800 mA Fixed-Output CMOS LDO with Shutdown

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21375D-html.html
background image

 2010 Microchip Technology Inc.

DS21375D-page 1

TC1264

Features:

• Very Low Dropout Voltage

• 800 mA Output Current

• High Output Voltage Accuracy

• Standard or Custom Output Voltages

• Overcurrent and Overtemperature Protection

Applications:

• Battery Operated Systems

• Portable Computers

• Medical Instruments

• Instrumentation

• Cellular/GSM/PHS Phones

• Linear Post-Regulators for SMPS

• Pagers

Typical Application

Description:

The TC1264 is a fixed-output, high-accuracy (typically
±0.5%) CMOS low dropout regulator. Designed
specifically for battery-operated systems, the TC1264’s
CMOS construction eliminates wasted ground current,
significantly extending battery life. Total supply current
is typically 80 µA at full load (20 to 60 times lower than
in bipolar regulators).

TC1264 key features include ultra low noise operation,
very low dropout voltage (typically 450 mV at full load),
and fast response to step changes in load.

The TC1264 incorporates both over temperature and
over current protection. The TC1264 is stable with an
output capacitor of only 1 µF and has a maximum
output current of 800 mA. It is available in 3-pin
SOT-223, 3-pin TO-220 and 3-pin DDPAK packages.

Package Type

TC1264

V

IN

V

OUT

C

1

1 µF

GND

V

OUT

V

IN

+

V

IN

V

IN

V

OUT

GND

GND

V

OU

T

T

AB IS 

GND

FRONT VIEW

FRONT VIEW

1

1

2

3

3

2

3-Pin TO-220

TAB IS GND

3-Pin SOT-223

3-Pin DDPAK

1

2

3

TC1264

TC1264

TC1264

V

IN

GND

V

OU

T

800 mA Fixed-Output CMOS LDO with Shutdown

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21375D-html.html
background image

TC1264

DS21375D-page 2

 2010 Microchip Technology Inc.

1.0

ELECTRICAL 
CHARACTERISTICS

Absolute Maximum Ratings †

Input Voltage .........................................................6.5V

Output Voltage.................. (V

SS 

– 0.3V) to (V

IN

 + 0.3V)

Power Dissipation................Internally Limited (

Note 8

)

Maximum Voltage on Any Pin  ........V

IN

 +0.3V to -0.3V

Operating Temperature Range...... -40°C < T

J

 < 125°C

Storage Temperature..........................-65°C to +150°C

  Notice: Stresses above those listed under "Maximum
Ratings" may cause permanent damage to the device. This is
a stress rating only and functional operation of the device at
those or any other conditions above those indicated in the
operation listings of this specification is not implied. Exposure
to maximum rating conditions for extended periods may affect
device reliability.

DC CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, V

IN

 = V

R

 + 1.5V, (

Note 1

), I

L

 = 100 µA, C

L

 = 3.3 µF, SHDN > V

IH

,

T

A

 = +25°C. Boldface type specifications apply for junction temperatures of -40°C to +125°C.

Parameters

Sym

Min

Typ

Max

Units

Conditions

Input Operating Voltage

V

IN

2.7

6.0

V

Note 2

Maximum Output Current

I

OUTMAX

800

mA

Output Voltage

V

OUT

V

R

 – 2.5%

V

R

 ± 0.5% V

R

 + 2.5%

V

V

R

 

 2.5V

V

R

 – 2%

V

R

 ± 0.5%

V

R

 + 3%

V

R

 = 1.8V

V

R

 – 7%

V

R

 + 3%

I

L

 = 0.1 mA to 800 mA 

(

Note 3

)

V

OUT

 Temperature Coefficient

V

OUT

/

T

40

ppm/°C

Note 4

Line Regulation

V

OUT

/

V

IN

0.007

0.35

%

(V

R

 + 1V) 

V

IN

6V

Load Regulation (

Note 5

)

V

OUT

/V

OUT

-0.01

0.002

0

%/mA

I

L

 = 0.1 mA to I

OUTMAX 

Dropout Voltage (

Note 6

)

V

IN

–V

OUT

20

30

mV

V

R

 

 2.5V, I

L

 = 100 µA

50

160

V

R

 

 2.5V, 

I

L

 =

 100

mA

150

480

V

R

 

 2.5V,

 

I

L

 = 300 mA

260

800

V

R

 

 2.5V,

 

I

L

 = 500 mA

450

1300

V

R

 

 2.5V,

 

I

L

 = 800 mA

1000

1200

V

R

 = 1.8V, I

L

 = 500 mA

1200

1400

I

L

 = 800 mA

Supply Current

I

DD

80

130

µA

SHDN = V

IH

, I

L

 = 0

Power Supply Rejection Ratio

PSRR

64

db

1 kHz

Output Short Circuit Current

I

OUTSC

1200

mA

V

OUT

 = 0V

Note

1:

V

R

 is the regulator output voltage setting.

2:

The minimum V

IN

 has to justify the conditions: V

IN

 

 V

R

 + V

DROPOUT

 and V

IN

 

 2.7V for I

L

 = 0.1 mA to I

OUTMAX

.

3:

This accuracy represents the worst-case over the entire output current and temperature range.

4:

5:

Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested 
over a load range from 0.1 mA to the maximum specified output current. Changes in output voltage due to heating 
effects are covered by the thermal regulation specification. 

6:

Dropout voltage is defined as the input-to-output differential at which the output voltage drops 2% below its nominal 
value measured at a 1.5V differential.

7:

Thermal regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied, 
excluding load or line regulation effects. Specifications are for a current pulse equal to I

LMAX

 at V

IN

 = 6V for T = 10 ms.

8:

The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction 
temperature and the thermal resistance from junction-to-air (i.e., T

A

, T

J

JA

). Exceeding the maximum allowable power 

dissipation causes the device to initiate thermal shutdown. Please see 

Section 5.0 “Thermal Considerations”

 for 

more details.

TCV

OUT

V

OUTMAX

V

OUTMIN

 10

6

V

OUT

T

-------------------------------------------------------------------------

=

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21375D-html.html
background image

 2010 Microchip Technology Inc.

DS21375D-page 3

TC1264

Thermal Regulation

V

OUT

/

P

D

0.04

V/W

Note 7

Output Noise

eN

260

nV/

Hz I

L

 = I

OUTMAX

, F = 10 kH

Z

DC CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise indicated, V

IN

 = V

R

 + 1.5V, (

Note 1

), I

L

 = 100 µA, C

L

 = 3.3 µF, SHDN > V

IH

,

T

A

 = +25°C. Boldface type specifications apply for junction temperatures of -40°C to +125°C.

Parameters

Sym

Min

Typ

Max

Units

Conditions

Note

1:

V

R

 is the regulator output voltage setting.

2:

The minimum V

IN

 has to justify the conditions: V

IN

 

 V

R

 + V

DROPOUT

 and V

IN

 

 2.7V for I

L

 = 0.1 mA to I

OUTMAX

.

3:

This accuracy represents the worst-case over the entire output current and temperature range.

4:

5:

Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested 
over a load range from 0.1 mA to the maximum specified output current. Changes in output voltage due to heating 
effects are covered by the thermal regulation specification. 

6:

Dropout voltage is defined as the input-to-output differential at which the output voltage drops 2% below its nominal 
value measured at a 1.5V differential.

7:

Thermal regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied, 
excluding load or line regulation effects. Specifications are for a current pulse equal to I

LMAX

 at V

IN

 = 6V for T = 10 ms.

8:

The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction 
temperature and the thermal resistance from junction-to-air (i.e., T

A

, T

J

JA

). Exceeding the maximum allowable power 

dissipation causes the device to initiate thermal shutdown. Please see 

Section 5.0 “Thermal Considerations”

 for 

more details.

TCV

OUT

V

OUTMAX

V

OUTMIN

 10

6

V

OUT

T

-------------------------------------------------------------------------

=

TEMPERATURE CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, V

IN

 = V

R

 + 1.5V, I

L

 = 100 µA, C

L

 = 3.3 µF, SHDN > V

IH

, T

A

 = +25°C.

Parameters

Sym

Min

Typ

Max

Units

Conditions

Temperature Ranges

Specified Temperature Range

T

A

-40

+125

°C

(

Note 1

)

Operating Temperature Range

T

J

-40

+125

°C

Storage Temperature Range

T

A

-65

+150

°C

Thermal Package Resistances

Thermal Resistance, 3L-SOT-223

JA

59

°C/W

Thermal Resistance, 3L-DDPAK

JA

71

°C/W

Thermal Resistance, 3L-TO-220

JA

71

°C/W

Note

1:

Operation in this range must not cause T

J

 to exceed Maximum Junction Temperature (+125°C).

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21375D-html.html
background image

TC1264

DS21375D-page 4

 2010 Microchip Technology Inc.

2.0

TYPICAL PERFORMANCE CURVES

FIGURE 2-1:

Line Regulation vs. 

Temperature.

FIGURE 2-2:

Output Noise vs. Frequency.

FIGURE 2-3:

Load Regulation vs. 

Temperature.

FIGURE 2-4:

I

DD

 vs. Temperature.

FIGURE 2-5:

3.0V Dropout Voltage vs. 

I

LOAD

.

FIGURE 2-6:

3.0V V

OUT

 vs.Temperature.

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

0.020

0.018

0.016

0.012
0.010
0.008

0.006

0.004

0.002

0.000

0.014

TEMPERATURE (°C)

LINE REGULA

TION (%)

-40°C 0°C

25°C 70°C

85°C 125°C

FREQUENCY (kHz)

 NOISE (

μ

V/

Hz

)

10.0

1.0

0.01

0.01

1

10

100

1000

0.1

0.0

R

LOAD

 = 50Ω 

C

OUT

 = 1 

μF

-40°C

0°C

25°C 70°C

85°C 125°C

0.0100
0.0090
0.0080
0.0070

0.0060
0.0050

0.0040

0.0030
0.0020

0.0010

0.0100

TEMPERATURE (°C)

LOAD REGULA

TION (%/mA)

1 mA to 800 mA

V

OUT

 = 3V

TEMPERATURE (°C)

I

DD

 (—

A)

150
135
120
105

90
75

60

45
30

15

0

-40°C 0°C

25°C 70°C

85°C 125°C

V

OUT

 = 3V

0.600
0.550
0.500
0.450
0.400
0.350

0.300

0.250
0.200
0.150
0.100
0.050

0.000

0 100 200 300 400 500 600 700 800

ILOAD (mA)

DROPOUT

 VOL

TAGE (V)

85°C

125°C

-40°C

0°C

25°C

70°C

3.030

3.020
3.010

3.000

2.990
2.980
2.970
2.960
2.950

2.940

2.930

2.920

TEMPERATURE (°C)

V

OUT

 (V)

I

LOAD

 = 0.1 mA

I

LOAD

 = 300 mA

I

LOAD

 = 500 mA

I

LOAD

 = 800 mA

-40°C 0°C

25°C 70°C

85°C 125°C

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21375D-html.html
background image

 2010 Microchip Technology Inc.

DS21375D-page 5

TC1264

3.0

PIN DESCRIPTIONS

The descriptions of the pins are listed in 

Table 3-1

.

TABLE 3-1:

PIN FUNCTION TABLE

3.1

Unregulated Supply (V

IN

)

Unregulated supply input.

3.2

Ground (GND)

Ground terminal.

3.3

Regulated Output Voltage (V

OUT

)

Regulated voltage output.

Pin No.

3-Pin SOT-223

3-Pin TO-220

3-Pin DDPAK

Symbol

Description

1

V

IN

Unregulated supply input

2

GND

Ground terminal

3

V

OUT

Regulated voltage output

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21375D-html.html
background image

TC1264

DS21375D-page 6

 2010 Microchip Technology Inc.

4.0

DETAILED DESCRIPTION

The TC1264 is a precision, fixed output LDO. Unlike
bipolar regulators, the TC1264’s supply current does
not increase with load current. In addition, V

OUT

remains stable and within regulation over the entire
0mA to I

LOAD

MAX

 load current range (an important

consideration in RTC and CMOS RAM battery back-up
applications). 

Figure 4-1

 shows a typical application circuit.

FIGURE 4-1:

Typical Application Circuit.

4.1

Output Capacitor

A 1 µF (min) capacitor from V

OUT

 to ground is required.

The output capacitor should have an effective series
resistance greater than 0.1

 and less than 5. A 1 µF

capacitor should be connected from V

IN

 to GND if there

is more than 10 inches of wire between the regulator
and the AC filter capacitor, or if a battery is used as the
power source. Aluminum electrolytic or tantalum
capacitor types can be used. (Since many aluminum
electrolytic capacitors freeze at approximately -30°C,
solid tantalums are recommended for applications
operating below -25°C.) When operating from sources
other than batteries, supply-noise rejection and
transient response can be improved by increasing the
value of the input and output capacitors and employing
passive filtering techniques.

TC1264

V

IN

V

OUT

C

1

1 µF

GND

V

OUT

V

IN

SHDN

+

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21375D-html.html
background image

 2010 Microchip Technology Inc.

DS21375D-page 7

TC1264

5.0

THERMAL CONSIDERATIONS

5.1

Thermal Shutdown 

Integrated thermal protection circuitry shuts the
regulator off when die temperature exceeds 160°C.
The regulator remains off until the die temperature
drops to approximately 150°C.  

5.2

Power Dissipation 

The amount of power the regulator dissipates is
primarily a function of input and output voltage, and
output current. The following equation is used to
calculate worst-case actual power dissipation:

EQUATION 5-1:

The maximum allowable power dissipation
(

Equation 5-2

) is a function of the maximum ambient

temperature (T

A

MAX

), the maximum allowable die

temperature (T

J

MAX

) and the thermal resistance from

junction-to-air (

JA

).

EQUATION 5-2:

Table 5-1

 and 

Table 5-2

 show various values of 

JA

 for

the TC1264 packages.

TABLE 5-1:

THERMAL RESISTANCE 
GUIDELINES FOR TC1264 IN 
SOT-223 PACKAGE

TABLE 5-2:

THERMAL RESISTANCE 
GUIDELINES FOR TC1264 IN 
3-PIN DDPAK/TO-220 
PACKAGE

Equation 5-1

 can be used in conjunction with

Equation 5-2

 to ensure regulator thermal operation is

within limits. For example:

Find:

1.

Actual power dissipation.

2.

Maximum allowable dissipation.

Actual power dissipation:

Maximum allowable power dissipation:

In this example, the TC1264 dissipates a maximum of
260 mW, which is below the allowable limit of 508 mW.
In a similar manner, 

Equation 5-1

 and 

Equation 5-2

 can

be used to calculate maximum current and/or input
voltage limits. For example, the maximum allowable
V

IN

, is found by substituting the maximum allowable

power dissipation of 508 mW into 

Equation 5-1

, from

which V

IN

MAX

 = 4.6V.

Copper

Area

(Topside)*

Copper

Area

(Backside)

Board

Area

Thermal

Resistance



JA

)

2500 sq mm

2500 sq mm 2500 sq mm

45°C/W

1000 sq mm

2500 sq mm 2500 sq mm

45°C/W

225 sq mm

2500 sq mm 2500 sq mm

53°C/W

100 sq mm

2500 sq mm 2500 sq mm

59°C/W

1000 sq mm

1000 sq mm 1000 sq mm

52°C/W

1000 sq mm

0 sq mm

1000 sq mm

55°C/W

* Tab of device attached to topside copper

Where:

V

INMAX

V

OUTMIN

I

LOADMAX

P

= Worst-case actual power dissipation

= Minimum regulator output voltage
= Maximum output (load) current

= Maximum voltage on V

IN

P

D

V

INMAX

V

OUTMIN

I

LOADMAX

=

P

D

MAX

 

= (T

J

MAX

 – T

A

MAX

)

JA

Where all terms are previously defined.

Copper

Area

(Topside)*

Copper

Area

(Backside)

Board

Area

Thermal

Resistance



JA

)

2500 sq mm

2500 sq mm 2500 sq mm

25°C/W

1000 sq mm

2500 sq mm 2500 sq mm

27°C/W

125 sq mm

2500 sq mm 2500 sq mm

35°C/W

* Tab of device attached to topside copper

Given:

V

INMAX

= 3.3V ± 10%

V

OUTMIN

= 2.7V ± 0.5%

I

LOADMAX

= 275 mA

T

JMAX

= 125°C

T

AMAX

= 95°C

JA

= 59°C/W (SOT-223)

P

D

V

INMAX

V

OUTMIN

I

LOADMAX

P

D

3.3

1.1

2.7

.995

275

10

3

=

P

D

260 mW

=

P

DMAX

T

JMAX

T

AMAX

JA

---------------------------------------

=

P

DMAX

125

95

59

-------------------------

=

P

DMAX

508 mW

=

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21375D-html.html
background image

TC1264

DS21375D-page 8

 2010 Microchip Technology Inc.

6.0

PACKAGING INFORMATION

6.1

Package Marking Information

Legend: XX...X

Customer-specific information

Y

Year code (last digit of calendar year)

YY

Year code (last 2 digits of calendar year)

WW

Week code (week of January 1 is week ‘01’)

NNN

Alphanumeric traceability code

  

Pb-free JEDEC designator for Matte Tin (Sn)

*

This package is Pb-free. The Pb-free JEDEC designator (     )
can be found on the outer packaging for this package.

Note:

In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.

3

e

3

e

XXXXXXXXX

XXXXXXXXX

YYWWNNN

3-Lead DDPAK

Example

3-Lead SOT-223

XXXXXXX

XXXYYWW

NNN

Example

1264-25

VDB1030

256

3-Lead TO-220

XXXXXXXXX
XXXXXXXXX

YYWWNNN

Example

TC1264
3.0VAB^^
1030256

TC1264
1.8VEB^^

1030256

3

e

3

e

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21375D-html.html
background image

 2010 Microchip Technology Inc.

DS21375D-page 9

TC1264

/HDG3ODVWLF(%>''3$.@

1RWHV
 †6LJQLILFDQW&KDUDFWHULVWLF
 'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGSHUVLGH
 'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(<0

%6& %DVLF'LPHQVLRQ7KHRUHWLFDOO\H[DFWYDOXHVKRZQZLWKRXWWROHUDQFHV

1RWH

)RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW

KWWSZZZPLFURFKLSFRPSDFNDJLQJ

8QLWV

,1&+(6

'LPHQVLRQ/LPLWV

0,1

120

0$;

1XPEHURI3LQV

1

3LWFK

H

%6&

2YHUDOO+HLJKW

$

±

6WDQGRII†

$

±

2YHUDOO:LGWK

(

±

([SRVHG3DG:LGWK

(

±

±

0ROGHG3DFNDJH/HQJWK

'

±

2YHUDOO/HQJWK

+

±

([SRVHG3DG/HQJWK

'

±

±

/HDG7KLFNQHVV

F

±

3DG7KLFNQHVV

&

±

/RZHU/HDG:LGWK

E

±

8SSHU/HDG:LGWK

E

±

)RRW/HQJWK

/

±

3DG/HQJWK

/

±

±

)RRW$QJOH

ƒ

±

ƒ

E

E1

H

L1

D

D1

N

1

e

b

b1

c

C2

L

A

A1

BOTTOM VIEW

TOP VIEW

CHAMFER
OPTIONAL

φ

0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &%

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21375D-html.html
background image

TC1264

DS21375D-page 10

 2010 Microchip Technology Inc.

Note:

For the most current package drawings, please see the Microchip Packaging Specification located at 
http://www.microchip.com/packaging

Maker
Microchip Technology Inc.