ATmega64 - Appendix A - 105ºC Extended

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2490_ATmega64_105-Appendix-html.html
background image

Appendix A - ATmega64 specification at 105

°

C

This document contains information specific to devices operating at temperatures up
to 105

°

C. Only deviations are covered in this appendix, all other information can be

found in the complete datasheet. The complete datasheet can be found on
www.atmel.com

8-bit  

Microcontroller 
with 64K Bytes 
In-System
Programmable 
Flash

ATmega64

Appendix A

2490 - Appendix A–AVR–10/09

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2490_ATmega64_105-Appendix-html.html
background image

2

2490 - Appendix A–AVR–10/09

ATmega64

Electrical Characteristics

Absolute Maximum Ratings*

Operating Temperature.................................. -55

°

C to +125

°

C

*NOTICE:

Stresses beyond those listed under “Absolute 
Maximum Ratings” may cause permanent dam-
age to the device. This is a stress rating only and 
functional operation of the device at these or 
other conditions beyond those indicated in the 
operational sections of this specification is not 
implied. Exposure to absolute maximum rating 
conditions for extended periods may affect device 
reliability.

Storage Temperature ..................................... -65°C to +150°C

Voltage on any Pin except RESET
with respect to Ground ................................-0.5V to V

CC

+0.5V

Voltage on RESET with respect to Ground......-0.5V to +13.0V

Maximum Operating Voltage ............................................ 6.0V

DC Current per I/O Pin ............................................... 40.0 mA

DC Current 

V

CC

 and GND Pins................................ 200.0 mA

DC Characteristics

T

A

 = -40

°

C to 105

°

C, V

CC

 = 2.7V to 5.5V (unless otherwise noted) 

Symbol

Parameter

Condition

Min

Typ

Max

Units

V

IL

Input Low Voltage

Except XTAL1 and 
RESET pins

-0.5

0.2 V

CC

(1)

V

V

IL1

Input Low Voltage

XTAL1 pin, External 
Clock Selected

-0.5

0.1 V

CC

(1)

V

V

IL2

Input Low Voltage

RESET pin

-0.5

0.2 V

CC

(1)

V

V

IH

Input High Voltage

Except XTAL1 and 
RESET pins

0.6 V

CC

(2)

V

CC

 + 0.5

V

V

IH1

Input High Voltage

XTAL1 pin, External 
Clock Selected

0.7 V

CC

(2)

V

CC

 + 0.5

V

V

IH2

Input High Voltage

RESET pin

0.85 V

CC

(2)

V

CC

 + 0.5

V

V

OL

Output Low Voltage

(3)

(Ports A,B,C,D, E, F, G)

I

OL

 = 20 mA, V

CC

 = 5V

I

OL

 = 10 mA, V

CC

 = 3V

0.9
0.6

V
V

V

OH

Output High Voltage

(4)

(Ports A,B,C,D, E, F, G))

I

OH

 = -20 mA, V

CC

 = 5V

I

OH

 = -10 mA, V

CC

 = 3V

4.1
2.1

V
V

I

IL

Input Leakage
Current I/O Pin

Vcc = 5.5V, pin low
(absolute value)

1.0

µA

I

IH

Input Leakage
Current I/O Pin

Vcc = 5.5V, pin high
(absolute value)

1.0

µA

R

RST

Reset Pull-up Resistor

30

60

k

Ω

R

PEN

PEN Pull-up Resistor

20

60

k

Ω

R

PU

I/O Pin Pull-up Resistor

20

50

k

Ω

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2490_ATmega64_105-Appendix-html.html
background image

3

2490 - Appendix A–AVR–10/09

ATmega64

Notes:

1. “Max” means the highest value where the pin is guaranteed to be read as low
2. “Min” means the lowest value where the pin is guaranteed to be read as high
3. Although each I/O port can sink more than the test conditions (20 mA at V

CC

 = 5V, 10 mA at V

CC

 = 3V) under steady state

conditions (non-transient), the following must be observed:
TQFP and QFN/MLF Package:
1] The sum of all IOL, for all ports, should not exceed 400 mA.
2] The sum of all IOL, for ports A0 - A7, G2, C3 - C7 should not exceed 100 mA.
3] The sum of all IOL, for ports C0 - C2, G0 - G1, D0 - D7, XTAL2 should not exceed 100 mA.
4] The sum of all IOL, for ports B0 - B7, G3 - G4, E0 - E7 should not exceed 100 mA.
5] The sum of all IOL, for ports F0 - F7, should not exceed 100 mA.
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater
than the listed test condition.

4. Although each I/O port can source more than the test conditions (20 mA at Vcc = 5V, 10 mA at Vcc = 3V) under steady state

conditions (non-transient), the following must be observed:
TQFP and QFN/MLF Package:
1] The sum of all IOH, for all ports, should not exceed 400 mA.
2] The sum of all IOH, for ports A0 - A7, G2, C3 - C7 should not exceed 100 mA.
3] The sum of all IOH, for ports C0 - C2, G0 - G1, D0 - D7, XTAL2 should not exceed 100 mA.
4] The sum of all IOH, for ports B0 - B7, G3 - G4, E0 - E7 should not exceed 100 mA.
5] The sum of all IOH, for ports F0 - F7, should not exceed 100 mA.
If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current
greater than the listed test condition.

5. Minimum V

CC

 for Power-down is 2.5V.

I

CC

Power Supply Current

Active 4 MHz, V

CC

 = 3V

5

mA

Active 8 MHz, V

CC

 = 5V

20

mA

Idle 4 MHz, V

CC

 = 3V

3

mA

Idle 8 MHz, V

CC

 = 5V

12

mA

Power-down mode

(5)

WDT enabled, V

CC

 = 3V

< 15

30

µA

WDT disabled, V

CC

 = 3V

< 5

20

µA

V

ACIO

Analog Comparator 
Input Offset Voltage

V

CC

 = 5V

V

in

 = V

CC

/2

-40

40

mV

I

ACLK

Analog Comparator 
Input Leakage Current

V

CC

 = 5V

V

in

 = V

CC

/2

-50

50

nA

t

ACPD

Analog Comparator 
Propagation Delay

V

CC

 = 2.7V

V

CC

 = 5.0

750
500

ns

DC Characteristics

T

A

 = -40

°

C to 105

°

C, V

CC

 = 2.7V to 5.5V (unless otherwise noted)  (Continued)

Symbol

Parameter

Condition

Min

Typ

Max

Units

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2490_ATmega64_105-Appendix-html.html
background image

4

2490 - Appendix A–AVR–10/09

ATmega64

ATmega64 
Typical 
Characteristics 
– Preliminary 
Data

The following charts show typical behavior. These figures are not tested during manufacturing.
All current consumption measurements are performed with all I/O pins configured as inputs and
with internal pull-ups enabled. A sine wave generator with rail-to-rail output is used as clock
source.

The power consumption in Power-down mode is independent of clock selection.

The current consumption is a function of several factors such as: operating voltage, operating
frequency, loading of I/O pins, switching rate of I/O pins, code executed and ambient tempera-
ture. The dominating factors are operating voltage and frequency.

The current drawn from capacitive loaded pins may be estimated (for one pin) as C

L

*

V

CC

*f where

C

L

 = load capacitance, V

CC

 = operating voltage and f = average switching frequency of I/O pin.

The parts are characterized at frequencies higher than test limits. Parts are not guaranteed to
function properly at frequencies higher than the ordering code indicates.

The difference between current consumption in Power-down mode with Watchdog Timer
enabled and Power-down mode with Watchdog Timer disabled represents the differential cur-
rent drawn by the Watchdog Timer.

Active Supply Current

Figure 1.  Active Supply Current vs. V

CC

 (Internal RC Oscillator, 8 MHz)

ACTIVE SUPPLY CURRENT vs. Vcc

INTERNAL RC OSCILLATOR, 8 MHz

105 °C

85 °C

25 °C

-40 °C

6

8

10

12

14

16

18

20

2.5

3

3.5

4

4.5

5

5.5

Vcc (V)

I cc

 (mA)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2490_ATmega64_105-Appendix-html.html
background image

5

2490 - Appendix A–AVR–10/09

ATmega64

Figure 2.  Active Supply Current vs. V

CC

 (Internal RC Oscillator, 4 MHz)

Figure 3.  Active Supply Current vs. V

CC

 (Internal RC Oscillator, 2 kHz)

ACTIVE SUPPLY CURRENT vs. Vcc

INTERNAL RC OSCILLATOR, 4 MHz

105 °C

85 °C

25 °C

-40 °C

Vcc (V)

I cc

 (mA)

3

4

5

6

7

8

9

10

11

2,5

3

3,5

4

4,5

5

5,5

ACTIVE SUPPLY CURRENT vs. Vcc

INTERNAL RC OSCILLATOR, 2 MHz

105 °C

85 °C

25 °C

-40 °C

2

2.5

3

3.5

4

4.5

5

5.5

2.5

3

3.5

4

4.5

5

5.5

Vcc (V)

I cc

 (mA)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2490_ATmega64_105-Appendix-html.html
background image

6

2490 - Appendix A–AVR–10/09

ATmega64

Figure 4.  Active Supply Current vs. V

CC

 (Internal RC Oscillator, 1 kHz)

Figure 5.  Active Supply Current vs. V

CC

 (Internal RC Oscillator, 1 kHz)

ACTIVE SUPPLY CURRENT vs. Vcc

INTERNAL RC OSCILLATOR, 1 MHz

105 °C

85 °C

25 °C

-40 °C

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

2.5

3

3.5

4

4.5

5

5.5

Vcc (V)

I cc

 (mA)

ACTIVE SUPPLY CURRENT vs. Vcc

INTERNAL RC OSCILLATOR, 1 MHz

105 °C

85 °C

25 °C

-40 °C

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

2.5

3

3.5

4

4.5

5

5.5

Vcc (V)

I cc

 (mA)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2490_ATmega64_105-Appendix-html.html
background image

7

2490 - Appendix A–AVR–10/09

ATmega64

Idle Supply Current

Figure 6.  Idle Supply Current vs. V

CC

 (Internal RC Oscillator, 1 MHz)

Figure 7.  Idle Supply Current vs. V

CC

 (Internal RC Oscillator, 2 MHz)

IDLE SUPPLY CURRENT vs. Vcc

INTERNAL RC OSCILLATOR, 1 MHz

105 °C

85 °C

25 °C

-40 °C

0.4

0.6

0.8

1

1.2

1.4

1.6

2.5

3

3.5

4

4.5

5

5.5

Vcc (V)

I cc

 (mA)

IDLE SUPPLY CURRENT vs. Vcc

INTERNAL RC OSCILLATOR, 2 MHz

105 °C

85 °C

25 °C

-40 °C

0.5

1

1.5

2

2.5

3

2.5

3

3.5

4

4.5

5

5.5

Vcc (V)

I cc

 (mA)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2490_ATmega64_105-Appendix-html.html
background image

8

2490 - Appendix A–AVR–10/09

ATmega64

Figure 8.  Idle Supply Current vs. V

CC

 (Internal RC Oscillator, 4 MHz)

Figure 9.  Idle Supply Current vs. V

CC

 (Internal RC Oscillator, 8 MHz)

IDLE SUPPLY CURRENT vs. Vcc

INTERNAL RC OSCILLATOR, 4 MHz

105 °C

85 °C

25 °C

-40 °C

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

2.5

3

3.5

4

4.5

5

5.5

Vcc (V)

I cc

 (mA)

IDLE SUPPLY CURRENT vs. Vcc

INTERNAL RC OSCILLATOR, 8 MHz

105 °C

85 °C

25 °C

-40 °C

3

4

5

6

7

8

9

10

11

2.5

3

3.5

4

4.5

5

5.5

Vcc (V)

I cc

 (mA)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2490_ATmega64_105-Appendix-html.html
background image

9

2490 - Appendix A–AVR–10/09

ATmega64

Power-Down Supply 
Current

Figure 10.  Power-Down Supply Current vs. V

CC

 (Watchdog Timer Disabled)

Figure 11.  Power-Down Supply Current vs. V

CC

 (Watchdog Timer Enabled)

POWER-DOWN SUPPLY CURRENT vs. Vcc

WATCHDOG TIMER DISABLED

105 °C

85 °C

25 °C

-40 °C

0

1

2

3

4

5

6

7

8

9

2.5

3

3.5

4

4.5

5

5.5

Vcc (V)

I cc

 (uA

)

POWER-DOWN SUPPLY CURRENT vs. Vcc

WATCHDOG TIMER ENABLED

105 °C

85 °C

25 °C

-40 °C

0

5

10

15

20

25

30

2.5

3

3.5

4

4.5

5

5.5

Vcc (V)

I cc

 (uA)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2490_ATmega64_105-Appendix-html.html
background image

10

2490 - Appendix A–AVR–10/09

ATmega64

Pin Pull-up

Figure 12.  I/O Pin Pull-Up Resistor Current vs. Input Voltage (V

CC

 = 5V)

Figure 13.  I/O Pin Pull-Up Resistor Current vs. Input Voltage (V

CC

 = 2.7V)

I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE

Vcc = 5V

105 °C

85 °C

25 °C

-40 °C

0

20

40

60

80

100

120

140

160

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

V

OP

 (V)

I

OP

 (uA)

I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE

Vcc = 2.7V

105 °C

85 °C

25 °C

-40 °C

0

10

20

30

40

50

60

70

80

0

0.5

1

1.5

2

2.5

3

V

OP

 (V)

I

OP

 (uA)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2490_ATmega64_105-Appendix-html.html
background image

Appendix A - ATmega64 specification at 105

°

C

This document contains information specific to devices operating at temperatures up
to 105

°

C. Only deviations are covered in this appendix, all other information can be

found in the complete datasheet. The complete datasheet can be found on
www.atmel.com

8-bit  

Microcontroller 
with 64K Bytes 
In-System
Programmable 
Flash

ATmega64

Appendix A

2490 - Appendix A–AVR–10/09

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2490_ATmega64_105-Appendix-html.html
background image

2

2490 - Appendix A–AVR–10/09

ATmega64

Electrical Characteristics

Absolute Maximum Ratings*

Operating Temperature.................................. -55

°

C to +125

°

C

*NOTICE:

Stresses beyond those listed under “Absolute 
Maximum Ratings” may cause permanent dam-
age to the device. This is a stress rating only and 
functional operation of the device at these or 
other conditions beyond those indicated in the 
operational sections of this specification is not 
implied. Exposure to absolute maximum rating 
conditions for extended periods may affect device 
reliability.

Storage Temperature ..................................... -65°C to +150°C

Voltage on any Pin except RESET
with respect to Ground ................................-0.5V to V

CC

+0.5V

Voltage on RESET with respect to Ground......-0.5V to +13.0V

Maximum Operating Voltage ............................................ 6.0V

DC Current per I/O Pin ............................................... 40.0 mA

DC Current 

V

CC

 and GND Pins................................ 200.0 mA

DC Characteristics

T

A

 = -40

°

C to 105

°

C, V

CC

 = 2.7V to 5.5V (unless otherwise noted) 

Symbol

Parameter

Condition

Min

Typ

Max

Units

V

IL

Input Low Voltage

Except XTAL1 and 
RESET pins

-0.5

0.2 V

CC

(1)

V

V

IL1

Input Low Voltage

XTAL1 pin, External 
Clock Selected

-0.5

0.1 V

CC

(1)

V

V

IL2

Input Low Voltage

RESET pin

-0.5

0.2 V

CC

(1)

V

V

IH

Input High Voltage

Except XTAL1 and 
RESET pins

0.6 V

CC

(2)

V

CC

 + 0.5

V

V

IH1

Input High Voltage

XTAL1 pin, External 
Clock Selected

0.7 V

CC

(2)

V

CC

 + 0.5

V

V

IH2

Input High Voltage

RESET pin

0.85 V

CC

(2)

V

CC

 + 0.5

V

V

OL

Output Low Voltage

(3)

(Ports A,B,C,D, E, F, G)

I

OL

 = 20 mA, V

CC

 = 5V

I

OL

 = 10 mA, V

CC

 = 3V

0.9
0.6

V
V

V

OH

Output High Voltage

(4)

(Ports A,B,C,D, E, F, G))

I

OH

 = -20 mA, V

CC

 = 5V

I

OH

 = -10 mA, V

CC

 = 3V

4.1
2.1

V
V

I

IL

Input Leakage
Current I/O Pin

Vcc = 5.5V, pin low
(absolute value)

1.0

µA

I

IH

Input Leakage
Current I/O Pin

Vcc = 5.5V, pin high
(absolute value)

1.0

µA

R

RST

Reset Pull-up Resistor

30

60

k

Ω

R

PEN

PEN Pull-up Resistor

20

60

k

Ω

R

PU

I/O Pin Pull-up Resistor

20

50

k

Ω

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2490_ATmega64_105-Appendix-html.html
background image

3

2490 - Appendix A–AVR–10/09

ATmega64

Notes:

1. “Max” means the highest value where the pin is guaranteed to be read as low
2. “Min” means the lowest value where the pin is guaranteed to be read as high
3. Although each I/O port can sink more than the test conditions (20 mA at V

CC

 = 5V, 10 mA at V

CC

 = 3V) under steady state

conditions (non-transient), the following must be observed:
TQFP and QFN/MLF Package:
1] The sum of all IOL, for all ports, should not exceed 400 mA.
2] The sum of all IOL, for ports A0 - A7, G2, C3 - C7 should not exceed 100 mA.
3] The sum of all IOL, for ports C0 - C2, G0 - G1, D0 - D7, XTAL2 should not exceed 100 mA.
4] The sum of all IOL, for ports B0 - B7, G3 - G4, E0 - E7 should not exceed 100 mA.
5] The sum of all IOL, for ports F0 - F7, should not exceed 100 mA.
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater
than the listed test condition.

4. Although each I/O port can source more than the test conditions (20 mA at Vcc = 5V, 10 mA at Vcc = 3V) under steady state

conditions (non-transient), the following must be observed:
TQFP and QFN/MLF Package:
1] The sum of all IOH, for all ports, should not exceed 400 mA.
2] The sum of all IOH, for ports A0 - A7, G2, C3 - C7 should not exceed 100 mA.
3] The sum of all IOH, for ports C0 - C2, G0 - G1, D0 - D7, XTAL2 should not exceed 100 mA.
4] The sum of all IOH, for ports B0 - B7, G3 - G4, E0 - E7 should not exceed 100 mA.
5] The sum of all IOH, for ports F0 - F7, should not exceed 100 mA.
If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current
greater than the listed test condition.

5. Minimum V

CC

 for Power-down is 2.5V.

I

CC

Power Supply Current

Active 4 MHz, V

CC

 = 3V

5

mA

Active 8 MHz, V

CC

 = 5V

20

mA

Idle 4 MHz, V

CC

 = 3V

3

mA

Idle 8 MHz, V

CC

 = 5V

12

mA

Power-down mode

(5)

WDT enabled, V

CC

 = 3V

< 15

30

µA

WDT disabled, V

CC

 = 3V

< 5

20

µA

V

ACIO

Analog Comparator 
Input Offset Voltage

V

CC

 = 5V

V

in

 = V

CC

/2

-40

40

mV

I

ACLK

Analog Comparator 
Input Leakage Current

V

CC

 = 5V

V

in

 = V

CC

/2

-50

50

nA

t

ACPD

Analog Comparator 
Propagation Delay

V

CC

 = 2.7V

V

CC

 = 5.0

750
500

ns

DC Characteristics

T

A

 = -40

°

C to 105

°

C, V

CC

 = 2.7V to 5.5V (unless otherwise noted)  (Continued)

Symbol

Parameter

Condition

Min

Typ

Max

Units

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2490_ATmega64_105-Appendix-html.html
background image

4

2490 - Appendix A–AVR–10/09

ATmega64

ATmega64 
Typical 
Characteristics 
– Preliminary 
Data

The following charts show typical behavior. These figures are not tested during manufacturing.
All current consumption measurements are performed with all I/O pins configured as inputs and
with internal pull-ups enabled. A sine wave generator with rail-to-rail output is used as clock
source.

The power consumption in Power-down mode is independent of clock selection.

The current consumption is a function of several factors such as: operating voltage, operating
frequency, loading of I/O pins, switching rate of I/O pins, code executed and ambient tempera-
ture. The dominating factors are operating voltage and frequency.

The current drawn from capacitive loaded pins may be estimated (for one pin) as C

L

*

V

CC

*f where

C

L

 = load capacitance, V

CC

 = operating voltage and f = average switching frequency of I/O pin.

The parts are characterized at frequencies higher than test limits. Parts are not guaranteed to
function properly at frequencies higher than the ordering code indicates.

The difference between current consumption in Power-down mode with Watchdog Timer
enabled and Power-down mode with Watchdog Timer disabled represents the differential cur-
rent drawn by the Watchdog Timer.

Active Supply Current

Figure 1.  Active Supply Current vs. V

CC

 (Internal RC Oscillator, 8 MHz)

ACTIVE SUPPLY CURRENT vs. Vcc

INTERNAL RC OSCILLATOR, 8 MHz

105 °C

85 °C

25 °C

-40 °C

6

8

10

12

14

16

18

20

2.5

3

3.5

4

4.5

5

5.5

Vcc (V)

I cc

 (mA)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2490_ATmega64_105-Appendix-html.html
background image

5

2490 - Appendix A–AVR–10/09

ATmega64

Figure 2.  Active Supply Current vs. V

CC

 (Internal RC Oscillator, 4 MHz)

Figure 3.  Active Supply Current vs. V

CC

 (Internal RC Oscillator, 2 kHz)

ACTIVE SUPPLY CURRENT vs. Vcc

INTERNAL RC OSCILLATOR, 4 MHz

105 °C

85 °C

25 °C

-40 °C

Vcc (V)

I cc

 (mA)

3

4

5

6

7

8

9

10

11

2,5

3

3,5

4

4,5

5

5,5

ACTIVE SUPPLY CURRENT vs. Vcc

INTERNAL RC OSCILLATOR, 2 MHz

105 °C

85 °C

25 °C

-40 °C

2

2.5

3

3.5

4

4.5

5

5.5

2.5

3

3.5

4

4.5

5

5.5

Vcc (V)

I cc

 (mA)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2490_ATmega64_105-Appendix-html.html
background image

6

2490 - Appendix A–AVR–10/09

ATmega64

Figure 4.  Active Supply Current vs. V

CC

 (Internal RC Oscillator, 1 kHz)

Figure 5.  Active Supply Current vs. V

CC

 (Internal RC Oscillator, 1 kHz)

ACTIVE SUPPLY CURRENT vs. Vcc

INTERNAL RC OSCILLATOR, 1 MHz

105 °C

85 °C

25 °C

-40 °C

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

2.5

3

3.5

4

4.5

5

5.5

Vcc (V)

I cc

 (mA)

ACTIVE SUPPLY CURRENT vs. Vcc

INTERNAL RC OSCILLATOR, 1 MHz

105 °C

85 °C

25 °C

-40 °C

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

2.5

3

3.5

4

4.5

5

5.5

Vcc (V)

I cc

 (mA)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2490_ATmega64_105-Appendix-html.html
background image

7

2490 - Appendix A–AVR–10/09

ATmega64

Idle Supply Current

Figure 6.  Idle Supply Current vs. V

CC

 (Internal RC Oscillator, 1 MHz)

Figure 7.  Idle Supply Current vs. V

CC

 (Internal RC Oscillator, 2 MHz)

IDLE SUPPLY CURRENT vs. Vcc

INTERNAL RC OSCILLATOR, 1 MHz

105 °C

85 °C

25 °C

-40 °C

0.4

0.6

0.8

1

1.2

1.4

1.6

2.5

3

3.5

4

4.5

5

5.5

Vcc (V)

I cc

 (mA)

IDLE SUPPLY CURRENT vs. Vcc

INTERNAL RC OSCILLATOR, 2 MHz

105 °C

85 °C

25 °C

-40 °C

0.5

1

1.5

2

2.5

3

2.5

3

3.5

4

4.5

5

5.5

Vcc (V)

I cc

 (mA)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2490_ATmega64_105-Appendix-html.html
background image

8

2490 - Appendix A–AVR–10/09

ATmega64

Figure 8.  Idle Supply Current vs. V

CC

 (Internal RC Oscillator, 4 MHz)

Figure 9.  Idle Supply Current vs. V

CC

 (Internal RC Oscillator, 8 MHz)

IDLE SUPPLY CURRENT vs. Vcc

INTERNAL RC OSCILLATOR, 4 MHz

105 °C

85 °C

25 °C

-40 °C

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

2.5

3

3.5

4

4.5

5

5.5

Vcc (V)

I cc

 (mA)

IDLE SUPPLY CURRENT vs. Vcc

INTERNAL RC OSCILLATOR, 8 MHz

105 °C

85 °C

25 °C

-40 °C

3

4

5

6

7

8

9

10

11

2.5

3

3.5

4

4.5

5

5.5

Vcc (V)

I cc

 (mA)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2490_ATmega64_105-Appendix-html.html
background image

9

2490 - Appendix A–AVR–10/09

ATmega64

Power-Down Supply 
Current

Figure 10.  Power-Down Supply Current vs. V

CC

 (Watchdog Timer Disabled)

Figure 11.  Power-Down Supply Current vs. V

CC

 (Watchdog Timer Enabled)

POWER-DOWN SUPPLY CURRENT vs. Vcc

WATCHDOG TIMER DISABLED

105 °C

85 °C

25 °C

-40 °C

0

1

2

3

4

5

6

7

8

9

2.5

3

3.5

4

4.5

5

5.5

Vcc (V)

I cc

 (uA

)

POWER-DOWN SUPPLY CURRENT vs. Vcc

WATCHDOG TIMER ENABLED

105 °C

85 °C

25 °C

-40 °C

0

5

10

15

20

25

30

2.5

3

3.5

4

4.5

5

5.5

Vcc (V)

I cc

 (uA)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2490_ATmega64_105-Appendix-html.html
background image

10

2490 - Appendix A–AVR–10/09

ATmega64

Pin Pull-up

Figure 12.  I/O Pin Pull-Up Resistor Current vs. Input Voltage (V

CC

 = 5V)

Figure 13.  I/O Pin Pull-Up Resistor Current vs. Input Voltage (V

CC

 = 2.7V)

I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE

Vcc = 5V

105 °C

85 °C

25 °C

-40 °C

0

20

40

60

80

100

120

140

160

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

V

OP

 (V)

I

OP

 (uA)

I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE

Vcc = 2.7V

105 °C

85 °C

25 °C

-40 °C

0

10

20

30

40

50

60

70

80

0

0.5

1

1.5

2

2.5

3

V

OP

 (V)

I

OP

 (uA)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2490_ATmega64_105-Appendix-html.html
background image

Appendix A - ATmega64 specification at 105

°

C

This document contains information specific to devices operating at temperatures up
to 105

°

C. Only deviations are covered in this appendix, all other information can be

found in the complete datasheet. The complete datasheet can be found on
www.atmel.com

8-bit  

Microcontroller 
with 64K Bytes 
In-System
Programmable 
Flash

ATmega64

Appendix A

2490 - Appendix A–AVR–10/09

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2490_ATmega64_105-Appendix-html.html
background image

2

2490 - Appendix A–AVR–10/09

ATmega64

Electrical Characteristics

Absolute Maximum Ratings*

Operating Temperature.................................. -55

°

C to +125

°

C

*NOTICE:

Stresses beyond those listed under “Absolute 
Maximum Ratings” may cause permanent dam-
age to the device. This is a stress rating only and 
functional operation of the device at these or 
other conditions beyond those indicated in the 
operational sections of this specification is not 
implied. Exposure to absolute maximum rating 
conditions for extended periods may affect device 
reliability.

Storage Temperature ..................................... -65°C to +150°C

Voltage on any Pin except RESET
with respect to Ground ................................-0.5V to V

CC

+0.5V

Voltage on RESET with respect to Ground......-0.5V to +13.0V

Maximum Operating Voltage ............................................ 6.0V

DC Current per I/O Pin ............................................... 40.0 mA

DC Current 

V

CC

 and GND Pins................................ 200.0 mA

DC Characteristics

T

A

 = -40

°

C to 105

°

C, V

CC

 = 2.7V to 5.5V (unless otherwise noted) 

Symbol

Parameter

Condition

Min

Typ

Max

Units

V

IL

Input Low Voltage

Except XTAL1 and 
RESET pins

-0.5

0.2 V

CC

(1)

V

V

IL1

Input Low Voltage

XTAL1 pin, External 
Clock Selected

-0.5

0.1 V

CC

(1)

V

V

IL2

Input Low Voltage

RESET pin

-0.5

0.2 V

CC

(1)

V

V

IH

Input High Voltage

Except XTAL1 and 
RESET pins

0.6 V

CC

(2)

V

CC

 + 0.5

V

V

IH1

Input High Voltage

XTAL1 pin, External 
Clock Selected

0.7 V

CC

(2)

V

CC

 + 0.5

V

V

IH2

Input High Voltage

RESET pin

0.85 V

CC

(2)

V

CC

 + 0.5

V

V

OL

Output Low Voltage

(3)

(Ports A,B,C,D, E, F, G)

I

OL

 = 20 mA, V

CC

 = 5V

I

OL

 = 10 mA, V

CC

 = 3V

0.9
0.6

V
V

V

OH

Output High Voltage

(4)

(Ports A,B,C,D, E, F, G))

I

OH

 = -20 mA, V

CC

 = 5V

I

OH

 = -10 mA, V

CC

 = 3V

4.1
2.1

V
V

I

IL

Input Leakage
Current I/O Pin

Vcc = 5.5V, pin low
(absolute value)

1.0

µA

I

IH

Input Leakage
Current I/O Pin

Vcc = 5.5V, pin high
(absolute value)

1.0

µA

R

RST

Reset Pull-up Resistor

30

60

k

Ω

R

PEN

PEN Pull-up Resistor

20

60

k

Ω

R

PU

I/O Pin Pull-up Resistor

20

50

k

Ω

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2490_ATmega64_105-Appendix-html.html
background image

3

2490 - Appendix A–AVR–10/09

ATmega64

Notes:

1. “Max” means the highest value where the pin is guaranteed to be read as low
2. “Min” means the lowest value where the pin is guaranteed to be read as high
3. Although each I/O port can sink more than the test conditions (20 mA at V

CC

 = 5V, 10 mA at V

CC

 = 3V) under steady state

conditions (non-transient), the following must be observed:
TQFP and QFN/MLF Package:
1] The sum of all IOL, for all ports, should not exceed 400 mA.
2] The sum of all IOL, for ports A0 - A7, G2, C3 - C7 should not exceed 100 mA.
3] The sum of all IOL, for ports C0 - C2, G0 - G1, D0 - D7, XTAL2 should not exceed 100 mA.
4] The sum of all IOL, for ports B0 - B7, G3 - G4, E0 - E7 should not exceed 100 mA.
5] The sum of all IOL, for ports F0 - F7, should not exceed 100 mA.
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater
than the listed test condition.

4. Although each I/O port can source more than the test conditions (20 mA at Vcc = 5V, 10 mA at Vcc = 3V) under steady state

conditions (non-transient), the following must be observed:
TQFP and QFN/MLF Package:
1] The sum of all IOH, for all ports, should not exceed 400 mA.
2] The sum of all IOH, for ports A0 - A7, G2, C3 - C7 should not exceed 100 mA.
3] The sum of all IOH, for ports C0 - C2, G0 - G1, D0 - D7, XTAL2 should not exceed 100 mA.
4] The sum of all IOH, for ports B0 - B7, G3 - G4, E0 - E7 should not exceed 100 mA.
5] The sum of all IOH, for ports F0 - F7, should not exceed 100 mA.
If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current
greater than the listed test condition.

5. Minimum V

CC

 for Power-down is 2.5V.

I

CC

Power Supply Current

Active 4 MHz, V

CC

 = 3V

5

mA

Active 8 MHz, V

CC

 = 5V

20

mA

Idle 4 MHz, V

CC

 = 3V

3

mA

Idle 8 MHz, V

CC

 = 5V

12

mA

Power-down mode

(5)

WDT enabled, V

CC

 = 3V

< 15

30

µA

WDT disabled, V

CC

 = 3V

< 5

20

µA

V

ACIO

Analog Comparator 
Input Offset Voltage

V

CC

 = 5V

V

in

 = V

CC

/2

-40

40

mV

I

ACLK

Analog Comparator 
Input Leakage Current

V

CC

 = 5V

V

in

 = V

CC

/2

-50

50

nA

t

ACPD

Analog Comparator 
Propagation Delay

V

CC

 = 2.7V

V

CC

 = 5.0

750
500

ns

DC Characteristics

T

A

 = -40

°

C to 105

°

C, V

CC

 = 2.7V to 5.5V (unless otherwise noted)  (Continued)

Symbol

Parameter

Condition

Min

Typ

Max

Units

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2490_ATmega64_105-Appendix-html.html
background image

4

2490 - Appendix A–AVR–10/09

ATmega64

ATmega64 
Typical 
Characteristics 
– Preliminary 
Data

The following charts show typical behavior. These figures are not tested during manufacturing.
All current consumption measurements are performed with all I/O pins configured as inputs and
with internal pull-ups enabled. A sine wave generator with rail-to-rail output is used as clock
source.

The power consumption in Power-down mode is independent of clock selection.

The current consumption is a function of several factors such as: operating voltage, operating
frequency, loading of I/O pins, switching rate of I/O pins, code executed and ambient tempera-
ture. The dominating factors are operating voltage and frequency.

The current drawn from capacitive loaded pins may be estimated (for one pin) as C

L

*

V

CC

*f where

C

L

 = load capacitance, V

CC

 = operating voltage and f = average switching frequency of I/O pin.

The parts are characterized at frequencies higher than test limits. Parts are not guaranteed to
function properly at frequencies higher than the ordering code indicates.

The difference between current consumption in Power-down mode with Watchdog Timer
enabled and Power-down mode with Watchdog Timer disabled represents the differential cur-
rent drawn by the Watchdog Timer.

Active Supply Current

Figure 1.  Active Supply Current vs. V

CC

 (Internal RC Oscillator, 8 MHz)

ACTIVE SUPPLY CURRENT vs. Vcc

INTERNAL RC OSCILLATOR, 8 MHz

105 °C

85 °C

25 °C

-40 °C

6

8

10

12

14

16

18

20

2.5

3

3.5

4

4.5

5

5.5

Vcc (V)

I cc

 (mA)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2490_ATmega64_105-Appendix-html.html
background image

5

2490 - Appendix A–AVR–10/09

ATmega64

Figure 2.  Active Supply Current vs. V

CC

 (Internal RC Oscillator, 4 MHz)

Figure 3.  Active Supply Current vs. V

CC

 (Internal RC Oscillator, 2 kHz)

ACTIVE SUPPLY CURRENT vs. Vcc

INTERNAL RC OSCILLATOR, 4 MHz

105 °C

85 °C

25 °C

-40 °C

Vcc (V)

I cc

 (mA)

3

4

5

6

7

8

9

10

11

2,5

3

3,5

4

4,5

5

5,5

ACTIVE SUPPLY CURRENT vs. Vcc

INTERNAL RC OSCILLATOR, 2 MHz

105 °C

85 °C

25 °C

-40 °C

2

2.5

3

3.5

4

4.5

5

5.5

2.5

3

3.5

4

4.5

5

5.5

Vcc (V)

I cc

 (mA)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2490_ATmega64_105-Appendix-html.html
background image

6

2490 - Appendix A–AVR–10/09

ATmega64

Figure 4.  Active Supply Current vs. V

CC

 (Internal RC Oscillator, 1 kHz)

Figure 5.  Active Supply Current vs. V

CC

 (Internal RC Oscillator, 1 kHz)

ACTIVE SUPPLY CURRENT vs. Vcc

INTERNAL RC OSCILLATOR, 1 MHz

105 °C

85 °C

25 °C

-40 °C

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

2.5

3

3.5

4

4.5

5

5.5

Vcc (V)

I cc

 (mA)

ACTIVE SUPPLY CURRENT vs. Vcc

INTERNAL RC OSCILLATOR, 1 MHz

105 °C

85 °C

25 °C

-40 °C

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

2.5

3

3.5

4

4.5

5

5.5

Vcc (V)

I cc

 (mA)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2490_ATmega64_105-Appendix-html.html
background image

7

2490 - Appendix A–AVR–10/09

ATmega64

Idle Supply Current

Figure 6.  Idle Supply Current vs. V

CC

 (Internal RC Oscillator, 1 MHz)

Figure 7.  Idle Supply Current vs. V

CC

 (Internal RC Oscillator, 2 MHz)

IDLE SUPPLY CURRENT vs. Vcc

INTERNAL RC OSCILLATOR, 1 MHz

105 °C

85 °C

25 °C

-40 °C

0.4

0.6

0.8

1

1.2

1.4

1.6

2.5

3

3.5

4

4.5

5

5.5

Vcc (V)

I cc

 (mA)

IDLE SUPPLY CURRENT vs. Vcc

INTERNAL RC OSCILLATOR, 2 MHz

105 °C

85 °C

25 °C

-40 °C

0.5

1

1.5

2

2.5

3

2.5

3

3.5

4

4.5

5

5.5

Vcc (V)

I cc

 (mA)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2490_ATmega64_105-Appendix-html.html
background image

8

2490 - Appendix A–AVR–10/09

ATmega64

Figure 8.  Idle Supply Current vs. V

CC

 (Internal RC Oscillator, 4 MHz)

Figure 9.  Idle Supply Current vs. V

CC

 (Internal RC Oscillator, 8 MHz)

IDLE SUPPLY CURRENT vs. Vcc

INTERNAL RC OSCILLATOR, 4 MHz

105 °C

85 °C

25 °C

-40 °C

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

2.5

3

3.5

4

4.5

5

5.5

Vcc (V)

I cc

 (mA)

IDLE SUPPLY CURRENT vs. Vcc

INTERNAL RC OSCILLATOR, 8 MHz

105 °C

85 °C

25 °C

-40 °C

3

4

5

6

7

8

9

10

11

2.5

3

3.5

4

4.5

5

5.5

Vcc (V)

I cc

 (mA)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2490_ATmega64_105-Appendix-html.html
background image

9

2490 - Appendix A–AVR–10/09

ATmega64

Power-Down Supply 
Current

Figure 10.  Power-Down Supply Current vs. V

CC

 (Watchdog Timer Disabled)

Figure 11.  Power-Down Supply Current vs. V

CC

 (Watchdog Timer Enabled)

POWER-DOWN SUPPLY CURRENT vs. Vcc

WATCHDOG TIMER DISABLED

105 °C

85 °C

25 °C

-40 °C

0

1

2

3

4

5

6

7

8

9

2.5

3

3.5

4

4.5

5

5.5

Vcc (V)

I cc

 (uA

)

POWER-DOWN SUPPLY CURRENT vs. Vcc

WATCHDOG TIMER ENABLED

105 °C

85 °C

25 °C

-40 °C

0

5

10

15

20

25

30

2.5

3

3.5

4

4.5

5

5.5

Vcc (V)

I cc

 (uA)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2490_ATmega64_105-Appendix-html.html
background image

10

2490 - Appendix A–AVR–10/09

ATmega64

Pin Pull-up

Figure 12.  I/O Pin Pull-Up Resistor Current vs. Input Voltage (V

CC

 = 5V)

Figure 13.  I/O Pin Pull-Up Resistor Current vs. Input Voltage (V

CC

 = 2.7V)

I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE

Vcc = 5V

105 °C

85 °C

25 °C

-40 °C

0

20

40

60

80

100

120

140

160

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

V

OP

 (V)

I

OP

 (uA)

I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE

Vcc = 2.7V

105 °C

85 °C

25 °C

-40 °C

0

10

20

30

40

50

60

70

80

0

0.5

1

1.5

2

2.5

3

V

OP

 (V)

I

OP

 (uA)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2490_ATmega64_105-Appendix-html.html
background image

Appendix A - ATmega64 specification at 105

°

C

This document contains information specific to devices operating at temperatures up
to 105

°

C. Only deviations are covered in this appendix, all other information can be

found in the complete datasheet. The complete datasheet can be found on
www.atmel.com

8-bit  

Microcontroller 
with 64K Bytes 
In-System
Programmable 
Flash

ATmega64

Appendix A

2490 - Appendix A–AVR–10/09

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2490_ATmega64_105-Appendix-html.html
background image

2

2490 - Appendix A–AVR–10/09

ATmega64

Electrical Characteristics

Absolute Maximum Ratings*

Operating Temperature.................................. -55

°

C to +125

°

C

*NOTICE:

Stresses beyond those listed under “Absolute 
Maximum Ratings” may cause permanent dam-
age to the device. This is a stress rating only and 
functional operation of the device at these or 
other conditions beyond those indicated in the 
operational sections of this specification is not 
implied. Exposure to absolute maximum rating 
conditions for extended periods may affect device 
reliability.

Storage Temperature ..................................... -65°C to +150°C

Voltage on any Pin except RESET
with respect to Ground ................................-0.5V to V

CC

+0.5V

Voltage on RESET with respect to Ground......-0.5V to +13.0V

Maximum Operating Voltage ............................................ 6.0V

DC Current per I/O Pin ............................................... 40.0 mA

DC Current 

V

CC

 and GND Pins................................ 200.0 mA

DC Characteristics

T

A

 = -40

°

C to 105

°

C, V

CC

 = 2.7V to 5.5V (unless otherwise noted) 

Symbol

Parameter

Condition

Min

Typ

Max

Units

V

IL

Input Low Voltage

Except XTAL1 and 
RESET pins

-0.5

0.2 V

CC

(1)

V

V

IL1

Input Low Voltage

XTAL1 pin, External 
Clock Selected

-0.5

0.1 V

CC

(1)

V

V

IL2

Input Low Voltage

RESET pin

-0.5

0.2 V

CC

(1)

V

V

IH

Input High Voltage

Except XTAL1 and 
RESET pins

0.6 V

CC

(2)

V

CC

 + 0.5

V

V

IH1

Input High Voltage

XTAL1 pin, External 
Clock Selected

0.7 V

CC

(2)

V

CC

 + 0.5

V

V

IH2

Input High Voltage

RESET pin

0.85 V

CC

(2)

V

CC

 + 0.5

V

V

OL

Output Low Voltage

(3)

(Ports A,B,C,D, E, F, G)

I

OL

 = 20 mA, V

CC

 = 5V

I

OL

 = 10 mA, V

CC

 = 3V

0.9
0.6

V
V

V

OH

Output High Voltage

(4)

(Ports A,B,C,D, E, F, G))

I

OH

 = -20 mA, V

CC

 = 5V

I

OH

 = -10 mA, V

CC

 = 3V

4.1
2.1

V
V

I

IL

Input Leakage
Current I/O Pin

Vcc = 5.5V, pin low
(absolute value)

1.0

µA

I

IH

Input Leakage
Current I/O Pin

Vcc = 5.5V, pin high
(absolute value)

1.0

µA

R

RST

Reset Pull-up Resistor

30

60

k

Ω

R

PEN

PEN Pull-up Resistor

20

60

k

Ω

R

PU

I/O Pin Pull-up Resistor

20

50

k

Ω

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2490_ATmega64_105-Appendix-html.html
background image

3

2490 - Appendix A–AVR–10/09

ATmega64

Notes:

1. “Max” means the highest value where the pin is guaranteed to be read as low
2. “Min” means the lowest value where the pin is guaranteed to be read as high
3. Although each I/O port can sink more than the test conditions (20 mA at V

CC

 = 5V, 10 mA at V

CC

 = 3V) under steady state

conditions (non-transient), the following must be observed:
TQFP and QFN/MLF Package:
1] The sum of all IOL, for all ports, should not exceed 400 mA.
2] The sum of all IOL, for ports A0 - A7, G2, C3 - C7 should not exceed 100 mA.
3] The sum of all IOL, for ports C0 - C2, G0 - G1, D0 - D7, XTAL2 should not exceed 100 mA.
4] The sum of all IOL, for ports B0 - B7, G3 - G4, E0 - E7 should not exceed 100 mA.
5] The sum of all IOL, for ports F0 - F7, should not exceed 100 mA.
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater
than the listed test condition.

4. Although each I/O port can source more than the test conditions (20 mA at Vcc = 5V, 10 mA at Vcc = 3V) under steady state

conditions (non-transient), the following must be observed:
TQFP and QFN/MLF Package:
1] The sum of all IOH, for all ports, should not exceed 400 mA.
2] The sum of all IOH, for ports A0 - A7, G2, C3 - C7 should not exceed 100 mA.
3] The sum of all IOH, for ports C0 - C2, G0 - G1, D0 - D7, XTAL2 should not exceed 100 mA.
4] The sum of all IOH, for ports B0 - B7, G3 - G4, E0 - E7 should not exceed 100 mA.
5] The sum of all IOH, for ports F0 - F7, should not exceed 100 mA.
If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current
greater than the listed test condition.

5. Minimum V

CC

 for Power-down is 2.5V.

I

CC

Power Supply Current

Active 4 MHz, V

CC

 = 3V

5

mA

Active 8 MHz, V

CC

 = 5V

20

mA

Idle 4 MHz, V

CC

 = 3V

3

mA

Idle 8 MHz, V

CC

 = 5V

12

mA

Power-down mode

(5)

WDT enabled, V

CC

 = 3V

< 15

30

µA

WDT disabled, V

CC

 = 3V

< 5

20

µA

V

ACIO

Analog Comparator 
Input Offset Voltage

V

CC

 = 5V

V

in

 = V

CC

/2

-40

40

mV

I

ACLK

Analog Comparator 
Input Leakage Current

V

CC

 = 5V

V

in

 = V

CC

/2

-50

50

nA

t

ACPD

Analog Comparator 
Propagation Delay

V

CC

 = 2.7V

V

CC

 = 5.0

750
500

ns

DC Characteristics

T

A

 = -40

°

C to 105

°

C, V

CC

 = 2.7V to 5.5V (unless otherwise noted)  (Continued)

Symbol

Parameter

Condition

Min

Typ

Max

Units

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2490_ATmega64_105-Appendix-html.html
background image

4

2490 - Appendix A–AVR–10/09

ATmega64

ATmega64 
Typical 
Characteristics 
– Preliminary 
Data

The following charts show typical behavior. These figures are not tested during manufacturing.
All current consumption measurements are performed with all I/O pins configured as inputs and
with internal pull-ups enabled. A sine wave generator with rail-to-rail output is used as clock
source.

The power consumption in Power-down mode is independent of clock selection.

The current consumption is a function of several factors such as: operating voltage, operating
frequency, loading of I/O pins, switching rate of I/O pins, code executed and ambient tempera-
ture. The dominating factors are operating voltage and frequency.

The current drawn from capacitive loaded pins may be estimated (for one pin) as C

L

*

V

CC

*f where

C

L

 = load capacitance, V

CC

 = operating voltage and f = average switching frequency of I/O pin.

The parts are characterized at frequencies higher than test limits. Parts are not guaranteed to
function properly at frequencies higher than the ordering code indicates.

The difference between current consumption in Power-down mode with Watchdog Timer
enabled and Power-down mode with Watchdog Timer disabled represents the differential cur-
rent drawn by the Watchdog Timer.

Active Supply Current

Figure 1.  Active Supply Current vs. V

CC

 (Internal RC Oscillator, 8 MHz)

ACTIVE SUPPLY CURRENT vs. Vcc

INTERNAL RC OSCILLATOR, 8 MHz

105 °C

85 °C

25 °C

-40 °C

6

8

10

12

14

16

18

20

2.5

3

3.5

4

4.5

5

5.5

Vcc (V)

I cc

 (mA)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2490_ATmega64_105-Appendix-html.html
background image

5

2490 - Appendix A–AVR–10/09

ATmega64

Figure 2.  Active Supply Current vs. V

CC

 (Internal RC Oscillator, 4 MHz)

Figure 3.  Active Supply Current vs. V

CC

 (Internal RC Oscillator, 2 kHz)

ACTIVE SUPPLY CURRENT vs. Vcc

INTERNAL RC OSCILLATOR, 4 MHz

105 °C

85 °C

25 °C

-40 °C

Vcc (V)

I cc

 (mA)

3

4

5

6

7

8

9

10

11

2,5

3

3,5

4

4,5

5

5,5

ACTIVE SUPPLY CURRENT vs. Vcc

INTERNAL RC OSCILLATOR, 2 MHz

105 °C

85 °C

25 °C

-40 °C

2

2.5

3

3.5

4

4.5

5

5.5

2.5

3

3.5

4

4.5

5

5.5

Vcc (V)

I cc

 (mA)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2490_ATmega64_105-Appendix-html.html
background image

6

2490 - Appendix A–AVR–10/09

ATmega64

Figure 4.  Active Supply Current vs. V

CC

 (Internal RC Oscillator, 1 kHz)

Figure 5.  Active Supply Current vs. V

CC

 (Internal RC Oscillator, 1 kHz)

ACTIVE SUPPLY CURRENT vs. Vcc

INTERNAL RC OSCILLATOR, 1 MHz

105 °C

85 °C

25 °C

-40 °C

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

2.5

3

3.5

4

4.5

5

5.5

Vcc (V)

I cc

 (mA)

ACTIVE SUPPLY CURRENT vs. Vcc

INTERNAL RC OSCILLATOR, 1 MHz

105 °C

85 °C

25 °C

-40 °C

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

2.5

3

3.5

4

4.5

5

5.5

Vcc (V)

I cc

 (mA)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2490_ATmega64_105-Appendix-html.html
background image

7

2490 - Appendix A–AVR–10/09

ATmega64

Idle Supply Current

Figure 6.  Idle Supply Current vs. V

CC

 (Internal RC Oscillator, 1 MHz)

Figure 7.  Idle Supply Current vs. V

CC

 (Internal RC Oscillator, 2 MHz)

IDLE SUPPLY CURRENT vs. Vcc

INTERNAL RC OSCILLATOR, 1 MHz

105 °C

85 °C

25 °C

-40 °C

0.4

0.6

0.8

1

1.2

1.4

1.6

2.5

3

3.5

4

4.5

5

5.5

Vcc (V)

I cc

 (mA)

IDLE SUPPLY CURRENT vs. Vcc

INTERNAL RC OSCILLATOR, 2 MHz

105 °C

85 °C

25 °C

-40 °C

0.5

1

1.5

2

2.5

3

2.5

3

3.5

4

4.5

5

5.5

Vcc (V)

I cc

 (mA)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2490_ATmega64_105-Appendix-html.html
background image

8

2490 - Appendix A–AVR–10/09

ATmega64

Figure 8.  Idle Supply Current vs. V

CC

 (Internal RC Oscillator, 4 MHz)

Figure 9.  Idle Supply Current vs. V

CC

 (Internal RC Oscillator, 8 MHz)

IDLE SUPPLY CURRENT vs. Vcc

INTERNAL RC OSCILLATOR, 4 MHz

105 °C

85 °C

25 °C

-40 °C

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

2.5

3

3.5

4

4.5

5

5.5

Vcc (V)

I cc

 (mA)

IDLE SUPPLY CURRENT vs. Vcc

INTERNAL RC OSCILLATOR, 8 MHz

105 °C

85 °C

25 °C

-40 °C

3

4

5

6

7

8

9

10

11

2.5

3

3.5

4

4.5

5

5.5

Vcc (V)

I cc

 (mA)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2490_ATmega64_105-Appendix-html.html
background image

9

2490 - Appendix A–AVR–10/09

ATmega64

Power-Down Supply 
Current

Figure 10.  Power-Down Supply Current vs. V

CC

 (Watchdog Timer Disabled)

Figure 11.  Power-Down Supply Current vs. V

CC

 (Watchdog Timer Enabled)

POWER-DOWN SUPPLY CURRENT vs. Vcc

WATCHDOG TIMER DISABLED

105 °C

85 °C

25 °C

-40 °C

0

1

2

3

4

5

6

7

8

9

2.5

3

3.5

4

4.5

5

5.5

Vcc (V)

I cc

 (uA

)

POWER-DOWN SUPPLY CURRENT vs. Vcc

WATCHDOG TIMER ENABLED

105 °C

85 °C

25 °C

-40 °C

0

5

10

15

20

25

30

2.5

3

3.5

4

4.5

5

5.5

Vcc (V)

I cc

 (uA)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/2490_ATmega64_105-Appendix-html.html
background image

10

2490 - Appendix A–AVR–10/09

ATmega64

Pin Pull-up

Figure 12.  I/O Pin Pull-Up Resistor Current vs. Input Voltage (V

CC

 = 5V)

Figure 13.  I/O Pin Pull-Up Resistor Current vs. Input Voltage (V

CC

 = 2.7V)

I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE

Vcc = 5V

105 °C

85 °C

25 °C

-40 °C

0

20

40

60

80

100

120

140

160

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

V

OP

 (V)

I

OP

 (uA)

I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE

Vcc = 2.7V

105 °C

85 °C

25 °C

-40 °C

0

10

20

30

40

50

60

70

80

0

0.5

1

1.5

2

2.5

3

V

OP

 (V)

I

OP

 (uA)

Maker
Microchip Technology Inc.
Datasheet PDF Download