50 mA, 100 mA and 150 mA CMOS LDOs with Shutdown and Error Output and VREF Bypass Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21354d-html.html
background image

© 2007 Microchip Technology Inc.

DS21354D-page 1

TC1072/TC1073

Features:

• 50 µA Ground Current for Longer Battery Life
• Very Low Dropout Voltage
• Choice of 50 mA (TC1072) and 100 mA (TC1073) 

Output

• High Output Voltage Accuracy
• Standard or Custom Output Voltages
• Power-Saving Shutdown Mode
• ERROR Output Can Be Used as a Low Battery 

Detector or Processor Reset Generator

• Bypass Input for Ultra Quiet Operation
• Overcurrent and Overtemperature Protection
• Space-Saving 6-Pin SOT-23 Package
• Pin Compatible Upgrades for Bipolar Regulators
• Standard Output Voltage Options:

- 1.8V, 2.5V, 2.6V, 2.7V, 2.8V, 2.85V, 3.0V, 

3.3V, 3.6V, 4.0V, 5.0V

• Other output voltages are available. Please 

contact Microchip Technology Inc. for details.

Applications:

• Battery Operated Systems
• Portable Computers
• Medical Instruments
• Instrumentation
• Cellular/GSM/PHS Phones
• Linear Post-Regulators for SMPS
• Pagers

Typical Application Circuit

General Description

The TC1072 and TC1073 are high accuracy (typically
±0.5%) CMOS upgrades for older (bipolar) low dropout
regulators. Designed specifically for battery-operated
systems, the devices’ CMOS construction eliminates
wasted ground current, significantly extending battery
life. Total supply current is typically 50 µA at full load
(20 to 60 times lower than in bipolar regulators).
The devices’ key features include ultra low noise
operation (plus optional Bypass input); very low
dropout voltage (typically 85 mV, TC1072 and 180 mV,
TC1073 at full load) and fast response to step changes
in load. An error output (ERROR) is asserted when the
devices are out-of-regulation (due to a low input
voltage or excessive output current). ERROR can be
used as a low battery warning or as a processor
RESET signal (with the addition of an external RC
network). Supply current is reduced to 0.5 µA (max)
and both V

OUT

 and ERROR are disabled when the

shutdown input is low. The devices incorporate both
overtemperature and overcurrent protection.
The TC1072 and TC1073 are stable with an output
capacitor of only 1 µF and have a maximum output
current of 50 mA, and 100 mA, respectively. For higher
output current versions, please see the TC1185,
TC1186, TC1187 (I

OUT

= 150 mA) and TC1107,

TC1108 and TC1173 (I

OUT

= 300 mA) data sheets.

Package Type

TC1072

TC1073

V

OUT

GND

µ

F

+

V

IN

V

IN

V

OUT

1

6

2

4

3

SHDN

Shutdown Control

(from Power Control Logic)

ERROR

ERROR

Bypass

C

BYPASS

470 pF

5

R

P

6

1

4

2

3

6-Pin SOT-23

V

OUT

ERROR

SHDN

GND

V

IN

5

Bypass

50mA and 100mA CMOS LDOs with Shutdown, ERROR Output and V

REF

 Bypass

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21354d-html.html
background image

TC1072/TC1073

DS21354D-page 2

© 2007 Microchip Technology Inc.

1.0

ELECTRICAL 
CHARACTERISTICS

Absolute Maximum Ratings†

Input Voltage .........................................................6.5V
Output Voltage........................... (-0.3V) to (V

IN

 + 0.3V)

Power Dissipation................Internally Limited (Note 6)
Maximum Voltage on Any Pin  ........V

IN

 +0.3V to -0.3V

Operating Temperature Range...... -40°C < T

J

 < 125°C

Storage Temperature..........................-65°C to +150°C

†  Note: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to
the device. These are stress ratings only and functional
operation of the device at these or any other conditions
above those indicated in the operation sections of the
specifications is not implied. Exposure to Absolute
Maximum Rating conditions for extended periods may
affect device reliability.

TC1072/TC1073 ELECTRICAL SPECIFICATIONS

Electrical Characteristics: Unless otherwise noted, V

IN

= V

OUT

 + 1V, I

L

= 0.1 mA, C

L

= 3.3

μF, SHDN > V

IH

, T

A

= +25°C. 

Boldface type specifications apply for junction temperatures of -40°C to +125°C.

Symbol

Parameter

Min

Typ

Max

Units

Test Conditions

V

IN

Input Operating Voltage

2.7

6.0

V

Note 9

I

OUT

MAX

Maximum Output Current

50

100



mA
mA

TC1072
TC1073

V

OUT

Output Voltage

V

R

 – 

2.5%

V

R

 ±0.5% V

R

 + 2.5%

V

Note 1

TCV

OUT

V

OUT

 Temperature Coefficient


20
40


ppm/°C Note 2

ΔV

OUT

/

ΔV

IN

Line Regulation

0.05

0.35

%

(V

R

 + 1V) 

≤ V

IN

 ≤ 6V

ΔV

OUT

/V

OUT

Load Regulation

0.5

2.0

%

I

L

 = 0.1 mA to I

OUT

MAX

 

(Note 3)

V

IN

-V

OUT

Dropout Voltage




2

65
85

180


120
250

mV

I

L

= 0.1 mA

I

L

= 20 mA

I

L

= 50 mA

I

L

= 100 mA (Note 4)

TC1073

I

IN

Supply Current

50

80

µA

SHDN = V

IH

, I

L

= 0 (Note 8)

I

INSD

Shutdown Supply Current

0.05

0.5

µA

SHDN = 0V

PSRR

Power Supply Rejection Ratio

64

dB

F

RE  

≤ 1 kHz

I

OUT

SC

Output Short Circuit Current

300

450

mA

V

OUT

  = 0V

ΔV

OUT

/

ΔP

D

Thermal Regulation

0.04

V/W

Notes 5, 6

T

SD

Thermal Shutdown Die Temperature

160

°C

ΔT

SD

Thermal Shutdown Hysteresis

10

°C

eN

Output Noise

260

nV/

√Hz I

L

= I

OUT

MAX

470 pF from Bypass to GND

Note

1:

V

R

 is the regulator output voltage setting. For example: V

R

= 2.5V, 2.7V, 2.85V, 3.0V, 3.3V, 3.6V, 4.0V, 5.0V.

2:

3:

Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range 
from 0.1 mA to the maximum specified output current. Changes in output voltage due to heating effects are covered by the thermal 
regulation specification. 

4:

Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value.

5:

Thermal Regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied, excluding load or 
line regulation effects. Specifications are for a current pulse equal to I

L

MAX

 at V

IN

= 6V  for  T = 10  ms.

6:

The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the 
thermal resistance from junction-to-air (i.e., T

A

, T

J

θ

JA

). Exceeding the maximum allowable power dissipation causes the device to initiate 

thermal shutdown. Please see Section 5.0 “Thermal Considerations” for more details.

7:

Hysteresis voltage is referenced by V

R

.

8:

Apply for Junction Temperatures of -40°C to +85°C.

9:

The minimum V

IN

 has to justify the conditions = V

IN

≥ V

R

+ V

DROPOUT

 and V

IN

≥ 2.7V for I

L

= 0.1 mA to I

OUT

MAX

.

TC V

OUT

 = (V

OUT

MAX

 – V

OUT

MIN

) x 10

6

V

OUT 

ΔT

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21354d-html.html
background image

© 2007 Microchip Technology Inc.

DS21354D-page 3

TC1072/TC1073

SHDN Input
V

IH

SHDN Input High Threshold

45

%V

IN

V

IN

= 2.5V to 6.5V

V

IL

SHDN Input Low Threshold

15

%V

IN

V

IN

= 2.5V to 6.5V

ERROR Open Drain Output
V

IN

MIN

Minimum V

IN

 Operating Voltage

1.0

V

V

OL

Output Logic Low Voltage

400

mV

1 mA Flows to ERROR

V

TH

ERROR Threshold Voltage

0.95 x V

R

V

See 

Figure 4-2

V

HYS

ERROR Positive Hysteresis

50

mV

Note 7

t

DELAY

V

OUT

 to ERROR Delay

2.5

ms

Vout falling from V

R

 to       

V

R

-10%

TC1072/TC1073 ELECTRICAL SPECIFICATIONS (CONTINUED)

Electrical Characteristics: Unless otherwise noted, V

IN

= V

OUT

 + 1V, I

L

= 0.1 mA, C

L

= 3.3

μF, SHDN > V

IH

, T

A

= +25°C. 

Boldface type specifications apply for junction temperatures of -40°C to +125°C.

Symbol

Parameter

Min

Typ

Max

Units

Test Conditions

Note

1:

V

R

 is the regulator output voltage setting. For example: V

R

= 2.5V, 2.7V, 2.85V, 3.0V, 3.3V, 3.6V, 4.0V, 5.0V.

2:

3:

Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range 
from 0.1 mA to the maximum specified output current. Changes in output voltage due to heating effects are covered by the thermal 
regulation specification. 

4:

Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value.

5:

Thermal Regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied, excluding load or 
line regulation effects. Specifications are for a current pulse equal to I

L

MAX

 at V

IN

= 6V  for  T = 10  ms.

6:

The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the 
thermal resistance from junction-to-air (i.e., T

A

, T

J

θ

JA

). Exceeding the maximum allowable power dissipation causes the device to initiate 

thermal shutdown. Please see Section 5.0 “Thermal Considerations” for more details.

7:

Hysteresis voltage is referenced by V

R

.

8:

Apply for Junction Temperatures of -40°C to +85°C.

9:

The minimum V

IN

 has to justify the conditions = V

IN

≥ V

R

+ V

DROPOUT

 and V

IN

≥ 2.7V for I

L

= 0.1 mA to I

OUT

MAX

.

TC V

OUT

 = (V

OUT

MAX

 – V

OUT

MIN

) x 10

6

V

OUT 

ΔT

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21354d-html.html
background image

TC1072/TC1073

DS21354D-page 4

© 2007 Microchip Technology Inc.

2.0

TYPICAL CHARACTERISTICS CURVES

Note: Unless otherwise specified, all parts are measured at temperature = +25°C.

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

-40

-20

0

20

50

70

125

DROPOUT VOLTAGE (V)

I

LOAD

 = 10mA

C

IN

 

= 1

μF

C

OUT

 

= 1

μF

TEMPERATURE (

°C)

Dropout Voltage vs. Temperature (V

OUT

 

= 3.3V)

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0.180

0.200

-40

-20

0

20

50

70

125

DROPOUT VOLTAGE (V)

I

LOAD

 = 100mA

C

IN

 

= 1

μF

C

OUT

 

= 1

μF

TEMPERATURE (

°C)

Dropout Voltage vs. Temperature (V

OUT

 

= 3.3V)

0

10

20

30

40

50

60

70

80

90

GND CURRENT (

μ

A)

0  0.5   1 1.5   2   2.5  3   3.5   4  4.5 5   5.5  6   6.5  7   7.5

I

LOAD

 = 10mA

C

IN

 

= 1

μF

C

OUT

 

= 1

μF

Ground Current vs. V

IN

 (V

OUT

 

= 3.3V)

V

IN

 (V)

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0.090

0.100

-40

-20

0

20

50

70

125

DROPOUT VOLTAGE (V)

I

LOAD

 = 50mA

C

IN

 

= 1

μF

C

OUT

 

= 1

μF

TEMPERATURE (

°C)

Dropout Voltage vs. Temperature (V

OUT

 

= 3.3V)

0.000

0.050

0.100

0.150

0.200

0.250

0.300

-40

-20

0

20

50

70

125

DROPOUT VOLTAGE (V)

I

LOAD

 = 150mA

C

IN

 

= 1

μF

C

OUT

 

= 1

μF

TEMPERATURE (

°C)

Dropout Voltage vs. Temperature (V

OUT

 

= 3.3V)

0

10

20

30

40

50

60

70

80

90

GND CURRENT (

μ

A)

0   0.5  1  1.5   2   2.5   3   3.5   4  4.5    5   5.5  6   6.5   7   7.5

I

LOAD

 = 100mA

C

IN

 

= 1

μF

C

OUT

 

= 1

μF

Ground Current vs. V

IN

 (V

OUT

 

= 3.3V)

V

IN

 (V)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21354d-html.html
background image

© 2007 Microchip Technology Inc.

DS21354D-page 5

TC1072/TC1073

Note: Unless otherwise specified, all parts are measured at temperature = +25°C.

0

10

20

30

40

50

60

70

80

GND CURRENT (

μ

A)

 

0  0.5   1 1.5   2   2.5  3   3.5  4   4.5 5   5.5  6   6.5  7   7.5

I

LOAD

 = 150mA

C

IN

 

= 1

μF

C

OUT

 

= 1

μF

V

IN

 (V)

Ground Current vs. V

IN

 (V

OUT

 

= 3.3V)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

I

LOAD

 = 100mA

C

IN

 

= 1

μF

C

OUT

 

= 1

μF

0    0.5   1   1.5   2   2.5   3   3.5   4   4.5   5   5.5   6   6.5   7

V

IN

 (V)

 

V

OUT

 (V)

 

V

OUT

 vs. 

V

IN

 (V

OUT

 

= 3.3V)

 

3.274

3.276

3.278

3.280

3.282

3.284

3.286

3.288

3.290

-40

-20

-10

0

20

40

85

125

I

LOAD

 = 150mA

C

IN

 

= 1

μF

C

OUT

 

= 1

μF

V

IN

 = 4.3V

TEMPERATURE (

°C)

V

OUT

 (V)

 

Output Voltage vs. Temperature (V

OUT

 

= 3.3V)

0

0.5

1

1.5

2

2.5

3

3.5

 0    0.5   1  1.5    2   2.5   3   3.5    4   4.5   5    5.5   6   6.5   7

I

LOAD

 = 0

C

IN

 

= 1

μF

C

OUT

 

= 1

μF

V

IN

 (V)

 

V

OUT

 (V)

 

V

OUT

 vs. 

V

IN

 (V

OUT

 

= 3.3V)

3.275

3.280

3.285

3.290

3.295

3.300

3.305

3.310

3.315

3.320

-40

-20

-10

0

20

40

85

125

I

LOAD

 = 10mA

C

IN

 

= 1

μF

C

OUT

 

= 1

μF

V

IN

 = 4.3V

TEMPERATURE (

°C)

V

OUT

 (V)

 

Output Voltage vs. Temperature (V

OUT

 

= 3.3V)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21354d-html.html
background image

TC1072/TC1073

DS21354D-page 6

© 2007 Microchip Technology Inc.

Note: Unless otherwise specified, all parts are measured at temperature = +25°C.

4.985

4.990

4.995

5.000

5.005

5.010

5.015

5.020

5.025

-40

-20

-10

0

20

40

85

125

I

LOAD

 = 10mA

V

IN

 

= 6V

C

IN

 

= 1

μF

C

OUT

 

= 1

μF

TEMPERATURE (

°C)

Output Voltage vs. Temperature (V

OUT

 

= 5V)

V

OUT

 (V)

 

                                                                    

   

0

10

20

30

40

50

60

70

-40

-20

-10

0

20

40

85

125

GND CURRENT (

μ

A)

I

LOAD

 = 10mA

V

IN

 

= 6V

C

IN

 

= 1

μF

C

OUT

 

= 1

μF

TEMPERATURE (

°C)

Temperature 

vs. Quiescent Current (V

OUT

 

= 5V)

4.974

4.976

4.978

4.980

4.982

4.984

4.986

4.988

4.990

4.992

4.994

-40

-20

-10

0

20

40

85

125

I

LOAD

 = 150mA

V

IN

 

= 6V

C

IN

 

= 1

μF

C

OUT

 

= 1

μF

TEMPERATURE (

°C)

Output Voltage vs. Temperature (V

OUT

 

= 5V)

V

OUT

 (V)

 

Temperature vs. Quiescent Current (V

OUT

 

= 5V)

0

10

20

30

40

50

60

70

80

-40

-20

-10

0

20

40

85

125

GND CURRENT (

μ

A) 

I

LOAD

 = 150mA

V

IN

 

= 6V

C

IN

 

= 1

μF

C

OUT

 

= 1

μF

TEMPERATURE (

°C)

10.0

1.0

0.1

0.0

0.01K 0.1K

1K

10K

100K

1000K

FREQUENCY (Hz)

Output Noise vs. Frequency

NOISE (

μ

V/

Hz)

R

LOAD

 = 50

Ω 

C

OUT 

= 1

μF

C

IN

 = 1

μF

C

BYP

 = 0

1000

100

10

1

0.1

0.01

0

10 20 30 40 50 60 70 80 90 100

LOAD CURRENT (mA)

Stability Region vs. Load Current

C

OUT 

ESR

 

(Ω

)

C

OUT

 = 1

μ

to 10

μF

Stable Region

Stable Region

-30

-35

-40

-45

-50

-60

-55

-65

-70

-75

-80

0.01K 0.1K

1K

10K

100K 1000K

FREQUENCY (Hz)

Power Supply Rejection Ratio

PSRR (dB)

I

OUT 

=

 

10mA

V

INDC 

=

 

4V

V

INAC 

=

 

100mVp-p

V

OUT 

=

 

3V

C

IN 

=

 

0

C

OUT 

=

 

1

μF

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21354d-html.html
background image

© 2007 Microchip Technology Inc.

DS21354D-page 7

TC1072/TC1073

Note: Unless otherwise specified, all parts are measured at temperature = +25°C.

V

OUT

Measure Rise Time of 3.3V LDO with Bypass Capacitor

Conditions: C

IN

 = 1

μF, C

OUT

 = 1

μF, C

BYP

 

= 470pF, I

LOAD

 

= 100mA

V

IN

 = 4.3V, Temp = 25

°C, Rise Time = 448μS

V

SHDN

Measure Fall Time of 3.3V LDO with Bypass Capacitor

Conditions: C

IN

 = 1

μF, C

OUT

 = 1

μF, C

BYP

 

= 470pF, I

LOAD

 

= 50mA

V

IN

 = 4.3V, Temp = 25

°C, Fall Time = 100μS

V

OUT

V

SHDN

Measure Rise Time of 3.3V LDO without Bypass Capacitor

Conditions: C

IN

 = 1

μF, C

OUT

 = 1

μF, C

BYP

 

= 0pF, I

LOAD

 

= 100mA

V

IN

 = 4.3V, Temp = 25

°C, Rise Time = 184μS

V

OUT

V

SHDN

Measure Fall Time of 3.3V LDO without Bypass Capacitor

Conditions: C

IN

 = 1

μF, C

OUT

 = 1

μF, C

BYP

 

= 0pF, I

LOAD

 

= 100mA

V

IN

 = 4.3V, Temp = 25

°C, Fall Time = 52μS

V

OUT

V

SHDN

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21354d-html.html
background image

TC1072/TC1073

DS21354D-page 8

© 2007 Microchip Technology Inc.

Note: Unless otherwise specified, all parts are measured at temperature = +25°C.

Measure Rise Time of 5.0V LDO with Bypass Capacitor

Conditions: C

IN

 = 1

μF, C

OUT

 = 1

μF, C

BYP

 

= 470pF, I

LOAD

 

= 100mA

V

IN

 = 6V, Temp = 25

°C, Rise Time = 390μS

V

OUT

V

SHDN

Measure Fall Time of 5.0V LDO with Bypass Capacitor

Conditions: C

IN

 = 1

μF, C

OUT

 = 1

μF, C

BYP

 

= 470pF, I

LOAD

 

= 50mA

V

IN

 = 6V, Temp = 25

°C, Fall Time = 167μS

V

OUT

V

SHDN

Measure Rise Time of 5.0V LDO without Bypass Capacitor

Conditions: C

IN

 = 1

μF, C

OUT

 = 1

μF, C

BYP

 

= 0pF, I

LOAD

 

= 100mA

V

IN

 = 6V, Temp = 25

°C, Rise Time = 192μS

V

OUT

V

SHDN

Measure Fall Time of 5.0V LDO without Bypass Capacitor

Conditions: C

IN

 = 1

μF, C

OUT

 = 1

μF, C

BYP

 

= 0pF, I

LOAD

 

= 100mA

V

IN

 = 6V, Temp = 25

°C, Fall Time = 88μS

V

OUT

V

SHDN

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21354d-html.html
background image

© 2007 Microchip Technology Inc.

DS21354D-page 9

TC1072/TC1073

Note: Unless otherwise specified, all parts are measured at temperature = +25°C.

I

LOAD

V

OUT

Load Regulation of 3.3V LDO

Conditions: C

IN

 = 1

μF, C

OUT

 = 2.2

μF, C

BYP

 

= 470pF,

V

IN

 = V

OUT

 + 0.25V, Temp = 25

°C

I

LOAD

 = 50mA switched in at 10kHz, V

OUT

 is AC coupled

Load Regulation of 3.3V LDO

Conditions: C

IN

 = 1

μF, C

OUT

 = 2.2

μF, C

BYP

 

= 470pF,

V

IN

 = V

OUT

 + 0.25V, Temp = 25

°C

I

LOAD

 = 150mA switched in at 10kHz, V

OUT

 is AC coupled

I

LOAD

V

OUT

Load Regulation of 3.3V LDO

Conditions: C

IN

 = 1

μF, C

OUT

 = 2.2

μF, C

BYP

 

= 470pF,

V

IN

 = V

OUT

 + 0.25V, Temp = 25

°C

I

LOAD

 = 100mA switched in at 10kHz, V

OUT

 is AC coupled

I

LOAD

V

OUT

V

IN

V

OUT

Line Regulation of 3.3V LDO

Conditions: V

IN

 = 4V, + 1V Squarewave @ 2.5kHz

C

IN

 = 0

μF, C

OUT

 = 1

μF, C

BYP

 = 470pF,

I

LOAD

 = 100mA, V

IN

 & V

OUT

 are AC coupled

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21354d-html.html
background image

TC1072/TC1073

DS21354D-page 10

© 2007 Microchip Technology Inc.

Note: Unless otherwise specified, all parts are measured at temperature = +25°C.

Line Regulation of 5.0V LDO

Conditions: V

IN

 = 6V, + 1V Squarewave @ 2.5kHz

V

IN

V

OUT

C

IN

 = 0

μF, C

OUT

 = 1

μF, C

BYP

 = 470pF,

I

LOAD

 = 100mA, V

IN

 & V

OUT

 are AC coupled

V

OUT

Thermal Shutdown Response of 5.0V LDO

Conditions: V

IN

 = 6V, C

IN

 = 0

μF, C

OUT

 = 1

μF

I

LOAD

 was increased until temperature of die reached about 160

°C, at

which time integrated thermal protection circuitry shuts the regulator
off when die temperature exceeds approximately 160

°C. The regulator

remains off until die temperature drops to approximately 150

°C.

Maker
Microchip Technology Inc.
Datasheet PDF Download