500 mA Synchronous Buck Regulator, + 300 mA LDO

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21974b-html.html
background image

© 2009 Microchip Technology Inc.

DS21974B-page 1

TC1313

Features

• Dual-Output Regulator (500 mA Buck Regulator 

and 300 mA Low-Dropout Regulator (LDO))

• Total Device Quiescent Current = 57 µA (Typical)
• Independent Shutdown for Buck and LDO 

Outputs

• Both Outputs Internally Compensated
• Synchronous Buck Regulator:

- Over 90% Typical Efficiency
- 2.0 MHz Fixed-Frequency PWM

(Heavy Load)

- Low Output Noise
- Automatic PWM-to-PFM mode transition
- Adjustable (0.8V to 4.5V) and Standard 

Fixed-Output Voltages (0.8V, 1.2V, 1.5V, 
1.8V, 2.5V, 3.3V)

• Low-Dropout Regulator:

- Low-Dropout Voltage = 137 mV Typical @ 

200 mA

- Standard Fixed-Output Voltages 

(1.5V, 1.8V, 2.5V, 3.3V)

• Small 10-pin 3x3 DFN or MSOP Package Options
• Operating Junction Temperature Range:

- -40°C to +125°C

• Undervoltage Lockout (UVLO)
• Output Short Circuit Protection
• Overtemperature Protection

Applications

• Cellular Phones
• Portable Computers
• USB-Powered Devices
• Handheld Medical Instruments
• Organizers and PDAs

Description

The TC1313 device combines a 500 mA synchronous
buck regulator and 300 mA Low-Dropout Regulator
(LDO) to provide a highly integrated solution for
devices that require multiple supply voltages. The
unique combination of an integrated buck switching
regulator and low-dropout linear regulator provides the
lowest system cost for dual-output voltage applications
that require one lower processor core voltage and one
higher bias voltage.
The 500 mA synchronous buck regulator switches at a
fixed frequency of 2.0 MHz when the load is heavy,
providing a low-noise, small-size solution. When the
load on the buck output is reduced to light levels, it
changes operation to a Pulse Frequency Modulation
(PFM) mode to minimize quiescent current draw from
the battery. No intervention is necessary for smooth
transition from one mode to another.
The LDO provides a 300 mA auxiliary output that
requires a single 1 µF ceramic output capacitor,
minimizing board area and cost. The typical dropout
voltage for the LDO output is 137 mV for a 200 mA
load.
The TC1313 device is available in either the 10-pin DFN
or MSOP package.
Additional protection features include: UVLO,
overtemperature and overcurrent protection on both
outputs.
For a complete listing of TC1313 standard parts,
consult your Microchip representative.

Package Type

10-Lead DFN *

10-Lead MSOP

1
2

6

8

7

9

10

5

4

3

SHDN2

V

IN2

V

OUT2

A

GND

P

GND

L

X

V

IN1

SHDN1
V

FB1

/V

OUT1

NC

V

OUT2

V

IN2

NC

L

X

V

IN1

1

2

3
4

10

9

8
7

SHDN1

P

GND

SHDN2

EP

11

5

6

V

FB1

/V

OUT1

A

GND

* Includes Exposed Thermal Pad (EP); see 

Table 3-1

.

500 mA Synchronous Buck Regulator, 

+ 300 mA LDO

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21974b-html.html
background image

TC1313

DS21974B-page 2

© 2009 Microchip Technology Inc.

Functional Block Diagram

Synchronous Buck Regulator

NDRV

PDRV

P

GND

V

IN1

L

X

Driver

P

GND

Control

V

OUT1

/V

FB1

 

V

IN2

SHDN1

V

REF

LDO

V

OUT2

A

GND

A

GND

P

GND

Undervoltage Lockout

UVLO

UVLO

SHDN2

V

REF

(UVLO)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21974b-html.html
background image

© 2009 Microchip Technology Inc.

DS21974B-page 3

TC1313

Typical Application Circuits

10-Lead DFN

4.7 µF

Input

Voltage

4.7 µH

4.7 µF

2.1V @

1 µF

3.3V @

4.5V to 5.5V

Adjustable-Output Application

 121 kΩ

200 kΩ

4.99 kΩ

33 pF

1

2

6

8

7

9

10

5

4

3

SHDN2

V

IN2

V

OUT2

A

GND

P

GND

L

X

V

IN1

SHDN1

V

OUT1

NC

4.7 µF

4.7 µH

4.7 µF

1.5V @ 500 mA

1 µF

2.5V @ 300 mA

2.7V to 4.2V

TC1313

V

OUT1

V

OUT2

V

IN

V

OUT1

V

OUT2

1.0 µF

*Optional

 Capacitor
 V

IN2

300 mA

500 mA

Note:

 Connect DFN package exposed pad to A

GND

.

10-Lead MSOP

Fixed-Output Application

TC1313

Note

V

OUT2

V

IN2

NC

L

X

8

2

7

1

9

10

6

3

SHDN1

P

GND

SHDN2

EP

11

4

5

V

OUT1

A

GND

V

IN1

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21974b-html.html
background image

TC1313

DS21974B-page 4

© 2009 Microchip Technology Inc.

NOTES:

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21974b-html.html
background image

© 2009 Microchip Technology Inc.

DS21974B-page 5

TC1313

1.0

ELECTRICAL 
CHARACTERISTICS

Absolute Maximum Ratings †

V

IN

 - A

GND

......................................................................6.0V

All Other I/O ...............................(A

GND 

- 0.3V) to (V

IN 

+ 0.3V)

L

to P

GND

...............................................-0.3V to (V

IN 

+ 0.3V)

P

GND

 to A

GND

.................................................. -0.3V to +0.3V

Output Short Circuit Current  ................................ Continuous
Power Dissipation (Note 7) .......................... Internally Limited
Storage temperature .....................................-65°C to +150°C
Ambient Temp. with Power Applied ................-40°C to +85°C
Operating Junction Temperature...................-40°C to +125°C
ESD protection on all pins (HBM)

.......................................  3 kV

† Notice:

 Stresses above those listed under “Maximum

Ratings” may cause permanent damage to the device. This is
a stress rating only and functional operation of the device at
those or any other conditions above those indicated in the
operational listings of this specification is not implied.
Exposure to maximum rating conditions for extended periods
may affect device reliability.

DC CHARACTERISTICS

Electrical Characteristics:

 V

IN1

= V

IN2

= SHDN1,2 = 3.6V, C

OUT1

= C

IN

= 4.7 µF, C

OUT2

= 1µF,  L

 

= 4.7 µH, V

OUT1

 (ADJ) = 1.8V, 

I

OUT1

= 100 ma, I

OUT2

= 0.1 mA T

A

= +25°C. Boldface specifications apply over the T

A

 range of -40°C to +85°C.

Parameters

Sym

Min

Typ

Max

Units

Conditions

Input/Output Characteristics

Input Voltage

V

IN

2.7

5.5

V

Note 1

Note 2, Note 8

Maximum Output Current

I

OUT1_MAX

500

mA

Note 1

Maximum Output Current

I

OUT2_MAX

300

mA

Note 1

Shutdown Current 
Combined V

IN1

 and V

IN2

 Current

I

IN_SHDN

0.05

1

µA

SHDN1 = SHDN2 = GND

 Operating I

Q

I

Q

57

100

µA

SHDN1 = SHDN2 = V

IN2

I

OUT1

= 0 mA,  I

OUT2

= 0 mA

Synchronous Buck I

Q

38

µA

SHDN1 = V

IN

, SHDN2 = GND

LDO I

Q

 —

44

µA

SHDN1 = GND, SHDN2 = V

IN2

Shutdown/UVLO/Thermal Shutdown Characteristics

SHDN1,SHDN2, 
Logic Input Voltage Low

V

IL

15

%V

IN

V

IN1

= V

IN2

= 2.7V to 5.5V

SHDN1,SHDN2, 
Logic Input Voltage High

V

IH

45

%V

IN

V

IN1

= V

IN2

= 2.7V to 5.5V

SHDN1,SHDN2, 
Input Leakage Current

I

IN

-1.0

±0.01

1.0

µA

V

IN1

= V

IN2

= 2.7V to 5.5V

SHDNX = GND
SHDNY = V

IN

Thermal Shutdown

T

SHD

165

°C

Note 6

Note 7

Thermal Shutdown Hysteresis

T

SHD-HYS

10

°C

Undervoltage Lockout 
(V

OUT1

 and V

OUT2

)

UVLO

2.4

2.55

2.7

V

V

IN1

 Falling

Undervoltage Lockout Hysteresis

UVLO

-

HYS

200

mV

Note

1:

The Minimum V

IN

 has to meet two conditions: V

IN

 

≥ 2.7V and V

IN

 

≥ V

RX

 + V

DROPOUT, 

V

RX

 = V

R1

 or V

R2

.

2:

V

RX

 is the regulator output voltage setting.

3:

TCV

OUT2

 = ((V

OUT2max

 – V

OUT2min

) * 10

6

)/(V

OUT2

 * D

T

).

4:

Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested 
over a load range from 0.1 mA to the maximum specified output current.

5:

Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its 
nominal value measured at a 1V differential.

6:

The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction 
temperature and the thermal resistance from junction to air. (i.e. T

A

, T

J

θ

JA

). Exceeding the maximum allowable power 

dissipation causes the device to initiate thermal shutdown.

7:

The integrated MOSFET switches have an integral diode from the L

X

 pin to V

IN

, and from L

X

 to P

GND

. In cases where 

these diodes are forward-biased, the package power dissipation limits must be adhered to. Thermal protection is not 
able to limit the junction temperature for these cases.

8:

V

IN1

 and V

IN2

 are supplied by the same input source.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21974b-html.html
background image

TC1313

DS21974B-page 6

© 2009 Microchip Technology Inc.

Synchronous Buck Regulator (V

OUT1

)

Adjustable Output Voltage Range

V

OUT1

0.8

4.5

V

Adjustable Reference Feedback 
Voltage (V

FB1

)

V

FB1

0.78

0.8

0.82

V

Feedback Input Bias Current 
(I

FB1

)

I

VFB1

-1.5

nA

Output Voltage Tolerance Fixed 
(V

OUT1

)

V

OUT1

-2.5

±0.3

+2.5

%

Note 2

Line Regulation (V

OUT1

)

V

LINE-REG

0.2

%/V

V

IN

 = V

R

+1V to 5.5V,

I

LOAD

 = 100 mA

Load Regulation (V

OUT1

)

V

LOAD-REG

0.2

%

V

IN

= V

R

+ 1.5V,  I

LOAD

= 100 mA to 

500 mA (Note 1)

Dropout Voltage V

OUT1

V

IN

 – V

OUT1

280

mV

I

OUT1

 = 500 mA, V

OUT1

= 3.3V

(Note 5)

Internal Oscillator Frequency

F

OSC

1.6

2.0

2.4

MHz

Start Up Time

T

SS

0.5

ms

T

R

 = 10% to 90%

R

DSon 

P-Channel

R

DSon-P

450

m

Ω

I

P

 = 100 mA

R

DSon 

N-Channel

R

DSon-N

450

m

Ω

I

N

 = 100 mA

L

X

 Pin Leakage Current

I

LX

-1.0

±0.01

1.0

μA

SHDN = 0V, V

IN

 = 5.5V, L

X

 = 0V, 

L

X

 = 5.5V

Positive Current Limit Threshold

+I

LX(MAX)

700

mA

LDO Output (V

OUT2

)

Output Voltage Tolerance (V

OUT2

)

V

OUT2

-2.5

±0.3

+2.5

%

Note 2

Temperature Coefficient

TCV

OUT

25

ppm/°C

Note 3

Line Regulation

ΔV

OUT2

/

ΔV

IN

-0.2

±0.02

+0.2

%/V

(V

R

+1V) 

≤ V

IN

 

≤ 5.5V

Load Regulation, V

OUT2

 

≥ 2.5V

ΔV

OUT2

/

I

OUT2

-0.75

0.1

+0.75

%

I

OUT2

 = 0.1 mA to 300 mA

 

(Note 4)

Load Regulation, V

OUT2

 < 2.5V

ΔV

OUT2

/

I

OUT2

-0.90

0.1

+0.90

%

I

OUT2

 = 0.1 mA to 300 mA

 

(Note 4)

Dropout Voltage V

OUT2

   > 2.5V

V

IN

 – V

OUT2

137

300

mV

I

OUT2

 = 200 mA (Note 5)

I

OUT2

= 300 mA

205

500

Power Supply Rejection Ratio

PSRR

62

dB

= 100 Hz, I

OUT1

 = I

OUT2

 = 50 mA, 

C

IN

 = 0 µF

Output Noise

eN

1.8

µV/(Hz)

½

= 1 kHz, I

OUT2

= 50 mA, 

SHDN1 = GND

DC CHARACTERISTICS (CONTINUED)

Electrical Characteristics:

 V

IN1

= V

IN2

= SHDN1,2 = 3.6V, C

OUT1

= C

IN

= 4.7 µF, C

OUT2

= 1µF,  L

 

= 4.7 µH, V

OUT1

 (ADJ) = 1.8V, 

I

OUT1

= 100 ma, I

OUT2

= 0.1 mA T

A

= +25°C. Boldface specifications apply over the T

A

 range of -40°C to +85°C.

Parameters

Sym

Min

Typ

Max

Units

Conditions

Note

1:

The Minimum V

IN

 has to meet two conditions: V

IN

 

≥ 2.7V and V

IN

 

≥ V

RX

 + V

DROPOUT, 

V

RX

 = V

R1

 or V

R2

.

2:

V

RX

 is the regulator output voltage setting.

3:

TCV

OUT2

 = ((V

OUT2max

 – V

OUT2min

) * 10

6

)/(V

OUT2

 * D

T

).

4:

Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested 
over a load range from 0.1 mA to the maximum specified output current.

5:

Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its 
nominal value measured at a 1V differential.

6:

The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction 
temperature and the thermal resistance from junction to air. (i.e. T

A

, T

J

θ

JA

). Exceeding the maximum allowable power 

dissipation causes the device to initiate thermal shutdown.

7:

The integrated MOSFET switches have an integral diode from the L

X

 pin to V

IN

, and from L

X

 to P

GND

. In cases where 

these diodes are forward-biased, the package power dissipation limits must be adhered to. Thermal protection is not 
able to limit the junction temperature for these cases.

8:

V

IN1

 and V

IN2

 are supplied by the same input source.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21974b-html.html
background image

© 2009 Microchip Technology Inc.

DS21974B-page 7

TC1313

TEMPERATURE SPECIFICATIONS

Output Short Circuit Current 
(Average)

I

OUTsc2

240

mA

R

LOAD2

 

≤ 1Ω

Wake-Up Time 
(From SHDN2 mode), (V

OUT2

)

t

WK

31

100

µs

I

OUT1

 = I

OUT2

 = 50 mA

Settling Time 
(From SHDN2 mode), (V

OUT2

)

t

S

100

µs

I

OUT1

 = I

OUT2

 = 50 mA

Electrical Specifications:

 Unless otherwise indicated, all limits are specified for: V

IN

 = +2.7V to +5.5V

Parameters

Sym

Min

Typ

Max

Units

Conditions

Temperature Ranges

Operating Junction Temperature Range

T

J

-40

+125

°C

Steady state

Storage Temperature Range

T

A

-65

+150

°C

Maximum Junction Temperature 

T

J

+150

°C

Transient

Thermal Package Resistances

Thermal Resistance, 10L-DFN

θ

JA

41

°C/W

Typical 4-layer board with Internal 
Ground Plane and 2 Vias in Thermal 
Pad

Thermal Resistance, 10L-MSOP

θ

JA

113

°C/W

Typical 4-layer board with Internal 
Ground Plane

DC CHARACTERISTICS (CONTINUED)

Electrical Characteristics:

 V

IN1

= V

IN2

= SHDN1,2 = 3.6V, C

OUT1

= C

IN

= 4.7 µF, C

OUT2

= 1µF,  L

 

= 4.7 µH, V

OUT1

 (ADJ) = 1.8V, 

I

OUT1

= 100 ma, I

OUT2

= 0.1 mA T

A

= +25°C. Boldface specifications apply over the T

A

 range of -40°C to +85°C.

Parameters

Sym

Min

Typ

Max

Units

Conditions

Note

1:

The Minimum V

IN

 has to meet two conditions: V

IN

 

≥ 2.7V and V

IN

 

≥ V

RX

 + V

DROPOUT, 

V

RX

 = V

R1

 or V

R2

.

2:

V

RX

 is the regulator output voltage setting.

3:

TCV

OUT2

 = ((V

OUT2max

 – V

OUT2min

) * 10

6

)/(V

OUT2

 * D

T

).

4:

Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested 
over a load range from 0.1 mA to the maximum specified output current.

5:

Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its 
nominal value measured at a 1V differential.

6:

The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction 
temperature and the thermal resistance from junction to air. (i.e. T

A

, T

J

θ

JA

). Exceeding the maximum allowable power 

dissipation causes the device to initiate thermal shutdown.

7:

The integrated MOSFET switches have an integral diode from the L

X

 pin to V

IN

, and from L

X

 to P

GND

. In cases where 

these diodes are forward-biased, the package power dissipation limits must be adhered to. Thermal protection is not 
able to limit the junction temperature for these cases.

8:

V

IN1

 and V

IN2

 are supplied by the same input source.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21974b-html.html
background image

TC1313

DS21974B-page 8

© 2009 Microchip Technology Inc.

2.0

TYPICAL PERFORMANCE CURVES

Note:

 Unless otherwise indicated, V

IN1

= V

IN2

= SHDN1,2  = 3.6V, C

OUT1

= C

IN

= 4.7 µF, C

OUT2

= 1 µF,  L

 

= 4.7 µH,

V

OUT1

 (ADJ) = 1.8V, T

A

= +25°C. Boldface specifications apply over the T

A

 range of -40°C to +85°C. T

A

= +25°C. Adjustable or fixed-

output voltage options can be used to generate the Typical Performance Characteristics.

FIGURE 2-1:

I

Q

 Switcher and LDO 

Current vs. Ambient Temperature.

FIGURE 2-2:

I

Q

 Switcher Current vs. 

Ambient Temperature.

FIGURE 2-3:

I

Q

 LDO Current vs. Ambient 

Temperature.

FIGURE 2-4:

V

OUT1

 Output Efficiency vs. 

Input Voltage (V

OUT1

 = 1.2V).

FIGURE 2-5:

V

OUT1

 Output Efficiency vs. 

I

OUT1

 (V

OUT1

 = 1.2V).

FIGURE 2-6:

V

OUT1

 Output Efficiency vs. 

Input Voltage (V

OUT1

 = 1.8V).

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

52

54

56

58

60

62

64

66

-40 -25 -10

5

20

35

50

65

80

95 110 125

Ambient Temperature (°C)

I

Q

 Switch

er an

d

 L

D

O (µ

A)

V

IN

 = 5.5V

V

IN

 = 4.2V

V

IN

 = 3.6V

SHDN1 = V

IN2

SHDN2 = V

IN2

30

32

34

36

38

40

-40 -25 -10

5

20

35

50

65

80

95 110 125

Ambient Temperature (°C)

I

Q

 Sw

it

ch

er

 (

µ

A)

V

IN

 = 5.5V

V

IN

 = 4.2V

V

IN

 = 3.6V

SHDN1 = V

IN2

SHDN2 = A

GND

36

38

40

42

44

46

48

50

-40 -25 -10

5

20

35

50

65

80

95 110 125

Ambient Temperature (°C)

I

Q

 LD

A

)

V

IN

 = 5.5V

V

IN

 = 4.2V

V

IN

 = 3.6V

SHDN1 = A

GND

SHDN2 = V

IN2

50

55

60

65

70

75

80

85

90

95

100

2.7

3.05

3.4

3.75

4.1

4.45

4.8

5.15

5.5

Input Voltage (V)

V

OU

T1

 E

ffici

ency (%)

I

OUT1

 = 100 mA

I

OUT1

 = 250 mA

I

OUT1

 = 500 mA

SHDN1 = V

IN2

SHDN2 = A

GND

70

75

80

85

90

95

100

0.005

0.104

0.203

0.302

0.401

0.5

I

OUT1

 (A)

V

OU

T

1

 E

ffi

ci

e

n

cy

(%)

V

IN1

 = 3.0V

V

IN1

 = 4.2V

V

IN1

 = 3.6V

SHDN1 = V

IN2

SHDN2 = A

GND

60

65

70

75

80

85

90

95

100

2.7

3.05

3.4

3.75

4.1

4.45

4.8

5.15

5.5

Input Voltage (V)

V

OU

T

1

 E

ffi

ci

en

cy

(%

)

I

OUT1

 = 100 mA

I

OUT1

 = 250 mA

I

OUT1

 = 500 mA

SHDN1 = V

IN2

SHDN2 = A

GND

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21974b-html.html
background image

© 2009 Microchip Technology Inc.

DS21974B-page 9

TC1313

Note:

 Unless otherwise indicated, V

IN1

= V

IN2

= SHDN1,2  = 3.6V, C

OUT1

= C

IN

= 4.7 µF, C

OUT2

= 1 µF,  L

 

= 4.7 µH,

V

OUT1

 (ADJ) = 1.8V, T

A

= +25°C. Boldface specifications apply over the T

A

 range of -40°C to +85°C. T

A

= +25°C. Adjustable or fixed-

output voltage options can be used to generate the Typical Performance Characteristics.

FIGURE 2-7:

V

OUT1

 Output Efficiency vs. 

I

OUT1

 (V

OUT1

 = 1.8V).

FIGURE 2-8:

V

OUT1

 Output Efficiency vs. 

Input Voltage (V

OUT1

 = 3.3V).

FIGURE 2-9:

V

OUT1

 Output Efficiency vs. 

I

OUT1

 (V

OUT1

 = 3.3V).

FIGURE 2-10:

V

OUT1

 vs. I

OUT1

 

(V

OUT1

 = 1.2V).

FIGURE 2-11:

V

OUT1

 vs. I

OUT1

(V

OUT1

 = 1.8V).

FIGURE 2-12:

V

OUT1

 vs. I

OUT1

(V

OUT1

 = 3.3V).

75

80

85

90

95

100

0.005

0.104

0.203

0.302

0.401

0.5

I

OUT1

 (A)

V

OU

T1

 Efficienc

y

(%

)

SHDN1 = V

IN2

SHDN2 = A

GND

V

IN

 = 3.0V

V

IN

 = 4.2V

V

IN

 = 3.6V

80

84

88

92

96

100

3.60

3.92

4.23

4.55

4.87

5.18

5.50

Input Voltage (V)

V

OUT1

 E

ffi

ci

e

n

cy

 (%

)

I

OUT1

 = 100 mA

I

OUT1

 = 250 mA

I

OUT1

 = 500 mA

SHDN1 = V

IN2

SHDN2 = A

GND

60

65

70

75

80

85

90

95

100

0.005

0.104

0.203

0.302

0.401

0.5

I

OUT1

 (A)

V

OU

T

1

 E

ffi

ci

e

n

c

y

 (%)

V

IN1

 = 5.5V

SHDN1 = V

IN2

SHDN2 = A

GND

V

IN1

 = 4.2V

V

IN1

 = 3.6V

1.19

1.194

1.198

1.202

1.206

1.21

0.005

0.104

0.203

0.302

0.401

0.5

I

OUT1

 (A)

V

OU

T1

 (V

)

SHDN1 = V

IN2

SHDN2 = A

GND

V

IN1

 = 3.6V

1.79

1.795

1.8

1.805

1.81

1.815

1.82

0.005

0.104

0.203

0.302

0.401

0.5

I

OUT1

 (A)

V

OU

T1

 (V

)

SHDN1 = V

IN2

SHDN2 = A

GND

V

IN1

 = 3.6V

3.2

3.24

3.28

3.32

3.36

3.4

0.005

0.104

0.203

0.302

0.401

0.5

I

OUT1

 (A)

V

OUT

1

 (V)

SHDN1 = V

IN2

SHDN2 = A

GND

V

IN1

 = 4.2V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21974b-html.html
background image

TC1313

DS21974B-page 10

© 2009 Microchip Technology Inc.

Note:

 Unless otherwise indicated, V

IN1

= V

IN2

= SHDN1,2  = 3.6V, C

OUT1

= C

IN

= 4.7 µF, C

OUT2

= 1 µF,  L

 

= 4.7 µH,

V

OUT1

 (ADJ) = 1.8V, T

A

= +25°C. Boldface specifications apply over the T

A

 range of -40°C to +85°C. T

A

= +25°C. Adjustable or fixed-

output voltage options can be used to generate the Typical Performance Characteristics.

FIGURE 2-13:

V

OUT1

 Switching Frequency 

vs. Input Voltage.

FIGURE 2-14:

V

OUT1

 Switching Frequency 

vs. Ambient Temperature.

FIGURE 2-15:

V

OUT1

 Adjustable Feedback 

Voltage vs. Ambient Temperature.

FIGURE 2-16:

V

OUT1

 Switch Resistance 

vs. Input Voltage.

FIGURE 2-17:

V

OUT1

 Switch Resistance 

vs. Ambient Temperature.

FIGURE 2-18:

V

OUT1

 Dropout Voltage vs. 

Ambient Temperature.

1.90

1.95

2.00

2.05

2.10

2.15

2.20

2.7

3.1

3.5

3.9

4.3

4.7

5.1

5.5

Input Voltage (V)

V

OU

T1

 F

re

q

ue

nc

y

 (

M

H

z

)

SHDN1 = V

IN2

SHDN2 = A

GND

1.90

1.92

1.94

1.96

1.98

2.00

-40

-25

-10

5

20

35

50

65

80

95

11

0

12

5

Ambient Temperature (°C)

V

OUT1

 Fr

e

que

ncy

 (MH

z

)

SHDN1 = V

IN2

SHDN2 = A

GND

0.790

0.795

0.800

0.805

0.810

0.815

0.820

-40

-25

-10

5

20

35

50

65

80

95

11

0

12

5

Ambient Temperature (°C)

V

OUT1

 FB

 Voltage

 (V)

SHDN1 = V

IN2

SHDN2 = A

GND

V

IN1

 = 3.6V

0.40

0.45

0.50

0.55

0.60

0.65

3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5

Input Voltage (V)

V

OUT1

 Switch Resistance (

:

)

SHDN1 = V

IN2

SHDN2 = A

GND

V

IN1

 = 3.6V

N-Channel

P-Channel

0.40

0.45

0.50

0.55

0.60

0.65

0.70

-40 -25 -10 5

20 35 50 65 80 95 110 125

Ambient Temperature (°C)

Buck Regulator Switch 

Resistance (

:

)

V

IN1

 = 3.6V

N-Channel

P-Channel

SHDN1 = V

IN2

SHDN2 = A

GND

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-40

-25

-10

5

20

35

50

65

80

95

11

0

12

5

Ambient Temperature (°C)

V

OU

T1

 Dropout

 Voltage (V)

SHDN1 = V

IN2

SHDN2 = A

GND

V

OUT1

 = 3.3V

I

OUT1

 = 500 mA

Maker
Microchip Technology Inc.
Datasheet PDF Download