50 mA, 100 mA and 150 mA CMOS LDOs with Shutdown and VREF Bypass Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21335e-html.html
background image

© 2007 Microchip Technology Inc.

DS21335E-page 1

TC1014/TC1015/TC1185

Features:

• Low Supply Current (50 µA, typical)
• Low Dropout Voltage
• Choice of 50 mA (TC1014), 100 mA (TC1015) 

and 150 mA (TC1185) Output

• High Output Voltage Accuracy
• Standard or Custom Output Voltages
• Power-Saving Shutdown Mode
• Reference Bypass Input for Ultra Low-Noise 

Operation

• Overcurrent and Overtemperature Protection
• Space-Saving 5-Pin SOT-23 Package
• Pin-Compatible Upgrades for Bipolar Regulators
• Standard Output Voltage Options:

- 1.8V, 2.5V, 2.6V, 2.7V, 2.8V, 2.85V, 3.0V, 

3.3V, 3.6V, 4.0V, 5.0V

Applications:

• Battery-Operated Systems
• Portable Computers
• Medical Instruments
• Instrumentation
• Cellular/GSM/PHS Phones
• Linear Post-Regulator for SMPS
• Pagers

Typical Application

General Description

The TC1014/TC1015/TC1185 are high accuracy
(typically ±0.5%) CMOS upgrades for older (bipolar)
Low Dropout Regulators (LDOs) such as the LP2980.
Designed specifically for battery-operated systems, the
devices’ CMOS construction eliminates wasted ground
current, significantly extending battery life. Total supply
current is typically 50 µA at full load (20 to 60 times
lower than in bipolar regulators).
The devices’ key features include ultra low-noise
operation (plus optional Bypass input), fast response to
step changes in load, and very low dropout voltage,
typically 85 mV (TC1014), 180 mV (TC1015), and
270 mV (TC1185) at full-load. Supply current is
reduced to 0.5 µA (max) and V

OUT

 falls to zero when

the shutdown input is low. The devices incorporate both
overtemperature and overcurrent protection.
The TC1014/TC1015/TC1185 are stable with an output
capacitor of only 1 µF and have a maximum output
current of 50 mA, 100 mA and 150 mA, respectively.
For higher output current regulators, please see the
TC1107 (DS21356), TC1108 (DS21357), TC1173
(DS21362) (I

OUT

 = 300 mA) data sheets.

Package Type  

TC1014
TC1015
TC1185

V

OUT

SHDN

GND

Bypass

470 pF

Reference

Bypass Cap

(Optional)

1 µF 

+

V

IN

V

IN

V

OUT

1

5

2

4

3

Shutdown Control

(from Power Control Logic)

Bypass

SHDN

5

5-Pin SOT-23

TC1014
TC1015
TC1185

1

3

4

2

V

IN

V

OUT

GND

50 mA, 100 mA and 150 mA CMOS LDOs with Shutdown 

and Reference Bypass

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21335e-html.html
background image

TC1014/TC1015/TC1185

DS21335E-page 2

© 2007 Microchip Technology Inc.

1.0

ELECTRICAL 
CHARACTERISTICS

Absolute Maximum Ratings†

Input Voltage .........................................................6.5V
Output Voltage........................... (-0.3V) to (V

IN

 + 0.3V)

Power Dissipation................Internally Limited (Note 7)
Maximum Voltage on Any Pin  ........V

IN

 +0.3V to -0.3V

Operating Temperature Range...... -40°C < T

J

 < 125°C

Storage Temperature..........................-65°C to +150°C

† Notice: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to
the device. These are stress ratings only and functional
operation of the device at these or any other conditions
above those indicated in the operation sections of the
specifications is not implied. Exposure to Absolute
Maximum Rating conditions for extended periods may
affect device reliability.

TC1014/TC1015/TC1185 ELECTRICAL SPECIFICATIONS

Electrical Specifications: V

IN

 = V

R

 + 1V, I

L

 = 100 µA, C

L

 = 1.0 µF, SHDN > V

IH

, T

A

 = +25°C, unless otherwise noted.

Boldface type specifications apply for junction temperatures of -40°C to +125°C.

Parameter

Symbol

Min

Typ

Max

Units

Device

Test Conditions

Input Operating Voltage

V

IN

2.7

6.0

V

Note 1

Maximum Output Current

I

OUT

MAX

50

100
150





mA

TC1014
TC1015
TC1185

Output Voltage

V

OUT

V

R

 – 2.5%

V

R

 ±0.5% V

R

 + 2.5%

V

Note 2

V

OUT

 Temperature Coefficient

TCV

OUT


20
40


ppm/°C

Note 3

Line Regulation

ΔV

OUT

/

ΔV

IN

0.05

0c.35

%

(V

R

 + 1V) 

≤ V

IN

 

≤ 6V

Load Regulation

ΔV

OUT

/

V

OUT


0.5
0.5

2
3

%

TC1014; TC1015

TC1185

I

L

 = 0.1 mA to I

OUT

MAX

I

L

 = 0.1 mA to I

OUT

MAX

(Note 4)

Dropout Voltage

V

IN

-V

OUT





2

65
85

180
270


120
250
400

mV



TC1015; TC1185
TC1185

I

L

 = 100 µA

I

L

 = 20 mA

I

L

 = 50 mA

I

L

 = 100 mA

I

L

 = 150 mA (Note 5)

Supply Current (Note 8)

I

IN

50

80

µA

SHDN = V

IH

, I

L

 = 0

Shutdown Supply Current

I

INSD

0.05

0.5

µA

SHDN = 0V

Power Supply Rejection
Ratio

PSRR

64

dB

F

RE 

≤  1 kHz

Output Short Circuit Current

I

OUT

SC

300

450

mA

V

OUT

 = 0V

Thermal Regulation

ΔV

OUT

/

ΔP

D

0.04

V/W

Notes 6, 7

Thermal Shutdown Die
Temperature

T

SD

160

°C

Thermal Shutdown
Hysteresis

ΔT

SD

10

°C

Note

1:

The minimum V

IN

 has to meet two conditions: V

IN

 

≥ 2.7V and V

IN

 

≥ V

R

 + V

DROPOUT

.

2:

V

R

 is the regulator output voltage setting. For example: V

R

 = 1.8V, 2.5V, 2.6V, 2.7V, 2.8V, 2.85V, 3.0V, 3.3V, 3.6V, 4.0V, 5.0V.

3:

4:

Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range 
from 1.0 mA to the maximum specified output current. Changes in output voltage due to heating effects are covered by the thermal 
regulation specification. 

5:

Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value at a 1V 
differential.

6:

Thermal Regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied, excluding load 
or line regulation effects. Specifications are for a current pulse equal to I

L

MAX

 at V

IN

 = 6V for T = 10 ms.

7:

The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the 
thermal resistance from junction-to-air (i.e., T

A

, T

J

θ

JA

). Exceeding the maximum allowable power dissipation causes the device to 

initiate thermal shutdown. Please see Section 5.0 “Thermal Considerations” for more details.

8:

Apply for Junction Temperatures of -40°C to +85°C.

TC V

OUT

 = (V

OUT

MAX

 – V

OUT

MIN

)x 10

6

V

OUT 

ΔT

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21335e-html.html
background image

© 2007 Microchip Technology Inc.

DS21335E-page 3

TC1014/TC1015/TC1185

TEMPERATURE CHARACTERISTICS

Output Noise

eN

600

nV/

√Hz

I

L

 = I

OUT

MAX

F = 10 kHz
470 pF from Bypass 
to GND

SHDN Input High Threshold

V

IH

45

%V

IN

V

IN

 = 2.5V to 6.5V

SHDN Input Low Threshold

V

IL

15

%V

IN

V

IN

 = 2.5V to 6.5V

TC1014/TC1015/TC1185 ELECTRICAL SPECIFICATIONS (CONTINUED)

Electrical Specifications: V

IN

 = V

R

 + 1V, I

L

 = 100 µA, C

L

 = 1.0 µF, SHDN > V

IH

, T

A

 = +25°C, unless otherwise noted.

Boldface type specifications apply for junction temperatures of -40°C to +125°C.

Parameter

Symbol

Min

Typ

Max

Units

Device

Test Conditions

Note

1:

The minimum V

IN

 has to meet two conditions: V

IN

 

≥ 2.7V and V

IN

 

≥ V

R

 + V

DROPOUT

.

2:

V

R

 is the regulator output voltage setting. For example: V

R

 = 1.8V, 2.5V, 2.6V, 2.7V, 2.8V, 2.85V, 3.0V, 3.3V, 3.6V, 4.0V, 5.0V.

3:

4:

Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range 
from 1.0 mA to the maximum specified output current. Changes in output voltage due to heating effects are covered by the thermal 
regulation specification. 

5:

Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value at a 1V 
differential.

6:

Thermal Regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied, excluding load 
or line regulation effects. Specifications are for a current pulse equal to I

L

MAX

 at V

IN

 = 6V for T = 10 ms.

7:

The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the 
thermal resistance from junction-to-air (i.e., T

A

, T

J

θ

JA

). Exceeding the maximum allowable power dissipation causes the device to 

initiate thermal shutdown. Please see Section 5.0 “Thermal Considerations” for more details.

8:

Apply for Junction Temperatures of -40°C to +85°C.

TC V

OUT

 = (V

OUT

MAX

 – V

OUT

MIN

)x 10

6

V

OUT 

ΔT

Electrical Specifications: V

IN

 = V

R

 + 1V, I

L

 = 100 µA, C

L

 = 1.0 µF, SHDN > V

IH

, T

A

 = +25°C, unless otherwise noted.

Boldface type specifications apply for junction temperatures of -40°C to +125°C.

Parameters

Sym

Min

Typ

Max

Units

Conditions

Temperature Ranges:
Extended Temperature Range

T

A

-40

+125

°C

Operating Temperature Range

T

A

-40

+125

°C

Storage Temperature Range

T

A

-65

+150

°C

Thermal Package Resistances:
Thermal Resistance, 5L-SOT-23

θ

JA

256

°C/W

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21335e-html.html
background image

TC1014/TC1015/TC1185

DS21335E-page 4

© 2007 Microchip Technology Inc.

2.0

TYPICAL PERFORMANCE CURVES

Note: Unless otherwise specified, all parts are measured at temperature = +25°C.

FIGURE 2-1:

Dropout Voltage vs. 

Temperature.

FIGURE 2-2:

Dropout Voltage vs. 

Temperature.

FIGURE 2-3:

Ground Current vs. Input 

Voltage (V

IN

).

FIGURE 2-4:

Dropout Voltage vs. 

Temperature.

FIGURE 2-5:

Dropout Voltage vs. 

Temperature.

FIGURE 2-6:

Ground Current vs. Input 

Voltage (V

IN

).

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Dropout Voltage vs. Temperature

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

-40

-20

0

20

50

70

125

TEMPERATURE (

°C)

DROPOUT VOLTAGE (V)

C

IN

 = 1

µF

C

OUT

 = 1

µF

V

OUT

 = 3.3V

I

LOAD 

= 10mA

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0.180

0.200

-40

-20

0

20

50

70

125

DROPOUT VOLTAGE (V)

   

          

TEMPERATURE (

°C)

C

IN

 = 1

µF

C

OUT

 = 1

µF

Dropout Voltage vs. Temperature

V

OUT

 = 3.3V

I

LOAD 

= 100mA

0

10

20

30

40

50

60

70

80

90

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

 

   

       

GND CURRENT (

µ

A)

 

0  0.5   1 1.5   2   2.5  3   3.5   4  4.5 5   5.5  6   6.5  7   7.5

V

IN

 (V)

C

IN

 = 1

µF

C

OUT

 = 1

µF

Ground Current vs. V

IN

V

OUT

 = 3.3V

I

LOAD 

= 10mA

Dropout Voltage vs. Temperature

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0.090

0.100

-40

-20

0

20

50

70

125

DROPOUT VOLTAGE (V)

TEMPERATURE (

°C)

C

IN

 = 1

µF

C

OUT

 = 1

µF

V

OUT

 = 3.3V

I

LOAD 

= 50mA

0.000

0.050

0.100

0.150

0.200

0.250

0.300

-40

-20

0

20

50

70

125

DROPOUT VOLTAGE (V)

TEMPERATURE (

°C)

C

IN

 = 1

µF

C

OUT

 = 1

µF

Dropout Voltage vs. Temperature

V

OUT

 = 3.3V

I

LOAD 

= 150mA

0

10

20

30

40

50

60

70

80

90

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

GND CURRENT (

µ

A)

 

0   0.5  1  1.5   2   2.5   3   3.5   4  4.5    5   5.5  6   6.5   7   7.5

V

IN

 (V)

C

IN

 = 1

µF

C

OUT

 = 1

µF

Ground Current vs. V

IN

V

OUT

 = 3.3V

I

LOAD 

= 100mA

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21335e-html.html
background image

© 2007 Microchip Technology Inc.

DS21335E-page 5

TC1014/TC1015/TC1185

TYPICAL PERFORMANCE CURVES (CONTINUED)

Note: Unless otherwise specified, all parts are measured at temperature = +25°C.

FIGURE 2-7:

Ground Current vs. Input 

Voltage (V

IN

).

FIGURE 2-8:

Output Voltage (V

OUT

) vs. 

Input Voltage (V

IN

).

FIGURE 2-9:

Output Voltage (V

OUT

) vs. 

Temperature.

FIGURE 2-10:

Output Voltage (V

OUT

) vs. 

Input Voltage (V

IN

).

FIGURE 2-11:

Output Voltage (V

OUT

) vs. 

Temperature.

0

10

20

30

40

50

60

70

80

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

GND CURRENT (

µ

A)

 

0  0.5   1 1.5   2   2.5  3   3.5  4   4.5 5   5.5  6   6.5  7   7.5

V

IN

 (V)

C

IN

 = 1

µF

C

OUT

 = 1

µF

Ground Current vs. V

IN

V

OUT

 = 3.3V

I

LOAD 

= 150mA

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0    0.5   1   1.5   2   2.5   3 3.5   4   4.5   5   5.5   6   6.5   7

V

IN

 (V)

C

IN

 = 1

µF

C

OUT

 = 1

µF

 I

LOAD 

= 100mA

V

OUT

 (V)

V

OUT

 vs. V

IN

 

V

OUT

 = 3.3V

I

LOAD 

= 100mA

Output Voltage vs. Temperature 

 

3.274

3.276

3.278

3.280

3.282

3.284

3.286

3.288

3.290

-40

-20

-10

0

20

40

85

125

V

OUT

 (V)

TEMPERATURE (

°C)

V

OUT

 = 3.3V

I

LOAD 

= 150mA

C

IN

 = 1

µF

C

OUT

 = 1

µF

V

IN

 = 4.3V

0

0.5

1

1.5

2

2.5

3

3.5

0

0.5 1

1.5 2 2.5 3

3.5 4

4.5 5

5.5 6

6.5 7

 0    0.5   1  1.5    2   2.5   3   3.5    4   4.5   5    5.5   6   6.5   7

V

IN

 (V)

C

IN

 = 1

µF

C

OUT

 = 1

µF

V

OUT

 (V)

V

OUT

 vs. V

IN

 

V

OUT

 = 3.3V

I

LOAD 

= 0

3.275

3.280

3.285

3.290

3.295

3.300

3.305

3.310

3.315

3.320

-40

-20

-10

0

20

40

85

125

TEMPERATURE (

°

C)

Output Voltage vs. Temperature 

V

OUT

 (V)

V

OUT

 = 3.3V

I

LOAD 

= 10mA

C

IN

 = 1

µF

C

OUT

 = 1

µF

V

IN

 = 4.3V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21335e-html.html
background image

TC1014/TC1015/TC1185

DS21335E-page 6

© 2007 Microchip Technology Inc.

TYPICAL PERFORMANCE CURVES (CONTINUED)

Note: Unless otherwise specified, all parts are measured at temperature = +25°C.

FIGURE 2-12:

Output Voltage (V

OUT

) vs. 

Temperature.

FIGURE 2-13:

I

GND

 vs. Temperature.

FIGURE 2-14:

Output Voltage (V

OUT

) vs. 

Temperature.

FIGURE 2-15:

I

GND

 vs. Temperature.

FIGURE 2-16:

AC Characteristics.

4.985

4.990

4.995

5.000

5.005

5.010

5.015

5.020

5.025

-40

-20

-10

0

20

40

85

125

Output Voltage vs. Temperature 

V

OUT

 (V)

TEMPERATURE (

°C)

V

OUT

 = 5V

I

LOAD 

= 10mA

C

IN

 = 1

µF

C

OUT

 = 1

µF

V

IN

 = 6V

Temperature vs. Quiescent Current

   

0

10

20

30

40

50

60

70

-40

-20

-10

0

20

40

85

125

GND CURRENT (

µ

A)

TEMPERATURE (

°C)

V

OUT

 = 5V

I

LOAD 

= 10mA

C

IN

 = 1

µF

C

OUT

 = 1

µF

V

IN

 = 6V

4.974

4.976

4.978

4.980

4.982

4.984

4.986

4.988

4.990

4.992

4.994

-40

-20

-10

0

20

40

85

125

Output Voltage vs. Temperature 

V

OUT

 (V)

TEMPERATURE (

°C)

V

OUT

 = 5V

I

LOAD 

= 150mA

C

IN

 = 1

µF

C

OUT

 = 1

µF

V

IN

 = 6V

0

10

20

30

40

50

60

70

80

-40

-20

-10

0

20

40

85

125

Temperature vs. Quiescent Current

GND CURRENT (

μ

A)

TEMPERATURE (

°C)

V

OUT

 = 5V

I

LOAD 

= 150mA

C

IN

 = 1

μF

C

OUT

 = 1

μF

V

IN

 = 6V

10.0

1.0

0.1

0.0

0.01K 0.1K

1K

10K

100K

1000K

FREQUENCY (Hz)

Output Noise vs. Frequency

NOISE (

μ

V/

Hz)

R

LOAD

 = 50

Ω 

C

OUT 

= 1

μF

C

IN

 = 1

μF

C

BYP

 = 0

1000

100

10

1

0.1

0.01

0

10 20 30 40 50 60 70 80 90 100

LOAD CURRENT (mA)

Stability Region vs. Load Current

C

OUT 

ESR

 

(Ω

)

C

OUT

 = 1

μ

to 10

μF

Stable Region

Stable Region

-30

-35

-40

-45

-50

-60

-55

-65

-70

-75

-80

0.01K 0.1K

1K

10K

100K 1000K

FREQUENCY (Hz)

Power Supply Rejection Ratio

PSRR (dB)

I

OUT 

=

 

10mA

V

INDC 

=

 

4V

V

INAC 

=

 

100mVp-p

V

OUT 

=

 

3V

C

IN 

=

 

0

C

OUT 

=

 

1

μF

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21335e-html.html
background image

© 2007 Microchip Technology Inc.

DS21335E-page 7

TC1014/TC1015/TC1185

TYPICAL PERFORMANCE CURVES (CONTINUED)

Note: Unless otherwise specified, all parts are measured at temperature = +25°C.

FIGURE 2-17:

Measure Rise Time of 3.3V 

with Bypass Capacitor.

FIGURE 2-18:

Measure Fall Time of 3.3V 

with Bypass Capacitor.

FIGURE 2-19:

Measure Rise Time of 3.3V 

without Bypass Capacitor.

FIGURE 2-20:

Measure Fall Time of 3.3V 

without Bypass Capacitor.

V

SHDN

V

OUT

Measure Rise Time of 3.3V LDO With Bypass Capacitor

Conditions: C

IN

 = 1

μF, C

OUT

 = 1

μF, C

BYP

 

= 470pF, I

LOAD

 

= 100mA

V

IN

 = 4.3V, Temp = 25

°C, Rise Time = 448μS

V

SHDN

V

OUT

Measure Fall Time of 3.3V LDO With Bypass Capacitor

Conditions: C

IN

 = 1

μF, C

OUT

 = 1

μF, C

BYP

 

= 470pF, I

LOAD

 

= 50mA

V

IN

 = 4.3V, Temp = 25

°C, Fall Time = 100μS

Measure Rise Time of 3.3V LDO Without Bypass Capacitor

Conditions: C

IN

 = 1

μF, C

OUT

 = 1

μF, C

BYP

 

= 0pF, I

LOAD

 

= 100mA

V

IN

 = 4.3V, Temp = 25

°C, Rise Time = 184μS

V

SHDN

V

OUT

V

OUT

V

SHDN

Measure Fall Time of 3.3V LDO Without Bypass Capacitor

Conditions: C

IN

 = 1

μF, C

OUT

 = 1

μF, C

BYP

 

= 0pF, I

LOAD

 

= 100mA

V

IN

 = 4.3V, Temp = 25

°C, Fall Time = 52μS

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21335e-html.html
background image

TC1014/TC1015/TC1185

DS21335E-page 8

© 2007 Microchip Technology Inc.

TYPICAL PERFORMANCE CURVES (CONTINUED)

Note: Unless otherwise specified, all parts are measured at temperature = +25°C.

FIGURE 2-21:

Measure Rise Time of 5.0V 

with Bypass Capacitor.

FIGURE 2-22:

Measure Fall Time of 5.0V 

with Bypass Capacitor.

FIGURE 2-23:

Measure Rise Time of 5.0V 

without Bypass Capacitor.

FIGURE 2-24:

Measure Fall Time of 5.0V 

without Bypass Capacitor.

Measure Rise Time of 5.0V LDO With Bypass Capacitor

Conditions: C

IN

 = 1

μF, C

OUT

 = 1

μF, C

BYP

 

= 470pF, I

LOAD

 

= 100mA

V

IN

 = 6V, Temp = 25

°C, Rise Time = 390μS

V

SHDN

V

OUT

V

SHDN

V

OUT

Measure Fall Time of 5.0V LDO With Bypass Capacitor

Conditions: C

IN

 = 1

μF, C

OUT

 = 1

μF, C

BYP

 

= 470pF, I

LOAD

 

= 50mA

V

IN

 = 6V, Temp = 25

°C, Fall Time = 167μS

Measure Rise Time of 5.0V LDO Without Bypass Capacitor

Conditions: C

IN

 = 1

μF, C

OUT

 = 1

μF, C

BYP

 

= 0pF, I

LOAD

 

= 100mA

V

IN

 = 6V, Temp = 25

°C, Rise Time = 192μS

V

SHDN

V

OUT

V

OUT

V

SHDN

Measure Fall Time of 5.0V LDO Without Bypass Capacitor

Conditions: C

IN

 = 1

μF, C

OUT

 = 1

μF, C

BYP

 

= 0pF, I

LOAD

 

= 100mA

V

IN

 = 6V, Temp = 25

°C, Fall Time = 88μS

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21335e-html.html
background image

© 2007 Microchip Technology Inc.

DS21335E-page 9

TC1014/TC1015/TC1185

TYPICAL PERFORMANCE CURVES (CONTINUED)

Note: Unless otherwise specified, all parts are measured at temperature = +25°C.

FIGURE 2-25:

Load Regulation of 3.3V 

LDO.

FIGURE 2-26:

Load Regulation of 3.3V 

LDO.

FIGURE 2-27:

Load Regulation of 3.3V 

LDO.

FIGURE 2-28:

Load Regulation of 3.3V 

LDO.

V

OUT

I

LOAD

Load Regulation of 3.3V LDO

Conditions: C

IN

 = 1

μ

F, C

OUT

 = 2.2

μ

F, C

BYP

 

= 470pF,

V

IN

 = V

OUT

 + 0.25V, Temp = 25

°

C

I

LOAD

 = 50mA switched in at 10kHz, V

OUT

 is AC coupled

V

OUT

I

LOAD

Load Regulation of 3.3V LDO

Conditions: C

IN

 = 1

μF, C

OUT

 = 2.2

μF, C

BYP

 

= 470pF,

V

IN

 = V

OUT

 + 0.25V, Temp = 25

°C

I

LOAD

 = 150mA switched in at 10kHz, V

OUT

 is AC coupled

V

OUT

I

LOAD

Load Regulation of 3.3V LDO

Conditions: C

IN

 = 1

μF, C

OUT

 = 2.2

μF, C

BYP

 

= 470pF,

V

IN

 = V

OUT

 + 0.25V, Temp = 25

°C

I

LOAD

 = 100mA switched in at 10kHz, V

OUT

 is AC coupled

V

IN

Line Regulation of 3.3V LDO

Conditions: V

IN

 = 4V, + 1V Squarewave @2.5kHz

C

IN

 = 0

μF, C

OUT

 = 1

μF, C

BYP

 = 470pF,

I

LOAD

 = 100mA, V

IN

 & V

OUT

 are AC coupled

V

OUT

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21335e-html.html
background image

TC1014/TC1015/TC1185

DS21335E-page 10

© 2007 Microchip Technology Inc.

TYPICAL PERFORMANCE CURVES (CONTINUED)

Note: Unless otherwise specified, all parts are measured at temperature = +25°C.

FIGURE 2-29:

Line Regulation of 5.0V 

LDO.

FIGURE 2-30:

Thermal Shutdown 

Response of 5.0V LDO.

C

IN

 = 0

μF, C

OUT

 = 1

μF, C

BYP

 = 470pF,

I

LOAD

 = 100mA, V

IN

 & V

OUT

 are AC coupled

Line Regulation of 5.0V LDO

Conditions: V

IN

 = 6V, + 1V Squarewave @2.5kHz

V

IN

V

OUT

V

OUT

Thermal Shutdown Response of 5.0V LDO

Conditions: V

IN

 = 6V, C

IN

 = 0

μF, C

OUT

 = 1

μF

I

LOAD

 was increased until temperature of die reached about 160

°

C, at

which time integrated thermal protection circuitry shuts the regulator
off when die temperature exceeds approximately 160

°

C. The regulator

remains off until die temperature drops to approximately 150

°

C.

Maker
Microchip Technology Inc.
Datasheet PDF Download