40035C.book

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/40035D-html.html
background image

 2000-2013 Microchip Technology Inc.

Preliminary

DS40035D-page  1

HCS473

FEATURES

Encoder Security

• Read protected 64-bit encoder key

• 69-bit transmission length

• 60-bit, read protected seed for secure learning

• Programmable 32-bit serial number

• Non-volatile 16/20-bit synchronization counter

Encoder Operation

• 2.05V to 5.5V operation

• Four switch inputs – up to 15 functions codes

• PWM or Manchester modulation

• Selectable Baud Rate (416 - 5,000 bps)

• Transmissions include button queuing information

• PLL interface

Transponder Security

• 2 read protected 64-bit Challenge/Response keys

• Two IFF encryption algorithms

• 16/32-bit Challenge/Response

• Separate Vehicle ID and Token ID

• 2 vehicles supported

• CRC on all communication

Transponder Operation

• Three sensitive transponder inputs

• Bi-directional transponder communication

• Transponder in/RF out operation

• Anticollision of multiple transponders

• Intelligent damping for high Q-factor LC-circuits

• Low battery operation

• Passive proximity activation

• 64-bit secure user EEPROM

• Fast reaction time

Peripherals

• Low Voltage Detector

• On-board RC oscillator with 

10% variation

Package Types 

Block Diagram 

Typical Applications

• Passive entry systems

• Automotive remote entry systems

• Automotive alarm systems

• Automotive immobilizers

• Gate and garage openers

• Electronic door locks (Home/Office/Hotel)

• Burglar alarm systems

• Proximity access control

• Passive proximity authentication

8

14

1

2

3

4

13

12

11

S0

S1

S2

S3/RFEN

V

DD

LED

DATA

V

SS

PDIP, SOIC

HCS4

7

3

V

DDT

LCX

LCY

V

SST

LCCOM

LCZ

5

6

7

10

9

Wake-up

Control

Low

Voltage

Detector

3 Input Transponder

Circuitry

S0

S1

Internal

Oscillator

EEPROM

RESET and

Power

Control

V

DD

V

SS

Control

Logic

LED

DATA

S2

S3/

RFEN

LED

Driver

Data

Output

LCX

LCY

LCZ

V

DDT

LCCOM

V

SST

K

EE

L

OQ

®

 3-Axis Transcoder

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/40035D-html.html
background image

HCS473

DS40035D-page  2

Preliminary

 2000-2013 Microchip Technology Inc.

Table of Contents

1.0

General Description ..................................................................................................................................................................... 3

2.0

Device Description  ...................................................................................................................................................................... 5

3.0

Device Operation ....................................................................................................................................................................... 11

4.0

Programming Specification  ....................................................................................................................................................... 37

5.0

Integrating the HCS473 Into A System  ..................................................................................................................................... 39

6.0

Development Support................................................................................................................................................................. 43

7.0

Electrical Characteristics  ........................................................................................................................................................... 49

8.0

Packaging Information................................................................................................................................................................ 57

INDEX .................................................................................................................................................................................................. 61
On-Line Support................................................................................................................................................................................... 62
Systems Information and Upgrade Hot Line ........................................................................................................................................ 62
Reader Response ................................................................................................................................................................................ 63
Product Identification System............................................................................................................................................................... 64

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip 
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and 
enhanced as new volumes and updates are introduced. 

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via 
E-mail at docerrors@mail.microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. 
We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. 
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current 
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision 
of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

• Microchip’s Worldwide Web site; http://www.microchip.com
• Your local Microchip sales office (see last page)
• The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277
When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include liter-
ature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/40035D-html.html
background image

 2000-2013 Microchip Technology Inc.

Preliminary

DS40035D-page  3

HCS473

1.0

GENERAL DESCRIPTION 

The HCS473 combines the patented K

EE

L

OQ

 code 

hopping technology and bi-directional transponder 
challenge-and-response security into a single chip 
solution for logical and physical access control. 

The three-input transponder interface allows the com-
bination of three orthogonal transponder antennas, 
eliminating the directionality associated with traditional 
single antenna transponder systems.

When used as a code hopping encoder, the HCS473 is 
well suited to keyless entry systems; vehicle and 
garage door access in particular. The same HCS473
can also be used as a secure bi-directional transponder 
for contactless authentication. These capabilities make 
the HCS473 ideal for combined secure access control 
and identification applications, dramatically reducing 
the cost of hybrid transmitter/transponder solutions.

1.1

System Overview

1.1.1

KEY TERMS

The following is a list of key terms used throughout this 
data sheet. For additional information on terminology, 
please refer to the K

EE

L

OQ

 introductory Technical Brief 

(TB003).

• AGC - Automatic Gain Control.

• Anticollision - A scheme whereby transponders 

in the same field can be addressed individually, 
preventing simultaneous response to a command 
(Section 3.2.1.4).

• Button Status - Indicates what button input(s) 

activated the transmission. Encompasses the 4 
button status bits S3, S2, S1 and S0 (Figure 3-2).

• Code Hopping - A method by which a code, 

viewed externally to the system, appears to 
change unpredictably each time it is transmitted 
(Section 1.2.3).

• Code word - A block of data that is repeatedly 

transmitted upon button activation (Figure 3-2).

• Crypto key - A unique and secret 64-bit number 

used to encrypt and decrypt data. In a symmetri-
cal block cipher such as the K

EE

L

OQ

 algorithm, 

the encryption and decryption keys are equal and 
will therefore be referred to generally as the 
crypto key.

• Decoder - A device that decodes data received 

from an encoder.

• Decryption algorithm - A recipe whereby data 

scrambled by an encryption algorithm can be 
unscrambled using the same crypto key.

• Device Identifier - 16-bit value used to uniquely 

select one of multiple transponders for communi-
cation.

• Encoder - A device that generates and encodes 

data.

• Encryption Algorithm - A recipe whereby data is 

scrambled using a crypto key. The data can only 
be interpreted by the respective decryption algo-
rithm using the same crypto key.

• IFF - Identify Friend or Foe, a classic authentica-

tion method (Section 3.2.3.3).

• Learn - Learning involves the receiver calculating 

the transmitter’s appropriate crypto key, decrypt-
ing the received hopping code and storing the 
serial number, synchronization counter value and 
crypto key in EEPROM (Section 5.1). The 
K

EE

L

OQ

 product family facilitates several learning 

strategies to be implemented on the decoder. The 
following are examples of what can be done. 

• Simple Learning

The receiver uses a fixed crypto key, common to 
all components of all systems by the same manu-
facturer, to decrypt the received code word’s 
encrypted portion.

• Normal Learning

The receiver uses information transmitted during 
normal operation to derive the crypto key and 
decrypt the received code word’s encrypted por-
tion.

• Secure Learn

The transmitter is activated through a special but-
ton combination to transmit a stored 60-bit seed 
value used to derive the transmitter’s crypto key. 
The receiver uses this seed value to calculate the 
same crypto key and decrypt the received code 
word’s encrypted portion. 

• LF - Low Frequency. For HCS473 purposes, LF 

refers to a typical 125 kHz frequency.

• Manufacturer’s code – A unique and secret 64-

bit number used to generate unique encoder 
crypto keys. Each encoder is programmed with a 
crypto key that is a function of the manufacturer’s 
code. Each decoder is programmed with the man-
ufacturer code itself.

• Proximity Activation - A method whereby an 

encoder automatically initiates a transmission in 
response to detecting an inductive field 
(Section 3.1.1.2).

• PKE - Passive Keyless Entry.

• RKE - Remote Keyless Entry.

• Transmission - A data stream consisting of 

repeating code words.

• Transcoder - Device combining unidirectional 

transmitter capabilities with bi-directional authenti-
cation capabilities.

• Transponder - A transmitter-receiver activated 

for transmission by reception of a predetermined 
signal.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/40035D-html.html
background image

HCS473

DS40035D-page  4

Preliminary

 2000-2013 Microchip Technology Inc.

• Transponder Reader (Reader, for short) - A 

device that authenticates a transponder using bi-
directional communication.

• Transport code - An access code, ‘password’ 

known only by the manufacturer, allowing write 
access to certain secure device memory areas 
(Section 3.2.3.2).

1.2

Encoder Overview

The HCS473 code hopping transcoder is designed 
specifically for passive entry systems; particularly vehi-
cle access. The transcoder portion of a passive entry 
system is integrated into a fob, carried by the user and 
operated to gain access to a vehicle or restricted area. 
The HCS473 is meant to be a cost-effective yet secure 
solution to such systems, requiring very few external 
components (Figure 2-1).

1.2.1

LOW-END SYSTEM SECURITY 
RISKS

Most low-end keyless entry transmitters are given a 
fixed identification code that is transmitted every time a 
button is pushed. The number of unique identification 
codes in a low-end system is usually a relatively small 
number. These shortcomings provide an opportunity 
for a sophisticated thief to create a device that ‘grabs’ 
a transmission and retransmits it later, or a device that 
quickly ‘scans’ all possible identification codes until the 
correct one is found.

1.2.2

HCS473 SECURITY

The HCS473, on the other hand, employs the K

EE

L

OQ

code hopping technology coupled with a transmission 
length of 69 bits to virtually eliminate the use of code 
‘grabbing’ or code ‘scanning’. The high security level of 
the HCS473 is based on the patented  K

EE

L

OQ

 

technol-

ogy. A block cipher based on a block length of 32 bits 
and a key length of 64 bits is used. The algorithm 
obscures the information in such a way that even if the 
transmission’s pre-encrypted information differs by 
only one bit from that of the previous transmission, sta-
tistically greater than 50 percent of the transmission’s 
encrypted result will change.

1.2.3

HCS473 HOPPING CODE

The 16-bit synchronization counter is the basis behind 
the transmitted code word changing for each transmis-
sion; it increments each time a button is pressed.

Once the device detects a button press, it reads the 
button inputs and updates the synchronization counter. 
The synchronization counter and crypto key are input 
to the encryption algorithm and the output is 32 bits of 
encrypted information. This encrypted data will change 
with every button press, its value appearing externally 
to ‘randomly hop around’, hence it is referred to as the 
hopping portion of the code word. The 32-bit hopping 
code is combined with the button information and serial 
number to form the code word transmitted to the 
receiver. The code word format is explained in greater 
detail in Section 3.1.2. 

1.3

Identify Friend or Foe (IFF) 
Overview

Validation of a transponder first involves an authenti-
cating device sending a random challenge to the 
device. The transponder then replies with a calculated 
response that is a function of the received challenge 
and its stored crypto key. The authenticating device, 
transponder reader, performs the same calculation and 
compares it to the transponder’s response. If they 
match, the transponder is identified as valid and the 
transponder reader can take appropriate action.

The HCS473’s IFF response is generated using one of 
two possible crypto keys. The authenticating device 
precedes the challenge with a three bit field dictating 
which key to use in calculating the response.

The bi-directional communication path required for IFF 
is typically inductive for short range (<10cm) transpon-
der applications with an inductive challenge and induc-
tive response. Longer range (~1.5m) passive entry 
applications still transmit using the LF inductive path 
but the response is transmitted RF.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/40035D-html.html
background image

 2000-2013 Microchip Technology Inc.

Preliminary

DS40035D-page  5

HCS473

2.0

DEVICE DESCRIPTION 

The HCS473 is designed for small package outline, 
cost-sensitive applications by minimizing the number of 
external components required for RKE and PKE appli-
cations.

Figure 2-1 shows a typical 3-axis HCS473 RKE/PKE 
application. 

• The switch inputs have internal pull-down resis-

tors and integrated debouncing allowing a switch 
to be directly connected to the inputs.

The transponder circuitry requires only the addition of 
external LC-resonant circuits for inductive communica-
tion capability.

• The open-drain LED output allows an external 

resistor for customization of LED brightness - and 
current consumption.

• The DATA output can be directly connected to the 

RF circuit or connected in conjunction with S3/
RFEN to a PLL.

2.1

Pinout Overview

A description of pinouts for the HCS473 can be found 
in Table 2-1.

TABLE 2-1:

PINOUT SUMMARY 

2.2

LF Antenna Considerations

A typical magnetic low frequency sensor (receiving 
antenna) consists of a parallel inductor-capacitor circuit 
that is sensitive to an externally applied magnetic sig-
nal. This LC circuit is tuned to resonate at the source 
signal's base frequency. The real-time voltage across 
the sensor represents the presence and strength of the 
surrounding magnetic field. By amplitude modulating 
the source's magnetic field, it is possible to transfer 
data over short distances. This communication 
approach is successfully used with distances up to 1.8 
meters, depending on transmission strengths and sen-
sor sensitivity. Two key factors that greatly affect com-
munication range are:

1.

Sensor tuning

2.

A properly tuned sensor's relative sensitivity

An LC antenna’s component values may be initially cal-
culated using the following equation. “Initially” because 
there are many factors affecting component selection.

It is not this data sheet’s purpose to present in-depth 
details regarding LC antenna and their tuning. Please 
refer to “Low Frequency Magnetic Transmitter Design 
Application Note”, AN232, for appropriate LF antenna 
design details.

Pin Name

Pin 

Number

Description

S0

1

Button input pin with Schmitt Trigger detector and internal pull-down resistor (Figure 2-3).

S1

2

Button input pin with Schmitt Trigger detector and internal pull-down resistor (Figure 2-3).

S2

3

Button input pin with Schmitt Trigger detector and internal pull-down resistor (Figure 2-3).

S3/RFEN

4

Multi-purpose input/output pin (Figure 2-4).

• Button input pin with Schmitt Trigger detector and internal pull-down resistor.

• RFEN output driver.

V

DDT

5

Transponder supply voltage. Regulated voltage output for strong inductive field.

LCX

6

Sensitive transponder input X (Figure 2-7). A strong signal on this pin is internally regulated 
and supplied on V

DD

 for low-battery operation/recharging.

LCY

7

Sensitive transponder input Y (Figure 2-7)

LCZ

8

Sensitive transponder input Z (Figure 2-7)

LCCOM

9

Transponder bias output (Figure 2-7)

V

SST

10

Transponder ground reference, must be connected to V

SS

.

V

SS

11

Ground reference 

DATA

12

Transmission data output (Figure 2-5)

LED

13

Open drain LED output (Figure 2-6)

V

DD

14

Positive supply voltage

Note:

Microchip also has a confidential Applica-
tion Note on Magnetic Sensors (AN832C). 
Contact Microchip for a Non-Disclosure 
Agreement in order to obtain this applica-
tion note.

2

F

1

LC

-----------

=

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/40035D-html.html
background image

HCS473

DS40035D-page  6

Preliminary

 2000-2013 Microchip Technology Inc.

FIGURE 2-1:

HCS473 3-AXIS 
APPLICATION 

FIGURE 2-2:

HCS473 1-AXIS 
APPLICATION

FIGURE 2-3:

S0/S1/S2 PIN DIAGRAM

FIGURE 2-4:

S3/RFEN PIN DIAGRAM

FIGURE 2-5:

DATA PIN DIAGRAM

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RF

Circuit

HCS473

S0

S1

S2

V

DDT

LCX

LCY

V

DD

LED

DATA

V

SS

V

SST

LCCOM

LCZ

S3/RFEN

1

F

100nF

V

DD

680pF

L

X

L

Y

L

Z

C

X

C

Y

C

Z

Note:

The 680pF capacitor prevents device instability - self 
resonance.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RF

Circuit

HCS473

S0

S1

S2

V

DDT

LCX

LCY

V

DD

LED

DATA

V

SS

V

SST

LCCOM

LCZ

S3/RFEN

1

F

100nF

V

DD

660 pF

100

L

X

C

X

100

Note:

Connect unused LC antenna inputs to LCCOM 
through a 100

 resistor for proper bias conditions.

R

PD

S0, S1, S2
Inputs

S3 Input/

RFEN

RFEN Output

V

DD

R

PD

NFET

PFET

Note:

R

PD

 is disabled when driving RFEN.

V

DD

RDATA

DATA

NFET

PFET

DATA OUT

Note:

RDATA is disabled when the DATA line is driven.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/40035D-html.html
background image

 2000-2013 Microchip Technology Inc.

Preliminary

DS40035D-page  7

HCS473

FIGURE 2-6:

LED PIN DIAGRAM

FIGURE 2-7:

LCCOM/LCX/LCY/LCZ/
VSST PIN DIAGRAM

2.3

Architectural Overview

2.3.1

WAKE-UP LOGIC

The HCS473 automatically goes into a low-power 
Standby mode once connected to a supply voltage. 
Power is supplied to the minimum circuitry required to 
detect a wake-up condition; button activation or LC sig-
nal detection.

The HCS473 will wake from Low-power mode when a 
button input is pulled high or a signal is detected on a 
LC low frequency antenna input pin. Waking involves 
powering the main logic circuitry that controls device 
operation. The button and transponder inputs are then 
sampled to determine which input activated the device.

A button input activation places the device into Encoder 
mode. A signal detected on the transponder input 
places the device into Transponder mode. Encoder 
mode has priority over Transponder mode such that 
communication on the transponder input would be 
ignored or perhaps interrupted if it occurred simulta-
neously to a button activation; ignored until the button 
input is released.

2.3.2

ENCODER INTERFACE

Using the four button inputs, up to 15 unique control 
codes may be transmitted.

LED

HV

Detect

Program

Weak

LED

V

DD

Mode

LCX/LCY/
LCZ Inputs

 RECTIFIER and 

REGULATOR

V

SST

10V

100

 

LC
Input

AMP

DET

and

DAMP

LCX

only 

10V

100

BIAS

CURRENT

LCCOM

CLAMP

R

DAMP

Note:

S3 may not be used as a button input if the 
RFEN option is enabled.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/40035D-html.html
background image

HCS473

DS40035D-page  8

Preliminary

 2000-2013 Microchip Technology Inc.

2.3.3

TRANSPONDER INTERFACE

The transponder interface on the HCS473 consists of 
the following:

• The internal transponder circuitry has separate 

power supply (V

DDT

) and ground (V

SST

) connec-

tions. 

- The  V

DDT

 pin supplies power to the transpon-

der circuitry and also outputs a regulated volt-
age if the LCX antenna input is receiving a 
strong signal; transponder is placed in a 
strong LF field. 

- The  V

SST

 pin supplies the ground reference 

to the transponder circuitry and must be con-
nected to the V

SS

 pin. 

• LF input amplifier and envelope detector to detect 

and shape the incoming low frequency excitation 
signal.

• Three sensitive transponder inputs with over-volt-

age protection (LCX, LCY, LCZ).

• Incoming LF energy rectification and regulation on 

the LCX input to supplement the supply voltage in 
low-battery transponder instances.

• 10V zener input protection from excessive 

antenna voltage resulting when proximate to very 
strong magnetic fields.

• LCCOM pin used to bias the transponder reso-

nant circuits for best sensitivity.

• LF antenna clamping transistors for inductive 

responses back to the transponder reader. The 
antenna ends are shorted together, ‘clamped’, 
dissipating the oscillatory energy. The reader 
detects this as a momentary load on its excitation 
antenna.

• Damping transistors to increase LF communica-

tion reliability when using high Q-factor LC anten-
nae.

The LCCOM pin functions to bias the LCX, LCY, and 
LCZ AGC amplifier inputs. The amplifier gain control 
sets the optimum level of amplification in respect to the 
incoming signal strength. The signal then passes 
through an envelope detector before interpretation in 
the logic circuit.

A block diagram of the transponder circuit is shown in 
Figure 2-8.

FIGURE 2-8:

HCS473 TRANSPONDER 
CIRCUIT

2.3.4

INTERNAL EEPROM

The HCS473 has an on-board non-volatile EEPROM 
which is used to store:

• configuration options

- encryption keys

- serial number

- vehicle ID’s

- baud rates

- ... see Section 3.1.4 and Section 3.2.1

• 64 bits of user memory

• synchronization counter.

All options are programmable during production, but 
many of the security related options are programmable 
only during production and are further read protected.

The user area allows storage of general purpose infor-
mation and is accessible only through the transponder 
communication path.

During every EEPROM write, the device ensures that 
the internal programming voltage is at an acceptable 
level prior to performing the EEPROM write.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rectifier/

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Regulator 

V

CCT

Noise
Filter 

Signal In

Damp/Clamp

Control 

LCX

LCY

LCZ

LCCOM

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/40035D-html.html
background image

 2000-2013 Microchip Technology Inc.

Preliminary

DS40035D-page  9

HCS473

2.3.5

INTERNAL RC OSCILLATOR

The HCS473 runs on an internal RC oscillator. The 
internal oscillator may vary ±10% over the device’s 
rated voltage and temperature range for commercial 
temperature devices. A certain percentage of indus-
trial temperature devices vary further on the slow side, 
-20%, when used at higher voltages (V

DD

 > 3.5V) and 

cold temperature. The LF and RF communication 
timing values are subject to these variations.

2.3.6

LOW VOLTAGE DETECTOR

The  HCS473’s battery voltage detector detects when 
the supply voltage drops below a predetermined value. 
The value is selected by the Low Voltage Trip Point 
Select (VLOWSEL) configuration option (Section 3.3).

The low voltage detector result is included in encoder 
transmissions (VLOW) allowing the receiver to indicate 
when the transmitter battery is low (Section 3.1.4.6).

The HCS473 also indicates a low battery condition by 
changing the LED operation (Section 3.1.5).

2.3.7

THE S3/RFEN PIN

The S3/RFEN pin may be used as a button input or RF 
enable output to a compatible PLL. Select between S3 
button input and RFEN functionality with the RFEN 
configuration option (Table 2-2). 

TABLE 2-2:

RFEN OPTION

RFEN

Resulting S3/RFEN Configuration

0

S3 button input pin with Schmitt Trigger 
detector and internal pull-down resistor.

1

RFEN output driver.
S3 may not be used as a button input if the 
RFEN option is enabled

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/40035D-html.html
background image

HCS473

DS40035D-page  10

Preliminary

 2000-2013 Microchip Technology Inc.

NOTES:

Maker
Microchip Technology Inc.
Datasheet PDF Download