AT9933 Hysteretic Boost-Buck (Ćuk�

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005597A-html.html
background image

 2016 Microchip Technology Inc.

DS20005597A-page  1

AT9933

Features

• Constant Current LED Driver
• Steps Input Voltage Up or Down
• Low Electromagnetic Interference (EMI)
• Variable Frequency Operation
• Internal 75V Linear Regulator
• Input and Output Current Sensing
• Input Current Limit
• Enable and Pulse-width Modulation (PWM) 

Dimming

• Ambient Temperature Rating of up to 125°C

Applications

• LED Lighting Applications

General Description

The AT9933 is a variable frequency PWM controller IC, 
designed to control an LED lamp driver using a 
low-noise boost-buck (Ćuk) topology. It uses 
patent-pending Hysteretic Current-mode control to 
regulate both the input and the output currents. This 
enables superior input surge immunity without the 
necessity for complex loop compensation. Input 
current control enables current limiting during Startup, 
Input Undervoltage and Output Overload conditions. 
The AT9933 provides a low-frequency PWM dimming 
input that can accept an external control signal with a 
duty cycle of 0%–100% and a high dimming ratio.
This AT9933-based LED driver is ideal for LED lamps. 
The part is rated for up to 125°C ambient temperatures.

Package Type

REF

CS2

VDD

PWMD

VIN

CS1

GND

GATE

8

7

6

5

1

2

3

4

8-lead SOIC

(Top View)

See 

Table 2-1

 for pin information.

Hysteretic Boost-Buck (Ćuk) LED Driver IC

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005597A-html.html
background image

AT9933

DS20005597A-page  2

 2016 Microchip Technology Inc.

Functional Block Diagram

Regulator 

7.5V 

VIN

CS1

CS2

PWMD

GATE

VDD

REF

GND

1.25V 

AT9933 

Input Comparator 

Output Comparator 

0mV 

100mV 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005597A-html.html
background image

 2016 Microchip Technology Inc.

DS20005597A-page  3

AT9933

Typical Application

VIN

GATE

CS1

GND

VDD

PWMD

CS2

REF

VDC 

L

L

C

Q

D

R

CS1 

R

S2 

R

REF2 

R

REF1 

R

S1 

C

D

2

 (optional) 

VO

 

C

R

CS2 

D

R

C

AT9933 

 

 Circuit

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005597A-html.html
background image

AT9933

DS20005597A-page  4

 2016 Microchip Technology Inc.

1.0

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

V

IN 

to GND ................................................................................................................................................–0.5V to +75V

CS1, CS2, PWMD and GATE to GND ............................................................................................. –0.3V to V

DD

 +0.3V

V

DD(MAX) 

................................................................................................................................................................. +12V

Operating Temperature Range............................................................................................................. –40°C to +125°C
Junction Temperature.......................................................................................................................................... +150°C
Storage Temperature Range  ............................................................................................................... –65°C to +150°C
Continuous Power Dissipation (T

= +25°C): 

8-lead SOIC ............................................................................................................................................ 700 mW

 Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the 
device. This is a stress rating only, and functional operation of the device at those or any other conditions above those 
indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for 
extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS 

Electrical Specifications: Specifications are at T

A

 = 25°C, V

IN

 = Open and V

DD

 = 7.5V unless otherwise noted.

Parameter

Sym.

Min.

Typ.

Max.

Unit

Conditions 

INPUT

Input DC Supply Voltage Range

V

INDC

Note 3

75

V

DC input voltage                            
(

Note 1

 and 

Note 2

) 

Shutdown Mode Supply Current

I

INSD

0.5

1

mA

PWMD connected to GND,           
V

IN

 = 12V (

Note 2

INTERNAL REGULATOR

Internally Regulated Voltage

V

DD

7

7.5

9

V

V

IN

 = 8V–75V, I

DD(EXT)

 = 0,           

500 pF capacitor at GATE,       
PWMD = GND (

Note 1

V

DD

 Undervoltage Lockout 

Threshold

UVLO

6.35

6.7

7.05

V

V

DD

 rising (

Note 1

V

DD

 Undervoltage Lock-out             

Hysteresis

∆UVLO

500

mV

REFERENCE
REF Pin Voltage                          
0°C < T

< +85°C

V

REF

1.212

1.25

1.288

V

REF bypassed with a 0.1 µF    
capacitor to GND, I

REF

 = 0,     

PWMD = 5V

REF Pin Voltage                    
–40°C < T

A

 < +125°C

1.187

1.25

1.312

Line Regulation of Reference 
Voltage

V

REFLINE

0

20

mV

REF bypassed with a 0.1 µF capac-
itor to GND, I

REF

 = 0,                      

V

DD

 = 7V–9V, PWMD = 5V

Reference Output Current Range

I

REF

–0.01

500

µA

REF bypassed with a 0.1 µF capac-
itor to GND, I

REF

 = 0, V

DD

 = 7V–9V, 

PWMD = 5V

Load Regulation of Reference 
Voltage

V

REFLOAD

0

10

mV

REF bypassed with a 0.1 µF capac-
itor to GND, I

REF

 = 0 µA–500 µA, 

PWMD = 5V

PWM DIMMING
PWMD Input Low Voltage

V

PWMD(LO)

0.8

V

V

DD 

= 7V–9V (

Note 1

PWMD Input High Voltage

V

PWMD(HI)

2

V

V

DD 

= 7V–9V (

Note 1

Note 1:

Specifications apply over the full operating ambient temperature range of –40ºC < T

A

 < +125ºC.           

2: Also limited by package power dissipation limit, whichever is lower
3: Depends on the current drawn by the part. See 

Section 4.0 “Application Information”

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005597A-html.html
background image

 2016 Microchip Technology Inc.

DS20005597A-page  5

AT9933

PWMD Pull-down Resistance

R

PWMD

50

100

150

kΩ

V

PWMD

 = 5V

GATE DRIVER
GATE Short Circuit Current

I

SOURCE

0.165

A

V

GATE

 = 0V

GATE Sinking Current

I

SINK

0.165

A

V

GATE

 = V

DD

GATE Output Rise Time

T

RISE

30

50

ns

C

GATE 

= 500 pF

GATE Output Fall Time

T

FALL

30

50

ns

C

GATE

 = 500 pF

INPUT CURRENT SENSE COMPARATOR

Voltage required to turn on GATE  V

TURNON1

85

100

115

mV

C

S2

 = 200 mV, C

S1

 increasing, 

GATE goes LOW to HIGH (

Note 1

Voltage required to turn off GATE

V

TURN-

OFF1

–15

0

15

mV

C

S2

 = 200 mV, C

S1

 decreasing, 

GATE goes HIGH to LOW (

Note 1

Delay to Output (Turn-on)

T

D1,ON

150

250

ns

C

S2 

= 200 mV,                                   

C

S1

 = 50 mV to +200 mV step

Delay to Output (Turn-off)

T

D1,OFF

150

250

ns

C

S2

 = 200 mV,                                   

C

S1

 = 50 mV to –100 mV step

OUTPUT CURRENT SENSE COMPARATOR

Voltage required to turn on GATE V

TURNON2

85

100

115

mV

C

S1 

= 200 mV, C

S2

 increasing, 

GATE goes LOW to HIGH (

Note 1

Voltage required to turn off GATE 

V

TURN-

OFF2

–15

0

15

mV

C

S1

 = 200 mV, C

S2

 decreasing, 

GATE goes HIGH to LOW (

Note 1

Delay to Output (Turn-on)

T

D2,ON

150

250

ns

C

S1

 = 200 mV,                                   

C

S2

 = 50 mV to +200 mV step

Delay to Output (Turn-off)

T

D2,OFF

150

250

ns

C

S1

 = 200 mV,                                                            

C

S2

 = 50 mV to –100 mV step

TEMPERATURE SPECIFICATIONS

Parameter

Sym.

Min.

Typ.

Max.

Unit

Conditions

TEMPERATURE RANGE
Operating Temperature 

T

A

–40

+125

°C

Junction Temperature

T

J

+150

°C

Storage Temperature

T

S

–65

+150

°C

PACKAGE THERMAL RESISTANCE
8-lead SOIC

JA

+101

°C/W

Note 1

Note 1: Mounted on a FR-4 board, 25 mm x 25 mm x 1.57 mm

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications: Specifications are at T

A

 = 25°C, V

IN

 = Open and V

DD

 = 7.5V unless otherwise noted.

Parameter

Sym.

Min.

Typ.

Max.

Unit

Conditions 

Note 1:

Specifications apply over the full operating ambient temperature range of –40ºC < T

A

 < +125ºC.           

2: Also limited by package power dissipation limit, whichever is lower
3: Depends on the current drawn by the part. See 

Section 4.0 “Application Information”

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005597A-html.html
background image

AT9933

DS20005597A-page  6

 2016 Microchip Technology Inc.

2.0

PIN DESCRIPTION

The details on the pins of AT9933 are listed on 

Table 2-1

. Refer to 

Package Type

 for the location of 

the pins. 

TABLE 2-1:

PIN FUNCTION TABLE 

Pin Number

Pin Name

Description

1

VIN

This pin is the input of an 8V–75V voltage regulator.

2

CS1

This pin is used to sense the input and output currents of the boost-buck converter. It is 
a non-inverting input of the internal comparator.

3

GND

This is the ground return for all the internal circuitry. This pin must be electrically         
connected to the ground of the power train.

4

GATE

This pin is the output gate driver for an external N-channel power Metal-oxide                   
Semiconductor Field-effect Transistor (MOSFET).

5

PWMD

When this pin is left open or pulled to GND, the gate driver is disabled. Pulling the pin to 
a voltage greater than 2V will enable the gate driver output.

6

VDD

This is a power supply pin for all internal circuits. It must be bypassed to GND with a 
low-ESR capacitor greater than 0.1 µF.

7

CS2

This pin is used to sense the input and output currents of the boost-buck converter. It is 
a non-inverting input of the internal comparator.

8

REF

This pin provides accurate reference voltage. It must be bypassed with a                              
0.01 µF–0.1 µF capacitor to GND.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005597A-html.html
background image

 2016 Microchip Technology Inc.

DS20005597A-page  7

AT9933

3.0

DETAILED DESCRIPTION 

3.1

Power Topology

The  AT9933 is optimized to drive a Continuous 
Conduction Mode (CCM) boost-buck DC/DC converter 
topology commonly referred to as Ćuk converter. 
(Refer to 

Typical Application Circuit

.) This power 

converter topology offers numerous advantages useful 
for driving high-brightness light-emitting diodes (HB 
LED). These advantages include step-up or step-down 
voltage conversion ratio and low input and output 
current ripple. The output load is decoupled from the 
input voltage with a capacitor, making the driver 
inherently failure-safe for the output load.
The  AT9933 offers a simple and effective control 
technique for a boost-buck LED driver. It uses two 
Hysteretic mode controllers—one for the input and one 
for the output. The outputs of these two hysteretic 
comparators are ANDED and used to drive the external 
FET. This control scheme gives accurate current 
control and constant output current in the presence of 
input voltage transients without the need for 
complicated loop design.

3.2

Input Voltage Regulator

The AT9933 can be powered directly from its V

IN

 pin 

that can withstand a maximum voltage of up to 75V. 
When a voltage is applied to the V

IN

 pin, the AT9933 

seeks to regulate a constant 7.5V (typical) at the V

DD

pin. The regulator also has a built-in undervoltage 
lockout which shuts off the IC when the voltage at the 
V

DD

 pin falls below the UVLO threshold.

The V

DD

 pin must be bypassed by a low-ESR capacitor 

(≥0.1 μF) to provide a low-impedance path for the high 
frequency current of the output gate driver.
The input current drawn from the V

IN 

pin is the sum of 

the 1 mA current drawn by the internal circuit and the 
current drawn by the gate driver, which in turn depends 
on the switching frequency and the gate charge of the 
external FET. Refer to 

Equation 3-1

EQUATION 3-1:

I

IN

1mA Q

G

f

S

+

=

In the above equation, f

S

 is the switching frequency, 

and Q

G

 is the gate charge of the external FET which 

can be obtained from the data sheet of the FET.

3.3

Minimum Input Voltage at V

IN

 Pin

The minimum input voltage at which the converter will 
start and stop depends on the minimum voltage drop 
required for the linear regulator. The internal linear 
regulator will control the voltage at the V

DD 

pin when 

V

IN

 is between 8V and 75V. However, when the V

IN

 is 

less than 8V, the converter will still function as long as 

the V

DD

 is greater than the undervoltage lockout. Thus, 

under certain conditions, the converter will be able to 
start at V

IN

 voltages of less than 8V. The start/stop 

voltages at the V

IN

 pin can be determined using the 

maximum voltage drop across the linear regulator as a 
function of the current drawn. The data for ambient 
temperatures 25ºC and 125ºC are shown in 

Figure 3-1

 

below:

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0

0              1              2              3              4              5               6              7

I

IN 

(mA)

Voltage Drop 

(V

)

125

O

C

25

O

C

FIGURE 3-1:

Maximum Voltage Drop vs. 

Input Current. 

Assume an ambient temperature of 125°C. Provided 
that the IC is driving a 15 nC gate charge FET at 
300 kHz, the total input current is estimated to be 
5.5 mA (using 

Equation 3-1

). At this input current, the 

maximum voltage drop from 

Figure 3-1

 can be 

approximately estimated to be V

DROP

 = 2.7V. However, 

before the IC starts switching, the current drawn will be 
1 mA. At this current level, the voltage drop is 
approximately V

DROP1

 = 0.5V. Thus, the start/stop V

IN

voltages can be computed as shown in 

Equation 3-2

 

and 

Equation 3-3

:

EQUATION 3-2:

V

IN START

UVLO

MAX

V

DROP1

+

=

6.950.5V

+

=

7.45V

=

EQUATION 3-3:

V

IN STOP

UVLO

MAX

UVLO V

DROP

+

=

6.950.5V

2.7V

+

=

9.15V

=

Note:

Since the gate driver draws too much cur-
rent in this situation, V

IN-START

 is less than 

V

IN-STOP

. The control IC will oscillate 

between on and off if the input voltage is 
between the start and stop voltages. In 
these circumstances, it is recommended 
that the input voltage be kept higher than 
V

IN-STOP

. The IC will operate normally if 

the input voltage is kept higher than 9.2V.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005597A-html.html
background image

AT9933

DS20005597A-page  8

 2016 Microchip Technology Inc.

In case of input transients that reduce the input voltage 
below 8V (e.g. Cold Crank condition in an automotive 
system), the V

IN

 pin of the AT9933 can be connected to 

the MOSFET drain through a switching diode using a 
small (1 nF) capacitor between V

IN 

and GND as long as 

the drain voltage does not exceed 75V. Since the drain 
of the FET is at a voltage equal to the sum of the input 
and output voltages, the IC will still be operational when 
the input goes below 8V. Therefore, a larger capacitor 
is needed at the V

DD 

pin to supply power to the IC when 

the MOSFET is switched on.
In this case, V

DD UVLO

 cannot be relied upon to turn off 

the IC at low input voltages when input current levels 
can get too large. In such cases, the input current limit 
must be chosen to ensure that the input current is set 
to a safe level.

3.4

Reference

An internally trimmed voltage reference of 1.25V is 
provided at the REF pin. The reference can supply a 
maximum output current of 500 µA to drive external 
resistor dividers.
This reference can be used to set the current 
thresholds of the two comparators as shown in the 

Typical Application Circuit

 section. 

3.5

Current Comparators

The AT9933 features two identical comparators with a 
built-in 100 mV hysteresis. When the GATE is low, the 
inverting terminal is connected to 100 mV, but when the 
GATE is high, it is connected to GND. One comparator 
is used for the input current control and the other for the 
output current control.
The input side hysteretic controller is in operation 
during Start-up, Overload and Input Undervoltage 
conditions. This ensures that the input current never 
exceeds the designed value. During normal operation, 
the input current is less than the programmed current. 
Therefore, the output of the input side comparator will 
be high. The output of the AND gate will then be 
dictated by the output current controller.
The output side hysteretic comparator controls the 
external MOSFET during Steady state operation of the 
circuit. This comparator turns the MOSFET on and off 
based on the LED current.

3.6

PWM Dimming

PWM Dimming can be achieved by applying a 
TTL-compatible square wave signal to the PWM pin. 
When the PWMD pin is pulled high, the gate driver is 
enabled and the circuit operates normally. When the 
PWMD pin is left open or connected to GND, the gate 
driver is disabled and the external MOSFET turns off. 
The signal at the PWMD pin inhibits the driver only and 
the IC need not go through the entire start-up cycle 

each time, ensuring a quick response time for the 
output current. The recommended PWM dimming 
frequency range is from 100 Hz to a few kilohertz.
The flying capacitor in the Ćuk converter (C1) is initially 
charged to the input voltage VDC (through diodes D

1

and D

2

). When the circuit is turned on and reaches 

Steady state, the voltage across C1 will be VDC+VO. In 
the absence of diode D

2

, when the circuit is turned off, 

capacitor C

1

 will discharge through the LEDs and the 

input voltage source VDC. Thus, during PWM dimming, 
if capacitor C

1

 has to be charged and discharged each 

cycle, the transient response of the circuit will be 
limited. By adding diode D

2

, the voltage across 

capacitor C

1

 is held at VDC+VO even when the circuit 

is turned off, enabling the circuit to return quickly to its 
Steady state (and bypassing the start-up stage) upon 
being enabled.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005597A-html.html
background image

 2016 Microchip Technology Inc.

DS20005597A-page  9

AT9933

4.0

APPLICATION INFORMATION

4.1

Overvoltage Protection

Overvoltage protection can be added by splitting the 
output side resistor R

S2

 into two components and 

adding a Zener diode D

3

. (Refer to 

Figure 4-1

 below.) 

When there is an Open LED condition, the diode D

3

 will 

clamp the output voltage and the Zener diode current 
will be regulated by the sum of R

S2A

 and R

CS2

.

4.2

Damping Circuit

The  Ćuk converter is inherently unstable when the 
output current is being controlled. An uncontrolled input 
current will lead to an undamped oscillation between L

1

and C

1

, causing excessively high voltages across 

capacitor C

1

. To prevent these oscillations, a damping 

circuit consisting of R

D

 and C

D

 is applied across the 

capacitor C

1

. This damping circuit will stabilize the 

circuit and help in the proper operation of the converter.

4.3

Design and Operation of the 
Boost-buck Converter

For details on the design for a boost-buck converter 
using the AT9933 and the calculation of the damping 
components, refer to Application Notes AN-H51 and 
AN-H58. 

4.4

Design Example

The choice of the resistor dividers to set the input and 
output current levels is illustrated by means of the 
design example given below.
The parameters of the power circuit are:

V

IN MIN

9.01V

=

V

IN MAX

16V

=

V

O

28V

=

I

O

0.35A

=

f

S MIN

300kHz

=

Using these parameters, the values of the power stage 
inductors and capacitor can be computed. (See figures 
below.) Refer to Application Note AN-H51  for more 
details. 

L

1

82

H

=

L

2

150

H

=

C

1

0.22

F

=

The input and output currents for this design are:

I

IN MAX

1.6A

=

I

IN

0.21A

=

I

O

350mA

=

I

O

87.5mA

=

VIN

GATE

CS1

GND

VDD

PWMD

CS2

REF

VDC 

L

L

C

Q

D1 

R

CS1 

R

S2A 

R

REF2 

R

REF1 

R

S1 

C

D

2

 (optional) 

VO

C

R

CS2 

C

R

C

AT9933 

 

R

S2B 

D

FIGURE 4-1:

Design Example Circuit.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005597A-html.html
background image

AT9933

DS20005597A-page  10

 2016 Microchip Technology Inc.

4.5

Current Limits

The current sense resistor R

CS2

, combined with the 

other resistors R

S2

 and R

REF2

, determines the output 

current limits.
The resistors can be chosen using 

Equation 4-1

 and 

Equation 4-2

.

EQUATION 4-1:

I R

CS

1.2V

R

S

R

REF

-------------

 0.05V

=

Where I is the current (either I

O

 or I

IN

) and ∆I is the 

peak-to-peak ripple in the current (either 

∆I

O

 or 

∆I

IN

).

EQUATION 4-2:

I R

CS

0.1V

R

S

R

REF

-------------

 0.1V

+

=

Where I is the current (either I

O

 or I

IN

) and ∆I is the 

peak-to-peak ripple in the current (either 

∆I

O

 or 

∆I

IN

).

For the input side, the current level used in the 
equations should be larger than the maximum input 
current, so that it does not interfere with the normal 
operation of the circuit. The peak input current can be 
computed as shown in 

Equation 4-3

EQUATION 4-3:

I

IN PK

I

IN MAX

I

IN

2

----------

+

=

1.706A

=

Assuming a 30% peak-to-peak ripple when the 
converter is in Input Current Limit mode, the minimum 
value of the input current is calculated as seen in 

Equation 4-4

.

EQUATION 4-4:

I

LIM MIN

0.85 I

IN LIM

=

Setting 

I

LIM MIN

1.05 I

IN PK

=

The current level to limit the converter can then be 
computed. See equation 

Equation 4-5

EQUATION 4-5:

I

IN LIM

1.05
0.85

----------

 I

IN PK

=

2.1A

=

Using I

O

 = 350 mA and ∆I

O

 = 87.5 mA in 

Equation 4-1

 

and 

Equation 4-2

, R

CS2

 = 1.78Ω and 

R

S2

/R

REF2

 = 0.5625.

Before the design of the output side is complete, 
overvoltage protection has to be included in the design. 
For this application, choose a 33V Zener diode. This is 
the voltage at which the output will clamp in case of an 
Open LED condition. For a 350 mW diode, the 
maximum current rating at 33V works out to about 
10 mA. Using a 2.5 mA current level during Open LED 
conditions, and assuming the same R

S2

/R

REF2 

ratio, 

the Zener current limiting resistor can be determined as 
illustrated in 

Equation 4-6

EQUATION 4-6:

R

CS

R

S2A

+

120

=

Choose the following values for the resistors:

R

CS2

 = 1.65Ω, 1/4W, 1%

R

REF2

 = 10 kΩ, 1/8W, 1%

R

S2A

 = 100Ω, 1/8W, 1%

R

S2B

 = 5.23 kΩ, 1/8W, 1%

The current sense resistor needs to be at least a 1/4W, 
1% resistor.
Similarly, using I

IN 

= 2.1A and ∆I

IN

 = 0.3 x I

IN

 = 0.63 in 

Equation 4-1

 and 

Equation 4-2

, the following values 

can be determined:

R

S1

R

REF1

---------------

0.442

=

P

RCS1

I

2

IN LIM

R

CS1

=

Choose the following values for the resistors:

R

CS1 

= parallel combination of three 0.68Ω, 1/2W, 5% 

resistors 

R

REF1

 = 10kΩ, 1/8W, 1%

R

S1

 = 4.42kΩ, 1/8W, 1%

R

CS1

0.228

=

1W

=

Maker
Microchip Technology Inc.