ATA6562/3 High-Speed CAN Transceiver with Standby Mode

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005790B-html.html
background image

 2017 Microchip Technology Inc.

DS20005790B-page 1

ATA6562/3

Features

• Fully ISO 11898-2, ISO 11898-2: 2016 and 

SAE J2962-2 Compliant

• CAN  FD  Ready
• Communication Speed up to 5 Mbps
• Low Electromagnetic Emission (EME) and High 

Electromagnetic Immunity (EMI)

• Differential Receiver with Wide Common Mode 

Range

• ATA6562: Silent Mode
• Remote Wake-Up Capability via CAN Bus - 

Wake-Up on Pattern (WUP), as Specified in 
ISO 11898-2: 2016, 3.8 µs Activity Filter Time

• Functional Behavior Predictable under All Supply 

Conditions

• Transceiver Disengages from the Bus When Not 

Powered Up

• RXD Recessive Clamping Detection
• High Electrostatic Discharge (ESD) Handling 

Capability on the Bus Pins

• Bus Pins Protected Against Transients in 

Automotive Environments

• Transmit Data (TXD) Dominant Time-Out 

Function

• Undervoltage Detection on VCC and VIO Pins
• CANH/CANL Short-Circuit and Overtemperature 

Protected

• Fulfills the OEM “Hardware Requirements for LIN, 

CAN and FlexRay Interfaces in Automotive Appli-
cations, Rev. 1.3"

• Qualified According to AEC-Q100
• Two Ambient Temperature Grades Available:

- ATA6562-GAQW1, ATA6563-GAQW1, 

ATA6562-GBQW1 and ATA6563-GBQW1 up 
to T

amb

 = +125°C

- ATA6562-GAQW0, ATA6563-GAQW0, 

ATA6562-GBQW0 and ATA6563-GBQW0 up 
to T

amb

 = +150°C

• Packages: SOIC8, VDFN8 with Wettable Flanks 

(Moisture Sensitivity Level 1)

Applications

Classical CAN and CAN FD networks in Automotive,
Industrial, Aerospace, Medical and Consumer
applications.

General Description

The ATA6562/ATA6563 is a high-speed CAN
transceiver that provides an interface between a
controller area network (CAN) protocol controller and
the physical two-wire CAN bus. 
The transceiver is designed for high-speed (up to
5 Mbps) CAN applications in the automotive industry,
providing differential transmit and receive capability to
(a microcontroller with) a CAN protocol controller. It
offers improved electromagnetic compatibility (EMC)
and electrostatic discharge (ESD) performance, as well
as features such as:
• Ideal passive behavior to the CAN bus when the 

supply voltage is off

• Direct interfacing to microcontrollers with supply 

voltages from 3V to 5V (ATA6563)

Three operating modes together with the dedicated
fail-safe features make the ATA6562/ATA6563 an
excellent choice for all types of high-speed CAN
networks, especially in nodes requiring low-power
mode with wake-up capability via the CAN bus.

Package Types

ATA6563 

3 x 3 VDFN* with 

wettable flanks

ATA6562

SOIC

VCC

GND

RXD

CANH

CANL

1

2

3
4

8

7

6
5 NSIL

STBY

TXD

ATA6563

SOIC

VCC

GND

RXD

CANH

CANL

1

2

3
4

8

7

6
5 VIO

STBY

TXD

ATA6562

3 x 3 VDFN* with 

wettable flanks

VCC

GND

RXD

CANH

CANL

NSIL

STBY

   TXD

1

2

3
4

8

7

6
5

*Includes Exposed Thermal Pad (EP); see 

Table 1-2

.

VCC

GND

RXD

CANH

CANL

VIO

STBY

TXD

1

2

3
4

8

7

6
5

High-Speed CAN Transceiver with Standby Mode

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005790B-html.html
background image

ATA6562/3

DS20005790B-page 2

 2017 Microchip Technology Inc.

ATA6562/ATA6563 Family Members

Device

VIO Pin

NSIL

Grade 0

Grade 1

VDFN8

SOIC8

Description

ATA6562-GAQW0

X

X

X

Standby mode and Silent mode 

ATA6562-GAQW1

X

X

X

Standby mode and Silent mode  

ATA6562-GBQW0  

X

X

X

Standby mode and Silent mode  

ATA6562-GBQW1

X

X

X

Standby mode and Silent mode

ATA6563-GAQW0

X

X

X

Standby mode, VIO - pin for 
compatibility with 3.3V and 5V 
microcontroller

ATA6563-GAQW1

X

X

X

Standby mode, VIO - pin for 
compatibility with 3.3V and 5V 
microcontroller

ATA6563-GBQW0 

X

X

X

Standby mode, VIO-pin for 
compatibility with 3.3V and 5V 
microcontroller

ATA6563-GBQW1

X

X

X

Standby mode, VIO - pin for 
compatibility with 3.3V and 5V 
microcontroller

Note:

For ordering information, see the 

Product Identification System

 section.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005790B-html.html
background image

 2017 Microchip Technology Inc.

DS20005790B-page 3

ATA6562/3

Functional Block Diagram

Notes: 

1. Pin 5: ATA6563: VIO

                           

ATA6562: NSIL (the VIO line and the VCC line are internally connected)

            2. HSC: High-speed comparator
            

3. WUC: Wake-up comparator

Temperature

Protection

TXD

Time-Out-

Timer

Control Unit

MUX

Slope Control 

and

Driver

Wake-up

Filter

CANH

CANL

TXD

GND

VCC

RXD

STBY

VIO

NSIL

VIO

(1)

VIO

(1)

VIO

(

VCC

HSC

(2)

WUC

(3)

VIO

(1)

1

8

4

2

6

7

3

5

(1)

5

(1)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005790B-html.html
background image

ATA6562/3

DS20005790B-page 4

 2017 Microchip Technology Inc.

1.0

FUNCTIONAL DESCRIPTION

The ATA6562/ATA6563 is a stand-alone dual
high-speed CAN transceiver compliant with the
ISO 11898-2, ISO 11898-2: 2016, ISO 11898-5 and
SAE J2962-2 CAN standards. It provides a very low
current consumption in Standby mode and wake-up
capability via the CAN bus. There are two versions
available, only differing in the function of pin 5:
• ATA6562: The pin 5 is the control input for Silent 

mode NSIL, allowing the ATA6562 to only receive 
data but not send data via the bus. The output 
driver stage is disabled. The VIO line and the 
VCC line are internally connected, this sets the 
signal levels of the TXD, RXD, STBY, and NSIL 
pins to levels compatible with 5V microcontrollers.

• ATA6563: The pin 5 is the VIO pin and should be 

connected to the microcontroller supply voltage. 
This allows direct interfacing to microcontrollers 
with supply voltages down to 3V and adjusts the 
signal levels of the TXD, RXD, and STBY pins to 
the I/O levels of the microcontroller. The I/O ports 
are supplied by the VIO pin.

1.1

Operating Modes

Each of the transceivers supports three operating
modes: Unpowered, Standby and Normal. The
ATA6562 additionally has the Silent mode. These
modes can be selected via the STBY and NSIL pin.
See 

Figure 1-1

 and 

Table 1-1

 for a description of the

operating modes.

FIGURE 1-1:

OPERATING MODES 

1.1.1

NORMAL MODE

A low level on the STBY pin together with a high level
on pin TXD selects the Normal mode. In this mode the
transceiver is able to transmit and receive data via the

CANH and CANL bus lines (see 

Functional Block

Diagram

). The output driver stage is active and drives

data from the TXD input to the CAN bus. The
high-speed comparator (HSC) converts the analog

Note

: For the ATA6563 NSIL is internally set to “1”.

Unpowered

Mode

Standby

Mode

V

CC

< V

uvd(VCC)

V

CC

< V

uvd(VCC)

Silent
Mode

V

CC

> V

uvd(VCC)

V

CC

< V

uvd(VCC)

STBY = 1

STBY = 0 and

(NSIL = 0 or 

TXD

= 0)

Normal

Mode

STBY = 0 and

NSIL = 1 and 

TXD

= 1 and 

Error = 0

STBY = 1

NSIL = 1 and TXD

= 1 and Error = 0

NSIL = 0 or TXD

= 1

ATA6562

Unpowered

Mode

Standby

Mode

V

CC

< V

uvd(VCC)

or

V

IO

< V

uvd(VIO)

Silent

Mode *

STBY = 1

STBY = 0 and

TXD

= 0

Normal

Mode

STBY = 0 and

TXD

= 1 and 

Error = 0

STBY = 1

TXD

= 1 and Error = 0

TXD

= 1

ATA6563

V

CC

< V

uvd(VCC)

or

V

IO

< V

uvd(VIO)

V

CC

< V

uvd(VCC)

or

V

IO

< V

uvd(VIO)

V

CC

> V

uvd(VCC)

or 

V

IO

> V

uvd(VIO)

* Silent Mode is externally not accessible

TABLE 1-1:

OPERATING MODES

Mode

Inputs

Outputs

STBY

NSIL

PIN TXD

CAN Driver

Pin RXD

Unpowered

X

(

3

)

X

(

3

)

X

(

3

)

Recessive

Recessive

Standby

HIGH

X

(

3

)

X

(

3

)

Recessive

Active

(

4

)

Silent (only for ATA6562)

LOW

LOW

X

(

3

)

Recessive

Active

(

1

)

Normal

LOW

HIGH

(

2

)

LOW

Dominant

LOW

LOW

HIGH

(

2

)

HIGH

Recessive

HIGH

Note 1:

LOW if the CAN bus is dominant, HIGH if the CAN bus is recessive.

2:

Internally pulled up if not bonded out.

3:

Irrelevant

4:

Reflects the bus only for wake-up

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005790B-html.html
background image

 2017 Microchip Technology Inc.

DS20005790B-page 5

ATA6562/3

data on the bus lines into digital data which is output to
pin RXD. The bus biasing is set to V

VCC

/2 and the

undervoltage monitoring of VCC is active. 
The slope of the output signals on the bus lines is
controlled and optimized in a way that guarantees the
lowest possible electromagnetic emission (EME).
To switch the device in normal operating mode, set the
STBY pin to low and the TXD pin to high (see 

Table 1-1

and 

Figure 1-2

). The STBY pin provides a pull-up

resistor to VIO, thus ensuring a defined level if the pin
is open.

Please note that the device cannot enter Normal mode
as long as TXD is at ground level.
The switching into Normal mode is depicted in the
following two figures.

FIGURE 1-2:

SWITCHING FROM STANDBY MODE TO NORMAL MODE (NSIL = HIGH) 

FIGURE 1-3:

SWITCHING FROM SILENT MODE TO NORMAL MODE 

1.1.2

SILENT MODE (ONLY WITH THE  
ATA6562)

A low level on the NSIL pin (available on pin 5) and on
the STBY pin selects Silent mode. This receive-only

mode can be used to test the connection of the bus
medium. In Silent mode the ATA6562 can still receive
data from the bus, but the transmitter is disabled and
therefore no data can be sent to the CAN bus. The bus
pins are released to recessive state. All other IC

/

#$)!/

!/

)-/ !/

/

)'*, "%//

/

.(/+/

!&/  !/

0

0

'(-%#0

%0

#-0%0

0

-+

$&) 

0

0

                       

0

/,0".0

0

%*"0 %0

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005790B-html.html
background image

ATA6562/3

DS20005790B-page 6

 2017 Microchip Technology Inc.

functions, including the high-speed comparator (HSC),
continue to operate as they do in Normal mode. Silent
mode can be used to prevent a faulty CAN controller
from disrupting all network communications.

1.1.3

STANDBY MODE

A high level on the STBY pin selects Standby mode. In
this mode the transceiver is not able to transmit or cor-
rectly receive data via the bus lines. The transmitter
and the high-speed comparator (HSC) are switched off
to reduce current consumption. 
For ATA6562 only: In the event the NSIL input pin is set
to low in Standby mode, the internal pull-up resistor
causes an additional quiescent current from VIO to
GND. Microchip recommends setting the NSIL pin to
high in Standby mode.

1.1.3.1

Remote Wake-up via the CAN Bus

In Standby mode the bus lines are biased to ground to
reduce current consumption to a minimum. The
ATA6562/ATA6563 monitors the bus lines for a valid

wake-up pattern as specified in the ISO 11898-2: 2016.
This filtering helps to avoid spurious wake-up events,
which would be triggered by scenarios such as a dom-
inant clamped bus or by a dominant phase due to
noise, spikes on the bus, automotive transients or EMI.
The wake-up pattern consists of at least two
consecutive dominant bus levels for a duration of at
least t

Filter

, each separated by a recessive bus level

with a duration of at least t

Filter

. Dominant or recessive

bus levels shorter than t

Filter

 are always being ignored.

The complete dominant-recessive-dominant pattern as
shown in 

Figure 1-4

, must be received within the bus

wake-up time-out time t

Wake

 to be recognized as a valid

wake-up pattern. Otherwise, the internal wake-up logic
is reset and then the complete wake-up pattern must
be retransmitted to trigger a wake-up event. Pin RXD
remains at high level until a valid wake-up event has
been detected.
During Normal mode, at a VCC undervoltage condition
or when the complete wake-up pattern is not received
within t

Wake

, no wake-up is signalled at the RXD pin.

FIGURE 1-4:

TIMING OF THE BUS WAKE-UP PATTERN (WUP) IN STANDBY MODE 

When a valid CAN wake-up pattern is detected on the
bus, the RXD pin switches to low to signal a wake-up
request. A transition to Normal mode is not triggered
until the STBY pin is forced back to low by the micro-
controller.

1.2

Fail-safe Features

1.2.1

TXD DOMINANT TIME-OUT 
FUNCTION

A TXD dominant time-out timer is started when the
TXD pin is set to low. If the low state on the TXD pin
persists for longer than t

to(dom)TXD

, the transmitter is

disabled, releasing the bus lines to recessive state.
This function prevents a hardware and/or software

application failure from driving the bus lines to a perma-
nent dominant state (blocking all network communica-
tions). The TXD dominant time-out timer is reset when
the the TXD pin is set to high. If the low state on the
TXD pin was longer than t

to(dom)TXD

, then the TXD pin

has to be set to high longer 4 µs in order to reset the
TXD dominant time-out timer..

1.2.2

INTERNAL PULL-UP STRUCTURE 
AT THE TXD AND STBY INPUT PINS

The TXD and STBY pins have an internal pull-up to
VIO. This ensures a safe, defined state in case one or
both pins are left floating. Pull-up currents flow in these

 

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005790B-html.html
background image

 2017 Microchip Technology Inc.

DS20005790B-page 7

ATA6562/3

pins in all states, meaning all pins should be in high
state during Standby mode to minimize the current con-
sumption.

1.2.3

UNDERVOLTAGE DETECTION ON 
PIN VCC

If V

VCC

 or V

VIO

 drops below its undervoltage detection

levels (V

uvd(VCC)

 and V

uvd(VIO)

)(see 

Section 2.0, Elec-

trical Characteristics

), the transceiver switches off and

disengages from the bus until V

VCC

 and V

VIO

 has

recovered. The low-power wake-up comparator is only
switched off during a VCC and VIO undervoltage. The
logic state of the STBY pin is ignored until the V

VCC

voltage or V

VIO

 voltage has recovered.

1.2.4

BUS WAKE UP ONLY AT 
DEDICATED WAKE-UP PATTERN 

Due to the implementation of the wake-up filtering the
ATA6562/ATA6563 does not wake-up when the bus is
in a long dominant phase, it only wakes up at a dedi-
cated wake-up pattern as specified in the ISO
11898-2: 2016. This means for a valid wake-up at least

two consecutive dominant bus levels for a duration of
at least t

Filter

, each separated by a recessive bus level

with a duration of at least t

Filter

 must be received via the

bus. Dominant or recessive bus levels shorter than t

Fil-

ter

 are always being ignored. The complete domi-

nant-recessive-dominant pattern as shown in

Figure 1-4

, must be received within the bus wake-up

time-out time t

Wake

 to be recognized as a valid wake-up

pattern. This filtering leads to a higher robustness
against EMI and transients and reduces therefore the
risk of an unwanted bus wake- up significantly.

1.2.5

OVERTEMPERATURE 
PROTECTION

The output drivers are protected against overtempera-
ture conditions. If the junction temperature exceeds the
shutdown junction temperature, T

Jsd

, the output drivers

are disabled until the junction temperature drops below
T

Jsd

 and pin TXD is at high level again. The TXD con-

dition ensures that output driver oscillations due to tem-
perature drift are avoided.

FIGURE 1-5:

RELEASE OF TRANSMISSION AFTER OVERTEMPERATURE CONDITION 

1.2.6

SHORT-CIRCUIT PROTECTION OF 
THE BUS PINS

The CANH and CANL bus outputs are short-circuit pro-
tected, either against GND or a positive supply voltage.
A current-limiting circuit protects the transceiver

against damage. If the device is heating up due to a
continuous short on CANH or CANL, the internal over-
temperature protection switches the bus transmitter off. 

Failure

Overtemp

GND

TXD

Overtemperature

R

D

R

t

t

t

OT

BUS V

DIFF

(CANH-CANL)

VIO

R

D

D

t

t

RXD

VIO

GND

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005790B-html.html
background image

ATA6562/3

DS20005790B-page 8

 2017 Microchip Technology Inc.

1.2.7

RXD RECESSIVE CLAMPING

This fail-safe feature prevents the controller from
sending data on the bus if its RXD is clamped to HIGH
(e.g., recessive). That is, if the RXD pin cannot
signalize a dominant bus condition because it is e.g,
shorted to VCC, the transmitter within
ATA6562/ATA6563 is disabled to avoid possible data
collisions on the bus. In Normal and Silent mode (only
ATA6562), the device permanently compares the state

of the high-speed comparator (HSC) with the state of
the RXD pin. If the HSC indicates a dominant bus state
for more than t

RC_det

 without the RXD pin doing the

same, a recessive clamping situation is detected and
the transceiver is forced into Silent mode. This
Fail-safe mode is released by either entering Standby
or Unpowered mode or if the RXD pin is showing a
dominant (e.g., low) level again.

FIGURE 1-6:

RXD RECESSIVE CLAMPING DETECTION 

1.3

Pin Description 

The descriptions of the pins are listed in 

Table 1-2

.

TABLE 1-2:

PIN FUNCTION TABLE

ATA6562

ATA6563

Pin Name

Description

SOIC8

VDFN8

SOIC8

VDFN8

1

1

1

1

TXD

Transmit data input 

2

2

2

2

GND

Ground1 supply

3

3

3

3

VCC

Supply voltage

4

4

4

4

RXD

Receive data output; reads out data from the bus lines

5

5

VIO

Supply voltage for I/O level adapter

5

5

NSIL

Silent mode control input (low active);

6

6

6

6

CANL

Low-level CAN bus line

7

7

7

7

CANH

High-level CAN bus line

8

8

8

8

STBY

Standby mode control input

9

9

EP

Exposed Thermal Pad: Heat slug, internally connected to the 
GND pin.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005790B-html.html
background image

 2017 Microchip Technology Inc.

DS20005790B-page 9

ATA6562/3

1.4

Typical Application 

Typical Application ATA6562 

Typical Application ATA6563

Note: For VDFN8 package: EP (heatslug) must always be connected to GND.

Microcontroller

ATA6562

VDD

GND

GND

1

2

3

4

NSIL

STBY

8

7

6

5

TXD

RXD

CANH

CANL

CANH

CANL

BAT

VCC

100 nF

22 µF

(1)

5V

12V

+

GND

(1) The size of this capacitor depends on the used external voltage regulator

Note: For VDFN8 package: EP (heatslug) must always be connected to GND.

Microcontroller

ATA6563

VDD

GND

GND

1

2

3

4

7

6

5

TXD

RXD

CANH

CANL

CANH

CANL

BAT

VCC

100 nF

22 µF

(1)

3.3V

12V

+

GND

(1) The size of this capacitor depends on the used external voltage regulator

STBY

8

VIO

100 nF

5V

12V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005790B-html.html
background image

ATA6562/3

DS20005790B-page 10

 2017 Microchip Technology Inc.

2.0

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings 

(†)

DC Voltage at CANH, CANL (V

CANH

, V

CANL

) ................................................................................................–27 to +42V

Transient Voltage at CANH, CANL (according to ISO 7637 part 2) (V

CANH

, V

CANL

) .................................–150 to +100V

Max. differential bus voltage (V

Diff

)...................................................................................................................–5 to +18V

DC voltage on all other pins (V

X

) .................................................................................................................–0.3 to +5.5V

ESD according to IBEE CAN EMC - Test specification following IEC 61000-4-2 — Pin CANH, CANL  ..................±8 kV
ESD (HBM following STM5.1 with 1.5 kΩ/100 pF) - Pins CANH, CANL to GND.................................................... ±6 kV
Component Level ESD (HBM according to ANSI/ESD STM5.1, JESD22-A114, AEC-Q100 (002) ........................±4 kV 
CDM ESD STM 5.3.1 ..............................................................................................................................................±750V
ESD machine model AEC-Q100-RevF(003) ...........................................................................................................±200V
Virtual Junction Temperature (T

vJ

) .............................................................................................................–40 to +175°C

Storage Temperature Range (T

stg

) .........................................................................................................-55°C to +150°C

† Notice:

 Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This is

a stress rating only and functional operation of the device at those or any other conditions above those indicated in the
operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may
affect device reliability.

TABLE 2-1:

ELECTRICAL CHARACTERISTICS

Electrical Specifications:

 The values below are valid for each of the two identical integrated CAN transceivers. 

Grade 1: T

amb 

= -40°C to +125°C and Grade 0: T

amb

 = -40°C to +150°C; V

VCC

 = 4.5V to 5.5V; R

L

 = 60Ω, C

L

 = 100 pF

unless specified otherwise; all voltages are defined in relation to ground; positive currents flow into the IC.

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Supply, Pin VCC
Supply Voltage

V

VCC

4.5

5.5

V

Supply Current in Silent 
Mode

I

VCC_sil

1.9

2.5

3.0

mA

Silent mode, V

TXD

= V

VIO

Supply Current in Normal 
Mode

I

VCC_rec

2

5

mA

recessive, V

TXD

 = V

VIO 

I

VCC_dom

30

50

70

mA

dominant, V

TXD

= 0V 

I

VCC_short

85

mA

short between CANH and 
CANL(

Note 1

)

Supply Current in Standby 
Mode

I

VCC_STBY

12

µA

VCC = VIO,
V

TXD

 = V

NSIL

 = V

VIO

I

VCC_STBY

7

µA

T

a

 = 25°C (

Note 3

)

Undervoltage Detection 
Threshold on Pin VCC

V

uvd(VCC)

2.75

4.5

V

I/O Level Adapter Supply, Pin VIO (only with the ATA6563)
Supply voltage on pin VIO

V

VIO

2.8

5.5

V

Supply current on pin VIO

I

VIO_rec

10

80

250

µA

Normal and Silent mode
recessive, V

TXD

 = V

VIO

I

VIO_dom

50

350

500

µA

Normal and Silent mode
dominant, V

TXD

 = 0V

I

VIO_STBY

1

µA

Standby mode

Note 1:

100% correlation tested

2:

Characterized on samples

3:

Design parameter

Maker
Microchip Technology Inc.
Datasheet PDF Download