ATA663331/54 LIN System Basis Chip Including LIN Transceiver, Voltage Regulator, Dual Low Side Driver and a High Side Switch

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005882A-html.html
background image

 2017 Microchip Technology Inc.

DS20005882A-page 1

ATA663331/54

Features

• Supply Voltage up to 40V
• Operating Voltage V

VS

= 5V to 28V

• Supply Current

- Sleep Mode: Typically 10 μA
- Silent Mode: Typically 47 μA
- Very Low Current Consumption at Low 

Supply Voltages (2V < V

VS

< 5.5V): Typically 

130 μA

• Linear Low Drop Voltage Regulator, 85 mA 

Current Capability:
- MLC (Multi-Layer Ceramic) Capacitor with 

0Ω ESR

- Normal, Fail-Safe and Silent Mode 

ATA663354: V

VCC

= 5.0V ± 2% 

ATA663331: V

VCC

= 3.3V ± 2%

- Sleep Mode: VCC Is Switched Off

• VCC Undervoltage Detection with Open Drain 

Reset Output (NRES, 4 ms Reset Time)

• Voltage Regulator Is Short Circuit and 

Overtemperature Protected

• LIN Physical Layer According to LIN 2.0, 2.1, 2.2, 

2.2A and SAEJ2602-2

• Bus Pin Is Overtemperature and Short Circuit 

Protected versus GND and Battery

• Two Low Side Protected Switches and One High 

Side Protected Switch

• Wake-Up Capability via LIN Bus (100 μs 

Dominant) and WKin Pin

• Wake-Up Source Recognition
• TXD Time-Out Timer
• Advanced EMC and ESD Performance
• Fulfills the “OEM Hardware Requirements for LIN 

in Automotive Applications”, Version.1.3

• Interference and Damage Protection According to 

ISO7637

• Qualified According to AEC-Q100
• Available in 16-Pin, 3 mm x 5.5 mm VDFN 

Package with Wettable Flanks (Moisture 
Sensitivity Level 1)

Applications

• LIN Networks in Automotive
• Industrial
• Medical
• Consumer Applications

General Description

Designed in compliance with LIN specifications 2.0,
2.1, 2.2, 2.2A and SAEJ2602-2, the ATA6633XX is a
new generation of system basis chips with a fully
integrated LIN transceiver, a low drop voltage regulator
(3.3V/5V/85 mA), two low side drivers, and one high
side driver. This combination makes it possible to
develop simple, but powerful, slave nodes in LIN bus
systems. ATA6633XX is designed to handle low speed
data communication in vehicles (such as convenience
electronics). Improved slope control at the LIN driver
ensures secure data communication up to 20 kBaud.
The bus output is designed to withstand high voltage.
Sleep mode and Silent mode guarantee minimized
current consumption even in the case of a floating or
short circuited LIN bus.

Package Type

ATA663331/54

 3 mm x 5.5 mm 16-Lead VDFN*

 

*Includes Exposed Thermal Pad (EP); see 

Table 1-4

.

VCC

ATA663331
ATA663354

8DFN16

3 x 5.5

LIN

VS

GND

RXD

NRES

EN

TXD

WKin

LS2out

LS1out

HSout

WKout

LS2in

LS1in

HSin

LIN System Basis Chip Including LIN Transceiver, Voltage 

Regulator, Dual Low Side Driver and a High Side Switch

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005882A-html.html
background image

ATA663331/54

DS20005882A-page 2

 2017 Microchip Technology Inc.

Functional Block Diagram

13

GND

2

EN

4

TXD

1

RXD

VCC

16

NRES

3

HSout

9

Short

circuit and

overtemperature
protection

Voltage regulator

Normal/Silent/

Fail-

6afe Mode

5V

HS transistor driver
with short

circuit and

overtemperature
protection

Dual transistor driver
with short

circuit and

overtemperature
protection

Control

unit

Normal and

Fail-

6afe

Mode

RF-filter

LIN

VS

15

14

WKin

12

TXD

Time-out

timer

Slew rate control

Undervoltage reset

Sleep

mode

VCC

switched

off

Wake-up module

ATA663331/ATA663354

Receiver

9&&

-

+

9&&

5

WKout

8

HSin

6

LS1in

7

LS2in

LS1out

11

LS2out

10

WKin

LIN

9&&

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005882A-html.html
background image

 2017 Microchip Technology Inc.

DS20005882A-page 3

ATA663331/54

1.0

FUNCTIONAL DESCRIPTION

1.1

Physical Layer Compatibility

Because the LIN physical layer is independent of
higher LIN layers (such as the LIN protocol layer), all
nodes with a LIN physical layer according to revision
2.x can be mixed with LIN physical layer nodes found
in older versions (LIN 1.0, LIN 1.1, LIN 1.2, LIN 1.3)
without any restrictions.

1.2

Operating Modes

FIGURE 1-1:

OPERATING MODES

1.2.1

NORMAL MODE

This is the normal transmitting and receiving mode of
the LIN Interface. Furthermore, the low side drivers can
only be operated in this mode. The VCC voltage

regulator works with 3.3V/5V output voltage. If an
undervoltage condition occurs, NRES is switched to
low and the IC changes its state to Fail-Safe mode.

EN = 1

EN = 0

“Go to sleep”

command

“Go to silent”

command

EN = 0

TXD = 0

b

c & f,

g & f

EN = 0

TXD = 0

EN = 0

TXD = 1

EN = 1

& f

EN = 1

& f

d,
e

c & f,
g & f,
d

b

a

b

& f

Fail-

6afe Mode

VCC: ON

VCC monitor active

Communication: OFF

Wake-up Signaling

Undervoltage Signaling

Normal Mode

VCC: ON

VCC monitor active

Communication: ON

Sleep Mode

VCC: OFF

Communication: OFF

Unpowered Mode

All circuitry OFF

Silent Mode

VCC: ON

VCC monitor active

Communication: OFF

a:

 V

96

 > V

VS_th_U_F_up

 (2.4V)

b:

9

96

 < V

VS_th_U_down

 (1.9V)

c: Bus wake-up event (LIN)
d:

V

9&&

 < V

9CC_th_uv_down

(4.2V)

e:

9

96

 < V

VS_th_N_F_down

 (3.9V)

f:

9

96

 > V

VS_th_F_N_up

 (4.9V)

g:

Local wake up (WKin)

& f 

(1)

TXD = 1

& d & f 

(1)

TABLE 1-1:

OPERATING MODES

Operating 

Mode

Transceiver

Voltage

Regulator

Low Side

Outputs

High Side

Output

LIN

TXD

RXD

Fail-Safe

OFF

ON

OFF

HSin-

dependent

Recessive

Signaling fail-safe sources (see 

Table 1-2

)

Normal

ON

ON

LSin-

dependent

HSin-

dependent

TXD-dependent

Follows data transmission

Silent

OFF

ON

OFF

HSin-

dependent

Recessive

High

High

Sleep/

Unpowered

OFF

OFF

OFF

OFF

Recessive

Low

Low

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005882A-html.html
background image

ATA663331/54

DS20005882A-page 4

 2017 Microchip Technology Inc.

1.2.2

SILENT MODE

A falling edge at EN while TXD is high switches the IC
into Silent mode. The TXD signal has to be logic high
during the mode select window. See 

Figure 1-2

The transmission path is disabled in Silent mode. The
voltage regulator is active. The overall supply current
from VBAT is a combination of the I

VSsilent

 of typically

47 μA plus the VCC regulator output current I

VCC

.

FIGURE 1-2:

SWITCHING TO SILENT MODE

In Silent mode, the internal slave termination between
the LIN pin and VS pin is disabled to minimize the
current consumption in case the pin LIN is short-
circuited to GND. Only a weak pull up current (typically
10 μA) is present between the LIN pin and the VS pin.
The Silent mode can be activated regardless of the
current level on the LIN pin or WKin pin.
If an undervoltage condition occurs, NRES is switched
to low and the ATA6633XX changes its state to
Fail-Safe mode.

1.2.3

SLEEP MODE

A falling edge at EN while TXD is low switches the IC
into Sleep mode. The TXD signal has to be logic low
during the mode select window. See 

Figure 1-3

.

Delay time silent mode

t

d_silent

 = maximum 20

μs

Mode select window

LIN switches directly to recessive mode

t

d

 = 3.2

μs

LIN

VCC

NRES

TXD

EN

Normal Mode

Silent Mode

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005882A-html.html
background image

 2017 Microchip Technology Inc.

DS20005882A-page 5

ATA663331/54

FIGURE 1-3:

SWITCHING TO SLEEP MODE

In order to avoid any influence on the LIN pin while
switching to Sleep mode, it is possible to switch the EN
pin to low up to 3.2 μs earlier than the TXD pin. The
best and easiest way is to generate two simultaneous
falling edges at TXD and EN.
In Sleep mode, the transmission path is disabled.
Supply current from VBAT is typically I

VSsleep

= 10 μA.

The VCC regulator is switched off; NRES and RXD are
low. The internal slave termination between pin LIN and
pin VS is disabled to minimize the current consumption
in case pin LIN is short circuited to GND. Only a weak
pull-up current (typically 10 μA) between pin LIN and
pin VS is present. Sleep mode can be activated
independently from the current level on pin LIN. A
voltage less than the LIN pre-wake detection V

LINL 

at

pin LIN activates the internal LIN receiver and starts the
wake-up detection timer.
If TXD is short circuited to GND, it is possible to switch
to Sleep mode via EN after t > t

dom

.

1.2.4

FAIL-SAFE MODE

The device automatically switches to Fail-Safe mode at
system power-up. The voltage regulator is switched on.
The NRES output remains low for t

res

= 4 ms  and

resets the microcontroller. LIN communication is
switched off. The IC stays in this mode until EN is
switched to high. The IC then changes to Normal
mode. A low at NRES switches the IC directly into
Fail-Safe mode. During Fail-Safe mode, the TXD pin is
an output and signals the fail-safe source together with
the RXD output pin.
If the device enters Fail-Safe mode coming from the
Normal mode (EN = 1) due to a V

VS

 undervoltage

condition (V

VS

< V

VS_th_N_F_down

), it is possible to

switch into Sleep or Silent mode through a falling edge
at the EN input. The current consumption can be
further reduced with this feature.
A wake-up event from either Silent or Sleep mode is
signaled to the microcontroller using the RXD pin and
the TXD pin. A V

VS

 undervoltage condition is also

signaled at these two pins. The coding is shown in

Table 1-2

A wake-up event switches the IC to Fail-Safe mode.

Delay time sleep mode

t

d_sleep

 = maximum 20

μs

LIN switches directly to recessive mode

t

d

 = 3.2

μs

LIN

VCC

NRES

TXD

EN

Sleep Mode

Normal Mode

Mode select window

TABLE 1-2:

SIGNALING IN FAIL-SAFE MODE

Fail-Safe Sources

TXD

RXD

LIN wake-up (LIN pin)

Low

Low

Local wake-up (WKin pin)

Low

High

V

VS_th_N_F_down

 (battery) undervoltage detection 

(V

VS

< 3.9V)

High

Low

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005882A-html.html
background image

ATA663331/54

DS20005882A-page 6

 2017 Microchip Technology Inc.

1.3

Wake-Up Scenarios from Silent 
Mode or Sleep Mode

1.3.1

REMOTE WAKE-UP VIA LIN BUS

1.3.1.1

Remote Wake-up from Silent Mode

A remote wake-up from Silent mode is only possible if
TXD is high. A voltage less than the LIN pre-wake
detection V

LINL

 at pin LIN activates the internal LIN

receiver and starts the wake-up detection timer. A falling

edge at the LIN pin followed by a dominant bus level
maintained for a certain period of time (> t

bus

) and the

following rising edge at pin LIN (see 

Figure 1-4

) results

in a remote wake-up request. The device switches from
Silent mode to Fail-Safe mode, the VCC voltage
regulator remains activated and the internal LIN slave
termination resistor is switched on. The remote
wake-up request is indicated by a low level at the RXD
pin and TXD pin (strong pull down at TXD). EN high can
be used to switch directly to Normal mode.

FIGURE 1-4:

LIN WAKE-UP FROM SILENT MODE

1.3.1.2

Remote Wake-Up from Sleep Mode

A voltage less than the LIN pre-wake detection V

LINL

 at

the LIN pin activates the internal LIN receiver and starts
the wake-up detection timer.
A falling edge at the LIN pin followed by a dominant bus
level maintained for a certain period of time (> t

bus

) with

a subsequent rising edge at the LIN pin results in a
remote wake-up request. The device switches from
Sleep mode to Fail-Safe mode.
The VCC regulator is activated, and the internal LIN
slave termination resistor is switched on. The remote
wake-up request is indicated by a low level at RXD and
TXD (strong pull down at TXD). See 

Figure 1-5

.

EN high can be used to switch directly from
Sleep/Silent mode to Normal mode. If EN is still high
after V

VCC

 ramp-up and the undervoltage reset time,

the IC switches to Normal mode.

Undervoltage detection active 

Low

Fail-

6afe Mode

Normal Mode

EN High

High

NRES

EN

VCC

RXD

LIN bus

Bus wake-up filtering time

t

bus

High

TXD

High

Low (strong pull-down)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005882A-html.html
background image

 2017 Microchip Technology Inc.

DS20005882A-page 7

ATA663331/54

FIGURE 1-5:

LIN WAKE-UP FROM SLEEP MODE

1.3.2

LOCAL WAKE-UP VIA WKin PIN

A falling edge at the WKin pin followed by a low level
maintained for a given time period (> t

WKin

) results in a

local wake-up request. The device switches to
Fail-Safe mode. The internal slave termination resistor
is switched on. The local wake-up request is indicated

by a low level at the TXD pin to generate an interrupt
for the microcontroller. When the WKin pin is low, it is
possible to switch to Silent mode or Sleep mode via the
EN pin. In this case, the wake-up signal has to be
switched to high > 10 μs before the negative edge at
WKin starts a new local wake-up request.

FIGURE 1-6:

LOCAL WAKE-UP FROM SLEEP MODE

t

VCC

Off state

On state

Low

Fail-

6afe Mode

Normal Mode

EN High

Microcontroller

start-up time delay

Reset

time

Low (strong pull

down)

Low

NRES

EN

VCC

RXD

LIN bus

Bus wake-up filtering time

t

bus

High

TXD

High

High

t

VCC

Off state

On state

High

Fail-

6afe Mode

Normal Mode

EN High

Microcontroller

start-up time delay

Reset

time

Low (strong pull

down)

Low

NRES

EN

VCC

RXD

WKin

TXD

Wake filtering time

t

WKin

State change

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005882A-html.html
background image

ATA663331/54

DS20005882A-page 8

 2017 Microchip Technology Inc.

FIGURE 1-7:

LOCAL WAKE-UP FROM SILENT MODE

1.3.3

WAKE-UP SOURCE RECOGNITION

The device can distinguish between different wake-up
sources.

 

Table 1-3

. The wake-up source can be read

on the TXD and RXD pins in Fail-Safe mode. These
flags are immediately reset if the microcontroller sets
the EN pin to high and the IC is in Normal mode.

1.4

Behavior under Low Supply 
Voltage Condition

After the battery voltage has been connected to the
application circuit, the voltage at the VS pin increases
according to the block capacitor (see 

Typical

Application Circuit

). If V

VS

 is higher than the minimum

VS operation threshold V

VS_th_U_F_up

,(typically 2.25V)

the IC mode changes from Unpowered mode to
Fail-Safe mode. As soon as V

VS

 exceeds the

undervoltage threshold V

VS_th_F_N_up 

(typically 4.6V),

the LIN transceiver and the dual low side switches can
be activated. The VCC output voltage reaches its
nominal value after t

VCC

. This parameter depends on

the externally applied VCC capacitor and the load. The
NRES output is low for the reset time delay t

reset

.

During this time t

reset

, no mode change is possible.

The behavior of VCC, NRES and VS is shown in

Figure 1-8

Figure 1-9

Figure 1-10

 and 

Figure 1-11

.

FIGURE 1-8:

VCC AND NRES VERSUS 
VS (RAMP-UP) FOR 3.3V

Fail-

6afe Mode

Normal Mode

EN High

High

NRES

EN

VCC

RXD

WKin

TXD

Low (strong pull

down)

Wake filtering time

t

WKin

State change

TABLE 1-3:

SIGNALING IN FAIL-SAFE MODE

Fail-Safe Sources

TXD

RXD

Bus wake-up (LIN pin)

Low

Low

Local wake-up (WKin pin)

Low

High

V

VS_th_N_F_down

 (battery) undervoltage detection 

(V

VS

< 3.9V)

High

Low

V (V)

VS (V)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

VS

VCC

NRES

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005882A-html.html
background image

 2017 Microchip Technology Inc.

DS20005882A-page 9

ATA663331/54

FIGURE 1-9:

VCC AND NRES VERSUS 
VS (RAMP-DOWN) FOR 
3.3V

FIGURE 1-10:

VCC AND NRES VERSUS 
VS (RAMP-UP) FOR 5V

FIGURE 1-11:

VCC AND NRES VERSUS 
VS (RAMP-DOWN) FOR 5V

The graphs are only valid if the VS ramp-up and
ramp-down time is much slower than the VCC ramp-up
time t

VCC 

and the NRES delay time t

reset

.

If during Sleep mode the voltage level of V

VS

 drops

below the undervoltage detection threshold
V

VS_th_N_F_down

 (typically 4.3V), the operation mode is

not changed and no wake-up is possible. Only if the
supply voltage on pin VS drops below the VS operation
threshold V

VS_th_U_down

 (typically 2.05V), does the IC

switch to Unpowered mode.
If during Silent mode the VCC voltage drops below the
VCC undervoltage threshold V

VCC_th_uv_down

 the IC

switches into Fail-Safe mode. If the supply voltage on
pin VS drops below the VS operation threshold
V

VS_th_U_down

 (typically 2.05V), does the IC switch to

Unpowered mode.
If during Normal mode the voltage level on pin VS
drops below the VS undervoltage detection threshold
V

VS_th_N_F_down

 (typically 4.3V), the IC switches to

Fail-Safe mode. This means the LIN transceiver and
the dual low side drivers are disabled in order to avoid
malfunctions or false bus messages. The voltage
regulator remains active.
• For ATA663331: In this undervoltage situation it is 

possible to switch the device into Sleep mode or 
Silent mode by a falling edge at the EN input. This 
feature ensures that switching into these two 
current saving modes is always possible, allowing 
current consumption to be even further reduced. 
When the VCC voltage drops below the VCC 
undervoltage threshold V

VCC_th_uv_down

 (typically 

2.6V) the IC switches into Fail-Safe mode.

• For ATA663354: Because of the VCC 

undervoltage condition in this situation, the IC is in 
Fail-Safe mode and can be switched into Sleep 
mode only. Only when the supply voltage V

VS 

drops below the operation threshold 
V

VS_th_U_down

 (typically 2.05V) does the IC switch 

into Unpowered mode.

The current consumption of the ATA6633XX in Silent
mode or in Fail-Safe mode is always below 170 μA,
even when the supply voltage V

VS 

is lower than the

regulator’s nominal output voltage V

VCC

.

V (V)

VS (V)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

VS

VCC

NRES

V (V)

VS (V)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

VS

NRES

VCC

V (V)

VS (V)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

VS

NRES

VCC

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005882A-html.html
background image

ATA663331/54

DS20005882A-page 10

 2017 Microchip Technology Inc.

1.5

Voltage Regulator

FIGURE 1-12:

VOLTAGE REGULATOR: SUPPLY VOLTAGE RAMP-UP AND RAMP-DOWN

The voltage regulator needs an external capacitor for
compensation and to smooth the disturbances from the
microcontroller. It is recommended to use a MLC
capacitor with a minimum capacitance of 3.5 μF
together with a 100 nF ceramic capacitor. Depending
on the application, the values of these capacitors can
be modified by the customer.
When the ATA6633XX is being soldered onto the PCB,
it is mandatory to connect the exposed thermal pad
with a wide GND plate on the printed board to achieve
a good heat sink.
The main power dissipation of the IC is created from
the VCC output current I

VCC

, which is needed for the

application. 

Figure 1-13

 shows the safe operating area

of the ATA6633XX without considering any output
current of the drivers (LS1out, LS2out, HSout).

FIGURE 1-13:

POWER DISSIPATION: 
SAFE OPERATING AREA: 
REGULATOR’S OUTPUT 
CURRENT I

VCC

 VERSUS 

SUPPLY VOLTAGE V

VS

 AT 

DIFFERENT AMBIENT 
TEMPERATURES (R

thJA

 = 

45K/W ASSUMED)

VS

V

12V

3.3V/5.0V

V

VCC_th_uv_up

3.3V/5.0V

t

VCC

t

VCC

t

Reset

2.4V

t

res_f

NRES

t

V

VCC_th_uv_down

V

VS

 [V]

I_Vcc [mA]

Tamb = 125°C

Tamb = 115°C

Tamb = 105°C

Tamb = 95°C

Tamb = 85°C

0

10

2 0

3 0

4 0

50

6 0

70

8 0

9 0

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Maker
Microchip Technology Inc.
Datasheet PDF Download