)

PE0 (ICP/INT2)

PE1 (ALE)

PE2 (OC1B)

PC7 (A15)

PC6 (A14)

PC5 (A13)

PC4 (A12)

PC3 (A11)

PC2 (A10)

PC1 (A9)

PC0 (A8)

PDIP

1

2

3

4

5

6

7

8

9

10

11

33

32

31

30

29

28

27

26

25

24

23

(MOSI) PB5

(MISO) PB6

(SCK) PB7

RESET

(RXD) PD0

NC*

(TXD) PD1

(INT0) PD2

(INT1) PD3

(XCK) PD4

(OC1A) PD5

PA4 (AD4)

PA5 (AD5)

PA6 (AD6)

PA7 (AD7)

PE0 (ICP/INT2)

NC*

PE1 (ALE)

PE2 (OC1B)

PC7 (A15)

PC6 (A14)

PC5 (A13)

44

43

42

41

40

39

38

37

36

35

34

12

13

14

15

16

17

18

19

20

21

22

(WR) PD6

(RD) PD7

XTAL2

XTAL1

GND

NC*

(A8) PC0

(A9) PC1

(A10) PC2

(A11) PC3

(A12) PC4

PB4 (SS)

PB3 (AIN1)

PB2 (AIN0)

PB1 (T1)

PB0 (OC0/T0)

NC*

VCC

PA0 (AD0)

PA1 (AD1)

PA2 (AD2)

PA3 (AD3)

TQFP/MLF

7

8

9

10

11

12

13

14

15

16

17

39

38

37

36

35

34

33

32

31

30

29

(MOSI) PB5

(MISO) PB6

(SCK) PB7

RESET

(RXD) PD0

NC*

(TXD) PD1

(INT0) PD2

(INT1) PD3

(XCK) PD4

(OC1A) PD5

PA4 (AD4)

PA5 (AD5)

PA6 (AD6)

PA7 (AD7)

PE0 (ICP/INT2)

NC*

PE1 (ALE)

PE2 (OC1B)

PC7 (A15)

PC6 (A14)

PC5 (A13)

6

5

4

3

2

1

44

43

42

41

40

18

19

20

21

22

23

24

25

26

27

28

(WR) PD6

(RD) PD7

XTAL2

XTAL1

GND

NC*

(A8) PC0

(A9) PC1

(A10) PC2

(A11) PC3

(A12) PC4

PB4 (SS)

PB3 (AIN1)

PB2 (AIN0)

PB1 (T1)

PB0 (OC0/T0)

NC*

VCC

PA0 (AD0)

PA1 (AD1)

PA2 (AD2)

PA3 (AD3)

PLCC

NOTES:

 

1. MLF bottom pad should be soldered to ground.

 

2. * NC = Do not connect (May be used in future devices)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2512S-html.html
background image

3

ATmega8515(L)

2512JS–AVR–10/06

Overview

The ATmega8515 is a low-power CMOS 8-bit microcontroller based on the AVR
enhanced RISC architecture. By executing powerful instructions in a single clock cycle,
the ATmega8515 achieves throughputs approaching 1 MIPS per MHz allowing the sys-
tem designer to optimize power consumption versus processing speed.

Block Diagram

Figure 2.  Block Diagram

INTERNAL

OSCILLATOR

WATCHDOG

TIMER

MCU CTRL.

& TIMING

OSCILLATOR

TIMERS/

COUNTERS

INTERRUPT

UNIT

STACK

POINTER

EEPROM

SRAM

STATUS

REGISTER

USART

PROGRAM

COUNTER

PROGRAM

FLASH

INSTRUCTION

REGISTER

INSTRUCTION

DECODER

PROGRAMMING

LOGIC

SPI

COMP.

INTERFACE

PORTA DRIVERS/BUFFERS

PORTA DIGITAL INTERFACE

GENERAL

PURPOSE

REGISTERS

X

Y

Z

ALU

+

-

PORTC DRIVERS/BUFFERS

PORTC DIGITAL INTERFACE

PORTB DIGITAL INTERFACE

PORTB DRIVERS/BUFFERS

PORTD DIGITAL INTERFACE

PORTD DRIVERS/BUFFERS

XTAL1

XTAL2

RESET

CONTROL

LINES

VCC

GND

PA0 - PA7

PC0 - PC7

PD0 - PD7

PB0 - PB7

AVR CPU

INTERNAL

CALIBRATED
OSCILLATOR

PORTE

DRIVERS/
BUFFERS

PORTE

DIGITAL

INTERFACE

PE0 - PE2

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2512S-html.html
background image

4

ATmega8515(L) 

2512JS–AVR–10/06

The AVR core combines a rich instruction set with 32 general purpose working registers.
All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing
two independent registers to be accessed in one single instruction executed in one clock
cycle. The resulting architecture is more code efficient while achieving throughputs up to
ten times faster than conventional CISC microcontrollers.

The ATmega8515 provides the following features: 8K bytes of In-System Programmable
Flash with Read-While-Write capabilities, 512 bytes EEPROM, 512 bytes SRAM, an
External memory interface, 35 general purpose I/O lines, 32 general purpose working
registers, two flexible Timer/Counters with compare modes, Internal and External inter-
rupts, a Serial Programmable USART, a programmable Watchdog Timer with internal
Oscillator, a SPI serial port, and three software selectable power saving modes. The Idle
mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and Interrupt
system to continue functioning. The Power-down mode saves the Register contents but
freezes the Oscillator, disabling all other chip functions until the next interrupt or hard-
ware reset. In Standby mode, the crystal/resonator Oscillator is running while the rest of
the device is sleeping. This allows very fast start-up combined with low-power
consumption.

The device is manufactured using Atmel’s high density nonvolatile memory technology.
The On-chip ISP Flash allows the Program memory to be reprogrammed In-System
through an SPI serial interface, by a conventional nonvolatile memory programmer, or
by an On-chip Boot program running on the AVR core. The boot program can use any
interface to download the application program in the Application Flash memory. Soft-
ware in the Boot Flash section will continue to run while the Application Flash section is
updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU
with In-System Self-programmable Flash on a monolithic chip, the Atmel ATmega8515
is a powerful microcontroller that provides a highly flexible and cost effective solution to
many embedded control applications.

The ATmega8515 is supported with a full suite of program and system development
tools including: C Compilers, Macro assemblers, Program debugger/simulators, In-cir-
cuit Emulators, and Evaluation kits.

Disclaimer

Typical values contained in this datasheet are based on simulations and characteriza-
tion of other AVR microcontrollers manufactured on the same process technology. Min
and Max values will be available after the device is characterized.

AT90S4414/8515 and 
ATmega8515 
Compatibility

The ATmega8515 provides all the features of the AT90S4414/8515. In addition, several
n e w   f e a t u r e s   a r e   a d d e d .   T h e   A T m e g a 8 5 1 5   i s   b a c k w a r d   c o m p a t i b l e   w i t h
AT90S4414/8515 in most cases. However, some incompatibilities between the two
microcontrollers exist. To solve this problem, an AT90S4414/8515 compatibility mode
can be selected by programming the S8515C Fuse. ATmega8515 is 100% pin compati-
ble with AT90S4414/8515, and can replace the AT90S4414/8515 on current printed
circuit boards. However, the location of Fuse bits and the electrical characteristics dif-
fers between the two devices.

AT90S4414/8515 Compatibility 
Mode

Programming the S8515C Fuse will change the following functionality:

The timed sequence for changing the Watchdog Time-out period is disabled. See 
“Timed Sequences for Changing the Configuration of the Watchdog Timer” on page 
53 for details.

The double buffering of the USART Receive Registers is disabled. See “AVR 
USART vs. AVR UART – Compatibility” on page 137 for details.

PORTE(2:1) will be set as output, and PORTE0 will be set as input.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2512S-html.html
background image

5

ATmega8515(L)

2512JS–AVR–10/06

Pin Descriptions

VCC

Digital supply voltage.

GND

Ground.

Port A (PA7..PA0)

Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port A output buffers have symmetrical drive characteristics with both high sink
and source capability. When pins PA0 to PA7 are used as inputs and are externally
pulled low, they will source current if the internal pull-up resistors are activated. The Port
A pins are tri-stated when a reset condition becomes active, even if the clock is not
running.

Port A also serves the functions of various special features of the ATmega8515 as listed
on page 67.

Port B (PB7..PB0)

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port B output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port B pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port B also serves the functions of various special features of the ATmega8515 as listed
on page 67.

Port C (PC7..PC0)

Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port C output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port C pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset
condition becomes active, even if the clock is not running. 

Port D (PD7..PD0)

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port D output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port D pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port D also serves the functions of various special features of the ATmega8515 as listed
on page 72. 

Port E(PE2..PE0)

Port E is an 3-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port E output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port E pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port E also serves the functions of various special features of the ATmega8515 as listed
on page 74. 

RESET

Reset input. A low level on this pin for longer than the minimum pulse length will gener-
ate a reset, even if the clock is not running. The minimum pulse length is given in Table
18 on page 46. Shorter pulses are not guaranteed to generate a reset.

XTAL1

Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

XTAL2

Output from the inverting Oscillator amplifier.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2512S-html.html
background image

6

ATmega8515(L) 

2512JS–AVR–10/06

Resources 

A comprehensive set of development tools, application notes and datasheets are avail-
able for download on http://www.atmel.com/avr.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2512S-html.html
background image

7

ATmega8515(L)

2512JS–AVR–10/06

About Code 
Examples 

This documentation contains simple code examples that briefly show how to use various
parts of the device. These code examples assume that the part specific header file is
included before compilation. Be aware that not all C Compiler vendors include bit defini-
tions in the header files and interrupt handling in C is compiler dependent. Please
confirm with the C Compiler documentation for more details.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2512S-html.html
background image

8

ATmega8515(L) 

2512JS–AVR–10/06

Register Summary

Notes:

1. Refer to the USART description for details on how to access UBRRH and UCSRC.
2. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses

should never be written.

Address

Name

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

Page

$3F ($5F)

SREG

I

T

H

S

V

N

Z

C

10

$3E ($5E)

SPH

SP15

SP14

SP13

SP12

SP11

SP10

SP9

SP8

12

$3D ($5D)

SPL

SP7

SP6

SP5

SP4

SP3

SP2

SP1

SP0

12

$3C ($5C)

Reserved

-

$3B ($5B)

GICR

INT1

INT0

INT2

-

-

-

IVSEL

IVCE

57, 78 

$3A ($5A)

GIFR

INTF1

INTF0

INTF2

-

-

-

-

-

79

$39 ($59)

TIMSK

TOIE1

OCIE1A

OCIE1B

-

TICIE1

-

TOIE0

OCIE0

93, 124

$38 ($58)

TIFR

TOV1

OCF1A

OCF1B

-

ICF1

-

TOV0

OCF0

93, 125

$37 ($57)

SPMCR

SPMIE

RWWSB

-

RWWSRE

BLBSET

PGWRT

PGERS

SPMEN

170

$36 ($56)

EMCUCR

SM0

SRL2

SRL1

SRL0

SRW01

SRW00

SRW11

ISC2

29,42,78

$35 ($55)

MCUCR

SRE

SRW10

SE

SM1

ISC11

ISC10

ISC01

ISC00

29,41,77

$34 ($54)

MCUCSR

-

-

SM2

-

WDRF

BORF

EXTRF

PORF

41,49

$33 ($53)

TCCR0

FOC0

WGM00

COM01

COM00

WGM01

CS02

CS01

CS00

91

$32 ($52)

TCNT0

Timer/Counter0 (8 Bits)

93

$31 ($51)

OCR0

Timer/Counter0 Output Compare Register

93

$30 ($50)

SFIOR

-

XMBK

XMM2

XMM1

XMM0

PUD

-

PSR10

31,66,96

$2F ($4F)

TCCR1A

COM1A1

COM1A0

COM1B1

COM1B0

FOC1A

FOC1B

WGM11

WGM10

119

$2E ($4E)

TCCR1B

ICNC1

ICES1

-

WGM13

WGM12

CS12

CS11

CS10

122

$2D ($4D)

TCNT1H

Timer/Counter1 - Counter Register High Byte

123

$2C ($4C)

TCNT1L

Timer/Counter1 - Counter Register Low Byte

123

$2B ($4B)

OCR1AH

Timer/Counter1 - Output Compare Register A High Byte

123

$2A ($4A)

OCR1AL

Timer/Counter1 - Output Compare Register A Low Byte

123

$29 ($49)

OCR1BH

Timer/Counter1 - Output Compare Register B High Byte

123

$28 ($48)

OCR1BL

Timer/Counter1 - Output Compare Register B Low Byte

123

$27 ($47)

Reserved

-

-

$26 ($46)

Reserved

-

-

$25 ($45)

ICR1H

Timer/Counter1 - Input Capture Register High Byte

124

$24 ($44)

ICR1L

Timer/Counter1 - Input Capture Register Low Byte

124

$23 ($43)

Reserved

-

-

$22 ($42)

Reserved

-

-

$21 ($41)

WDTCR

-

-

-

WDCE

WDE

WDP2

WDP1

WDP0

51

$20

(1)

 ($40)

(1)

UBRRH

URSEL

-

-

-

UBRR[11:8]

159

UCSRC

URSEL

UMSEL

UPM1

UPM0

USBS

UCSZ1

UCSZ0

UCPOL

157

$1F ($3F)

EEARH

-

-

-

-

-

-

-

EEAR8

19

$1E ($3E)

EEARL

EEPROM Address Register Low Byte

19

$1D ($3D)

EEDR

EEPROM Data Register

20

$1C ($3C)

EECR

-

-

-

-

EERIE

EEMWE

EEWE

EERE

20

$1B ($3B)

PORTA

PORTA7

PORTA6

PORTA5

PORTA4

PORTA3

PORTA2

PORTA1

PORTA0

75

$1A ($3A)

DDRA

DDA7

DDA6

DDA5

DDA4

DDA3

DDA2

DDA1

DDA0

75

$19 ($39)

PINA

PINA7

PINA6

PINA5

PINA4

PINA3

PINA2

PINA1

PINA0

75

$18 ($38)

PORTB

PORTB7

PORTB6

PORTB5

PORTB4

PORTB3

PORTB2

PORTB1

PORTB0

75

$17 ($37)

DDRB

DDB7

DDB6

DDB5

DDB4

DDB3

DDB2

DDB1

DDB0

75

$16 ($36)

PINB

PINB7

PINB6

PINB5

PINB4

PINB3

PINB2

PINB1

PINB0

75

$15 ($35)

PORTC

PORTC7

PORTC6

PORTC5

PORTC4

PORTC3

PORTC2

PORTC1

PORTC0

75

$14 ($34)

DDRC

DDC7

DDC6

DDC5

DDC4

DDC3

DDC2

DDC1

DDC0

75

$13 ($33)

PINC

PINC7

PINC6

PINC5

PINC4

PINC3

PINC2

PINC1

PINC0

76

$12 ($32)

PORTD

PORTD7

PORTD6

PORTD5

PORTD4

PORTD3

PORTD2

PORTD1

PORTD0

76

$11 ($31)

DDRD

DDD7

DDD6

DDD5

DDD4

DDD3

DDD2

DDD1

DDD0

76

$10 ($30)

PIND

PIND7

PIND6

PIND5

PIND4

PIND3

PIND2

PIND1

PIND0

76

$0F ($2F)

SPDR

 SPI Data Register

133

$0E ($2E)

SPSR

SPIF

WCOL

-

-

-

-

-

SPI2X

133

$0D ($2D)

SPCR

SPIE

SPE

DORD

MSTR

CPOL

CPHA

SPR1

SPR0

131

$0C ($2C)

UDR

 USART I/O Data Register

155

$0B ($2B)

UCSRA

RXC

TXC

UDRE

FE

DOR

PE

U2X

MPCM

155

$0A ($2A)

UCSRB

RXCIE

TXCIE

UDRIE

RXEN

TXEN

UCSZ2

RXB8

TXB8

156

$09 ($29)

UBRRL

 USART Baud Rate Register Low Byte

159

$08 ($28)

ACSR

ACD

ACBG

ACO

ACI

ACIE

ACIC

ACIS1

ACIS0

164

$07 ($27)

PORTE

-

-

-

-

-

PORTE2

PORTE1

PORTE0

76

$06 ($26)

DDRE

-

-

-

-

-

DDE2

DDE1

DDE0

76

$05 ($25)

PINE

-

-

-

-

-

PINE2

PINE1

PINE0

76

$04 ($24)

OSCCAL

Oscillator Calibration Register

39

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2512S-html.html
background image

9

ATmega8515(L)

2512JS–AVR–10/06

3. Some of the Status Flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on

all bits in the I/O Register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions
work with registers $00 to $1F only.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2512S-html.html
background image

10

ATmega8515(L) 

2512JS–AVR–10/06

Instruction Set Summary

Mnemonics

Operands

Description

Operation

Flags

#Clocks

ARITHMETIC AND LOGIC INSTRUCTIONS

ADD

Rd, Rr

Add two Registers

Rd 

← Rd + Rr

Z,C,N,V,H

1

ADC

Rd, Rr

Add with Carry two Registers

Rd 

← Rd + Rr + C

Z,C,N,V,H

1

ADIW

Rdl,K

Add Immediate to Word

Rdh:Rdl 

← Rdh:Rdl + K

Z,C,N,V,S

2

SUB

Rd, Rr

Subtract two Registers

Rd 

← Rd - Rr

Z,C,N,V,H

1

SUBI

Rd, K

Subtract Constant from Register 

Rd 

← Rd - K

Z,C,N,V,H

1

SBC

Rd, Rr

Subtract with Carry two Registers

Rd 

← Rd - Rr - C

Z,C,N,V,H

1

SBCI

Rd, K

Subtract with Carry Constant from Reg.

Rd 

← Rd - K - C

Z,C,N,V,H

1

SBIW

Rdl,K

Subtract Immediate from Word

Rdh:Rdl 

← Rdh:Rdl - K

Z,C,N,V,S

2

AND

Rd, Rr

Logical AND Registers

Rd 

← Rd • Rr

Z,N,V

1

ANDI

Rd, K

Logical AND Register and Constant

Rd 

← Rd • K

Z,N,V

1

OR

Rd, Rr

Logical OR Registers

Rd 

← Rd v Rr

Z,N,V

1

ORI

Rd, K

Logical OR Register and Constant

Rd 

← Rd v K

Z,N,V

1

EOR

Rd, Rr

Exclusive OR Registers

Rd 

← Rd ⊕ Rr

Z,N,V

1

COM

Rd

One’s Complement

Rd 

← $FF − Rd

Z,C,N,V

1

NEG

Rd

Two’s Complement

Rd 

← $00 − Rd

Z,C,N,V,H

1

SBR

Rd,K

Set Bit(s) in Register

Rd 

← Rd v K

Z,N,V

1

CBR

Rd,K

Clear Bit(s) in Register

Rd 

← Rd • ($FF - K)

Z,N,V

1

INC

Rd

Increment

Rd 

← Rd + 1

Z,N,V

1

DEC

Rd

Decrement

Rd 

← Rd − 1 

Z,N,V

1

TST

Rd

Test for Zero or Minus

Rd 

← Rd • Rd 

Z,N,V

1

CLR

Rd

Clear Register

Rd  

← Rd ⊕ Rd

Z,N,V

1

SER

Rd

Set Register

Rd 

← $FF

None

1

MUL

Rd, Rr

Multiply Unsigned

R1:R0 

← Rd x Rr

Z,C

2

MULS

Rd, Rr

Multiply Signed

R1:R0 

← Rd x Rr

Z,C

2

MULSU

Rd, Rr

Multiply Signed with Unsigned

R1:R0 

← Rd x Rr

Z,C

2

FMUL

Rd, Rr

Fractional Multiply Unsigned

R1:R0 

← (Rd x Rr) 

<< 1

Z,C

2

FMULS

Rd, Rr

Fractional Multiply Signed

R1:R0 

← (Rd x Rr) 

<< 1

Z,C

2

FMULSU

Rd, Rr

Fractional Multiply Signed with Unsigned

R1:R0 

← (Rd x Rr) 

<< 1

Z,C

2

BRANCH INSTRUCTIONS

RJMP

k

Relative Jump

PC

 ← PC + k  + 1

None

2

IJMP

Indirect Jump to (Z)

PC 

← Z 

None

2

RCALL

k

Relative Subroutine Call 

PC 

← PC + k + 1

None

3

ICALL

Indirect Call to (Z)

PC 

←  Z

None

3

RET

Subroutine Return

PC 

← STACK

None

4

RETI

Interrupt Return

PC 

← STACK

I

4

CPSE

Rd,Rr

Compare, Skip if Equal

if (Rd = Rr) PC

 ← PC + 2 or 3

None

1/2/3

CP

Rd,Rr

Compare

Rd 

− Rr

Z, N,V,C,H

CPC

Rd,Rr

Compare with Carry

Rd 

− Rr − C

Z, N,V,C,H

1

CPI

Rd,K

Compare Register with Immediate

Rd 

− K

Z, N,V,C,H

1

SBRC

Rr, b

Skip if Bit in Register Cleared

if (Rr(b)=0) PC 

← PC + 2 or 3 

None

1/2/3

SBRS

Rr, b

Skip if Bit in Register is Set

if (Rr(b)=1) PC 

← PC + 2 or 3

None

1/2/3

SBIC

P, b

Skip if Bit in I/O Register Cleared

if (P(b)=0) PC 

← PC + 2 or 3 

None

1/2/3

SBIS

P, b

Skip if Bit in I/O Register is Set

if (P(b)=1) PC 

← PC + 2 or 3

None

1/2/3

BRBS

s, k

Branch if Status Flag Set

if (SREG(s) = 1) then PC

←PC+k + 1

None

1/2

BRBC

s, k

Branch if Status Flag Cleared

if (SREG(s) = 0) then PC

←PC+k + 1

None

1/2

BREQ

 k

Branch if Equal 

if (Z = 1) then PC 

← PC + k + 1

None

1/2

BRNE

 k

Branch if Not Equal

if (Z = 0) then PC 

← PC + k + 1

None

1/2

BRCS

 k

Branch if Carry Set

if (C = 1) then PC 

← PC + k + 1

None

1/2

BRCC

 k

Branch if Carry Cleared

if (C = 0) then PC 

← PC + k + 1

None

1/2

BRSH

 k

Branch if Same or Higher 

if (C = 0) then PC 

← PC + k + 1

None

1/2

BRLO

 k

Branch if Lower

if (C = 1) then PC 

← PC + k + 1

None

1/2

BRMI

 k

Branch if Minus

if (N = 1) then PC 

← PC + k + 1

None

1/2

BRPL

 k

Branch if Plus 

if (N = 0) then PC 

← PC + k + 1

None

1/2

BRGE

 k

Branch if Greater or Equal, Signed

if (N 

⊕ V= 0) then PC ← PC + k + 1

None

1/2

BRLT

 k

Branch if Less Than Zero, Signed

if (N 

⊕ V= 1) then PC ← PC + k + 1

None

1/2

BRHS

 k

Branch if Half Carry Flag Set

if (H = 1) then PC 

← PC + k + 1

None

1/2

BRHC

 k

Branch if Half Carry Flag Cleared

if (H = 0) then PC 

← PC + k + 1

None

1/2

BRTS

 k

Branch if T Flag Set

if (T = 1) then PC 

← PC + k  + 1

None

1/2

BRTC

 k

Branch if T Flag Cleared

if (T = 0) then PC 

← PC + k + 1

None

1/2

BRVS

 k

Branch if Overflow Flag is Set

if (V = 1) then PC 

← PC + k + 1

None

1/2

BRVC

 k

Branch if Overflow Flag is Cleared

if (V = 0) then PC 

← PC + k + 1

None

1/2

BRIE

 k

Branch if Interrupt Enabled

if ( I = 1) then PC 

← PC + k + 1

None

1/2

BRID

 k

Branch if Interrupt Disabled

if ( I = 0) then PC 

← PC + k + 1

None

1/2

Maker
Microchip Technology Inc.
Datasheet PDF Download