AT9919 Hysteretic Buck High-Brightness LED Driver with High-Side Current Sensing Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005595A-html.html
background image

 2016 Microchip Technology Inc.

DS20005595A-page  1

AT9919

Features

• Hysteretic Control with High-side Current Sensing
• Wide Input Voltage Range: 4.5V to 40V
• >90% Efficiency
• Typical ±5% LED Current Accuracy
• Up to 2 MHz Switching Frequency
• Adjustable Constant LED Current
• Analog or Pulse-With Modulation (PWM) Control 

Signal for PWM Dimming

• Overtemperature Protection
• –40ºC to +125ºC Operating Temperature Range

Applications

• LED Lighting Applications

General Description

The AT9919 is a PWM controller IC designed to drive 
high-brightness LEDs using a buck topology. It 
operates from an input voltage of 4.5 VDC to 40 VDC 
and employs hysteretic control with a high-side current 
sense resistor to set the constant output current.
The operating frequency range can be set by selecting 
the proper inductor. Operation at high switching 
frequency is possible since the hysteretic control 
maintains accuracy even at high frequencies. This 
permits the use of small inductors and capacitors, 
minimizing space and cost in the overall system.
LED brightness control is achieved with PWM dimming 
from an analog or PWM input signal. Unique PWM 
circuitry allows true constant color with a high dimming 
range. The dimming frequency is programmed using a 
single external capacitor.
The AT9919 comes in a small, 8-lead DFN package 
and is qualified for LED lighting applications.

Package Type

8-lead DFN

(Top View)

See 

Table 2-1

 for pin information. 

8

1

2

3

4

7

6

5

CS

VIN

GATE

RAMP

ADIM

GND

VDD

DIM

GND

Hysteretic Buck High-Brightness LED Driver with High-Side Current Sensing

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005595A-html.html
background image

AT9919

DS20005595A-page  2

 2016 Microchip Technology Inc.

Functional Block Diagram

CURRENT 

SENSE 

COMPARATOR 

UVLO

COMPARATOR

GATE 

DRIVER 

VIN

VDD 

CS

RAMP

ADIM

GND

DIM

GATE

AT9919 

PWM RAMP 

0.1~1.9V 

BANDGAP 

REF 

REGULATOR 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005595A-html.html
background image

 2016 Microchip Technology Inc.

DS20005595A-page  3

AT9919

Typical Application

C

IN

0 - 2.0V

AT9919

VIN

VDD

GATE

GND

CS

RAMP

ADIM

DIM

R

SENSE

L

 Circuit

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005595A-html.html
background image

AT9919

DS20005595A-page  4

 2016 Microchip Technology Inc.

1.0

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

V

IN 

and CS to GND ...................................................................................................................................–0.3V to +45V

V

DD

, GATE, RAMP, DIM, ADIM to GND......................................................................................................–0.3V to +6V

CS to V

IN

.....................................................................................................................................................–1V to +0.3V

Operating Temperature Range............................................................................................................. –40°C to +125°C
Junction Temperature.............................................................................................................................................150°C
Storage Temperature Range ...................................................................................................................–65°C to 150°C
Continuous Power Dissipation (T

= +25°C)  .......................................................................................................... 1.6W

 Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the 
device. This is a stress rating only, and functional operation of the device at those or any other conditions above those 
indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for 
extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS 

Electrical Specifications: V

IN

 = 12V, V

DIM

 = V

DD

, V

RAMP

 = GND, C

VDD

 = 1 µF, R

CS

 = 0.5Ω, T

A

 = T

J

 = –40ºC to 

+125ºC (

Note 1

) unless otherwise noted.

Parameter

Sym.

Min.

Typ. Max.

Unit

Conditions 

Input DC Supply Voltage Range

V

IN

4.5

40

V

DC input voltage

Internally Regulated Voltage

V

DD

4.5

 5.5

V

V

IN

 = 6V to 40V

Supply Current

I

IN

1.5

mA

GATE open

Shutdown Supply Current

I

IN, SDN

900

µA

DIM < 0.7V

Current Limit

I

IN, LIM

30

mA

V

IN

 = 4.5V, V

DD

 = 0V

8

V

IN

 = 4.5V, V

DD

 = 4V

Oscillator Frequency

f

OSC

2

MHz

V

DD

 Undervoltage Lockout 

Threshold

UVLO

4.5

V

V

DD 

rising

V

DD

 Undervoltage Lockout    

Hysteresis

UVLO

HYST

500

mV

V

DD

 falling

SENSE COMPARATOR
Sense Voltage Threshold High

V

CS(HI)

198

230

257

mV

(V

IN 

– V

CS

) rising

Sense Voltage Threshold Low

V

CS(LO)

147

170

195

mV

(V

IN 

– V

CS

) falling

Average Reference Voltage

V

CS(AVG)

186

200

214

mV

V

CS(AVG)

 = 0.5V

CS(HI) 

+ 0.5V

CS(LO)

Propagation Delay to Output 
High

t

DPDH

70

ns

Falling edge of 

V

IN 

– V

CS

 = V

RS(LO) 

– 70 mV

Propagation Delay to Output 
Low

t

DPDL

70

ns

Rising edge of

V

IN 

– V

CS

 = V

RS(HI)

 + 70 mV

Current Sense Input Current

I

CS

1

µA

V

IN 

– V

CS

 = 200 mV

Current Sense Threshold 

Hysteresis

V

CS(HYST)

56

80

mV

DIM INPUT
Pin DIM Input High Voltage

V

IH

2.2

V

Pin DIM Input Low Voltage

V

IL

0.7

V

Turn-on Time

t

ON

100

ns

DIM rising edge to                         
V

GATE

 = 0.5 x V

DD

, C

GATE

 = 2 nF

Turn-off Time

t

OFF

100

ns

DIM falling edge to

V

GATE

 = 0.5 x V

DD

, C

GATE

 = 2 nF

Note 1:

Limits obtained by design and characterization.

2: For design guidance only

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005595A-html.html
background image

 2016 Microchip Technology Inc.

DS20005595A-page  5

AT9919

GATE DRIVER
GATE Current, Source

I

GATE

0.3

0.5

A

V

GATE 

= GND (

Note 2

)

GATE Current, Sink

0.7

1

A

V

GATE

 = V

DD 

(

Note 2

)

GATE Output Rise Time

T

RISE

40

55

ns

C

GATE

 = 2 nF

GATE Output Fall Time

T

FALL

17

25

ns

C

GATE 

= 2 nF

GATE High Output Voltage

V

GATE(HI)

V

DD

 – 0.5

V

I

GATE

 = 10 mA

GATE Low Output Voltage

V

GATE(LO)

0.5

V

I

GATE

 = –10 mA

OVERTEMPERATURE PROTECTION
Over Temperature Trip Limit

T

OT

128

140

ºC

Note 2

Temperature Hysteresis

∆T

HYST

60

ºC

Note 2

ANALOG CONTROL OF PWM DIMMING

Dimming Frequency

f

RAMP

130

300

Hz

C

RAMP

 = 47 nF

550

1250

C

RAMP

 = 10 nF

RAMP Threshold, Low

V

LOW

0.1

V

RAMP Threshold, High

V

HIGH

1.8

2.1

V

ADIM Offset Voltage

V

OS

–35

+35

mV

TEMPERATURE SPECIFICATIONS

Parameter

Sym.

Min.

Typ.

Max.

Unit

Conditions

TEMPERATURE RANGE
Operating Temperature

T

A

–40

+125

°C

Junction Temperature

T

J

+150

°C

Storage Temperature

T

S

–65

+150

°C

PACKAGE THERMAL RESISTANCE
8-lead DFN

JA

+37

°C/W

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications: V

IN

 = 12V, V

DIM

 = V

DD

, V

RAMP

 = GND, C

VDD

 = 1 µF, R

CS

 = 0.5Ω, T

A

 = T

J

 = –40ºC to 

+125ºC (

Note 1

) unless otherwise noted.

Parameter

Sym.

Min.

Typ. Max.

Unit

Conditions 

Note 1:

Limits obtained by design and characterization.

2: For design guidance only

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005595A-html.html
background image

AT9919

DS20005595A-page  6

 2016 Microchip Technology Inc.

2.0

PIN DESCRIPTION

The details on the pins of AT9919 are listed on 

Table 2-1

. Refer to 

Package Type

 for the location of 

pins. 

TABLE 2-1:

PIN FUNCTION TABLE 

Pin Number

Pin Name

Description

1

CS

Current sense input. Senses LED string current.

2

VIN

Input voltage 4.5V to 40V DC

3

RAMP

Analog PWM dimming ramp output

4

ADIM

Analog 0V~2V signal input for analog control of PWM dimming

5

DIM

PWM signal input

6

VDD

Internally regulated supply voltage. Connect a capacitor from VDD to ground.

7

GND

Device ground

8

GATE

Drives GATE of the external MOSFET

TAB

GND

Must be wired to pin 7 on PCB

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005595A-html.html
background image

 2016 Microchip Technology Inc.

DS20005595A-page  7

AT9919

3.0

APPLICATION INFORMATION

3.1

General Description

The  AT9919 is a step-down constant-current 
high-brightness LED (HB LED) driver. The device 
operates from a 4.5V to 40V input voltage range and 
provides the gate drive output to an external N-channel 
MOSFET. A high-side current sense resistor sets the 
output current, and a dedicated PWM dimming input 
(DIM) allows for a wide range of dimming duty ratios. 
The PWM dimming could also be achieved by applying 
a DC voltage between 0V and 2V to the analog 
dimming input (ADIM). In this case, the dimming 
frequency can be programmed using a single capacitor 
at the RAMP pin. The high-side current sensing 
scheme minimizes the number of external components 
while delivering LED current with a ±8% accuracy, 
using a 1% sense resistor.

3.2

Undervoltage Lockout (UVLO)

The  AT9919 includes a 3.7V UVLO with 500 mV 
hysteresis. When V

IN 

falls below 3.7V, GATE goes low, 

turning off the external N-channel MOSFET. GATE 
goes high once V

IN

 is 4.5V or higher.

3.3

5V Regulator

V

DD

 is the output of a 5V regulator capable of sourcing 

8 mA. Bypass V

DD 

to GND with a 1 µF capacitor.

3.4

DIM Input

The AT9919 allows dimming with a PWM signal at the 
DIM input. A logic level below 0.7V at DIM forces the 
GATE

OUTPUT

 low, turning off the LED current. To turn 

on the LED current, the logic level at DIM must be at 
least 2.2V.

3.5

ADIM and RAMP Inputs

The PWM dimming scheme can also be implemented 
by applying an analog control signal to the ADIM pin. If 
an analog control signal of 0V~2.0V is applied to ADIM, 
the device compares this analog input to a voltage 
ramp to pulse width modulate the LED current. 
Connecting an external capacitor to RAMP programs 
the PWM dimming ramp frequency. See 

Equation 3-1

EQUATION 3-1:

f

PWM

1

C

RAMP

120k

-----------------------------------------

=

The DIM and ADIM inputs can be used simultaneously. 
In such case, a f

PWM(MAX) 

lower than the frequency of 

the dimming signal at DIM

 

must be selected. The 

smaller dimming duty cycle of ADIM and DIM will 
determine the GATE signal.

When the analog control of PWM dimming feature is 
not used, RAMP must be wired to GND and ADIM 
should be connected to V

DD

.

One possible application of the ADIM feature may 
include protection of the LED load from 
overtemperature by connecting an NTC thermistor to 
ADIM as shown in 

Figure 3-1

.

NTC 

VDD 

ADIM 

GND 

AT9919 

FIGURE 3-1:

Overtemperature Protection 

using ADIM Pin.

3.6

Setting LED Current with the 
External Resistor (R

SENSE

)

The output current in the LED is determined by the 
external current sense resistor (R

SENSE

) connected 

between V

IN

 and CS. Disregarding the effect of the 

propagation delays, the sense resistor can be 
calculated as seen in 

Equation 3-2

.

EQUATION 3-2:

R

SENSE

1
2

---

 

 

V

RS HI

V

RS LO

+

I

LED

---------------------------------------------

200mV

I

LED

-----------------

=

3.7

Selecting Buck Inductor (L)

The AT9919 regulates the LED output current using an 
input comparator with hysteresis. (See 

Figure 3-2

.) As 

the current through the inductor ramps up, and the 
voltage across the sense resistor reaches the upper 
threshold, the voltage at GATE goes low, turning off the 
external MOSFET. The MOSFET turns on again when 
the inductor current ramps down through the 
freewheeling diode until the voltage across the sense 
resistor equals the lower threshold.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005595A-html.html
background image

AT9919

DS20005595A-page  8

 2016 Microchip Technology Inc.

FIGURE 3-2:

Inductor Current Waveform.

t

t

I

LED

V

DIM

V

RS(HI) 

R

SENSE 

V

RS(LO) 

R

SENSE 

t

DPDL

t

DPDH

T

1

        f

S

ΔI

ΔI

O

Equation 3-3

 shows how to determine the inductor 

value for a desired operating frequency (f

S

)

.

EQUATION 3-3:

L

V

IN

V

OUT

 V

OUT

f

S

V

IN

I

O

------------------------------------------------------

V

IN

V

OUT

 t

DPDL

I

O

-------------------------------------------------------

V

OUT

t

DPDH

I

O

------------------------------

=

Where:

I

O

V

RS HI

V

RS LO

R

SENSE

--------------------------------------------

=

and t

DPDL

 and t

DPDH

 are the propagation delays. 

Note that the current ripple (∆I) in the inductor (L) is greater than ∆I

O

The current ripple in the inductor (L) can be calculated 
with 

Equation 3-4

.

EQUATION 3-4:

I

I

O

V

IN

V

OUT

 t

DPDL

L

-------------------------------------------------------

V

OUT

t

DPDH

L

------------------------------

+

+

=

For proper inductor selection, note that the maximum 
switching frequency occurs at the highest V

IN

 and 

V

OUT

 = V

IN

/2.

3.8

MOSFET Selection

MOSFET selection is based on the maximum input 
operating voltage V

IN

, output current I

LED

 and 

operating switching frequency. Choose a MOSFET that 
has a higher breakdown voltage than the maximum 
operation voltage, low R

DS(ON)

 and low total charge for 

better efficiency. MOSFET threshold voltage must be 
adequate when operated at the low end of the input 
voltage operating range.

3.9

Freewheeling Diode Selection

The forward voltage of the freewheeling diode should 
be as low as possible for better efficiency. A Schottky 
diode is a good choice as long as the breakdown 
voltage is high enough to withstand the maximum 
operating voltage. The forward current rating of the 
diode must be at least equal to the maximum LED 
current.

3.10

LED Current Ripple

The LED current ripple is equal to the inductor current 
ripple. In cases when a lower LED current ripple is 
needed, a capacitor can be placed across the LED 
terminals.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005595A-html.html
background image

 2016 Microchip Technology Inc.

DS20005595A-page  9

AT9919

3.11

PCB Layout Guidelines

Careful PCB layout is critical to achieving low switching 
losses and stable operation. Use a multilayer board 
whenever possible for better noise immunity. Minimize 
ground noise by connecting high-current ground 
returns, the input bypass capacitor ground lead and the 
output filter ground lead to a single point (star ground 
configuration). The fast di/dt loop is composed of the 
input capacitor C

IN

, the freewheeling diode and the 

MOSFET. To minimize noise interaction, this loop area 
should be as small as possible. Place R

SENSE

 as close 

as possible to the input filter and V

IN

. For better noise 

immunity, a Kelvin connection is strongly 
recommended between CS and R

SENSE

. Connect the 

exposed tab of the IC to a large area ground plane for 
improved power dissipation.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005595A-html.html
background image

AT9919

DS20005595A-page  10

 2016 Microchip Technology Inc.

4.0

PACKAGING INFORMATION

4.1

Package Marking Information

Legend: XX...X

Product Code or Customer-specific information

Y

Year code (last digit of calendar year)

YY

Year code (last 2 digits of calendar year)

WW

Week code (week of January 1 is week ‘01’)

NNN

Alphanumeric traceability code

  

Pb-free JEDEC

®

 designator for Matte Tin (Sn)

*

This package is Pb-free. The Pb-free JEDEC designator (     )

can be found on the outer packaging for this package.

Note:

In the event the full Microchip part number cannot be marked on one line, it will 
be carried over to the next line, thus limiting the number of available 
characters for product code or customer-specific information. Package may or 
not include the corporate logo.

3

e

3

e

8-lead DFN

Example

NNN

YYWW

XXXX

373

1612

9919

Maker
Microchip Technology Inc.