4.5A Dual High-Speed Power MOSFET Drivers

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22022b-html.html
background image

© 2007 Microchip Technology Inc.

DS22022B-page 1

MCP1403/4/5

Features

• High Peak Output Current: 4.5A (typ.)
• Low Shoot-Through/Cross-Conduction Current in 

Output Stage

• Wide Input Supply Voltage Operating Range:

- 4.5V to 18V

• High Capacitive Load Drive Capability:

- 2200 pF in 15 ns
- 5600 pF in 34 ns

• Short Delay Times: 40 ns (typ.)
• Low Supply Current:

- With Logic ‘1’ Input – 1.0 mA (typ.)
- With Logic ‘0’ Input – 150 µA (typ.)

• Latch-Up Protected: Will Withstand 1.5A Reverse 

Current

• Logic Input Will Withstand Negative Swing

Up To 5V

• Packages: 8-Pin SOIC, PDIP, 8-Pin 6x5 DFN, 

and 16-Pin SOIC

Applications

• Switch Mode Power Supplies
• Pulse Transformer Drive
• Line Drivers
• Motor and Solenoid Drive

General Description

The MCP1403/4/5 are a family of dual-inverting, dual-
non-inverting, or complimentary output drivers. They
can delivery high peak currents of 4.5A typically into
capacitive loads. These devices also feature low shoot-
through current, matched rise/fall times and
propagation delays.
The MCP1403/4/5 drivers operate from a 4.5V to 18V
single power supply and can easily charge and
discharge 2200 pF gate capacitance in under 15 ns
(typ). They provide low enough impedances in both the
on and off states to ensure the MOSFETs intended
state will not be affected, even by large transients. The
input to the MCP1403/4/5 may be driven directly from
either TTL or CMOS (3V to 18V).
The MCP1403/4/5 dual-output 4.5A driver family is
offered in both surface-mount and pin-through-hole
packages with a -40

o

C to +125

o

C temperature rating.

The low thermal resistance of the thermally enhanced
DFN package allows for greater power dissipation
capability for driving heavier capacitive or resistive
loads.
These devices are highly latch-up resistant under any
conditions within their power and voltage ratings. They
are not subject to damage when up to 5V of noise
spiking (of either polarity) occurs on the ground pin. All
terminals are fully protect against Electrostatic
Discharge (ESD) up to 4 kV.

Package Types

8-Pin DFN

(2)

NC

IN A

GND

IN B

2

3

4

5

6

7

8

1

8-Pin

1
2
3
4

NC

5

6

7

8

OUT A

OUT B

NC

IN A

GND

IN B

V

DD

Note 1: Duplicate pins must both be connected for

proper operation.

2: Exposed pad of the DFN package is electrically

isolated.

MCP1403

MCP1404

NC
OUT A

OUT B

V

DD

MCP1405

NC
OUT A

OUT B

V

DD

1
2
3
4
5
6
7
8

16

13
12

11

10

9

NC

IN A

NC

GND
GND

NC

IN B

NC

NC

OUT A
V

DD

V

DD

OUT B
OUT B
NC

OUT A

15
14

16-Pin SOIC

NC

OUT A
V

DD

V

DD

OUT B
OUT B
NC

OUT A

OUT A
V

DD

V

DD

OUT B
OUT B
NC

OUT A

MCP1403

MCP1404

MCP1405

NC

NC

OUT A

OUT B

V

DD

MCP1403

MCP1404

NC

OUT A

OUT B

V

DD

MCP1405

NC

OUT A

OUT B

V

DD

PDIP/SOIC

4.5A Dual High-Speed Power MOSFET Drivers

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22022b-html.html
background image

MCP1403/4/5

DS22022B-page 2

© 2007 Microchip Technology Inc.

Functional Block Diagram 

(1)

Effective 

Input C = 20 pF

 

 

MCP1403 Dual Inverting 

MCP1404 Dual Non-inverting

Input

GND

V

DD

300 mV 

 

4.7V

Inverting

Non-inverting

Note 1: Unused inputs should be grounded.

730 µA 

Output

(Each Input) 

MCP1405 Inverting / Non-inverting 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22022b-html.html
background image

© 2007 Microchip Technology Inc.

DS22022B-page 3

MCP1403/4/5

1.0

ELECTRICAL 
CHARACTERISTICS

Absolute Maximum Ratings †

Supply Voltage ................................................................+20V
Input Voltage ...............................(V

DD

 + 0.3V) to (GND – 5V)

Input Current (V

IN

>V

DD

)................................................50 mA

†  Notice: Stresses above those listed under "Maximum
Ratings" may cause permanent damage to the device. This is
a stress rating only and functional operation of the device at
those or any other conditions above those indicated in the
operational sections of this specification is not intended.
Exposure to maximum rating conditions for extended periods
may affect device reliability.

DC CHARACTERISTICS (NOTE 2)

Electrical Specifications: Unless otherwise indicated, T

A

 = +25°C, with 4.5V 

 ≤ V

DD

 ≤ 18V.

Parameters

Sym

Min

Typ

Max

Units

Conditions

Input
Logic ‘1’, High Input Voltage

V

IH

2.4

1.5

V

Logic ‘0’, Low Input Voltage

V

IL

1.3

0.8

V

Input Current

I

IN

–1

1

µA

0V

 ≤ V

IN

 ≤ V

DD

Input Voltage

V

IN

-5

V

DD

+0.3

V

Output
High Output Voltage

V

OH

V

DD

 – 0.025

V

DC Test

Low Output Voltage

V

OL

0.025

V

DC Test

Output Resistance, High

R

OH

2.2

3.0

Ω

I

OUT

 = 10 mA, V

DD

 = 18V

Output Resistance, Low

R

OL

2.8

3.5

Ω

I

OUT

 = 10 mA, V

DD

 = 18V

Peak Output Current

I

PK

4.5

A

V

DD

 

= 18V (Note 2)

Latch-Up Protection With-
stand Reverse Current

I

REV

>1.5

A

Duty cycle

  ≤ 2%, t  ≤ 300 µsec.

Switching Time (Note 1)
Rise Time

t

R

15

28

ns

Figure 4-1

Figure 4-2

 

C

L

 = 2200 pF

Fall Time

t

F

18

28

ns

Figure 4-1

Figure 4-2

C

L

 = 2200 pF

Delay Time

t

D1

40

48

ns

Figure 4-1

Figure 4-2

Delay Time

t

D2

40

48

ns

Figure 4-1

Figure 4-2

Power Supply
Supply Voltage

V

DD

4.5

18.0

V

Power Supply Current

I

S

1.0

2.0

mA

V

IN

 = 3V (Both Inputs)

I

S

0.15

0.25

mA

V

IN

 = 0V (Both Inputs)

Note 1: Switching times ensured by design.

2: Tested during characterization, not production tested.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22022b-html.html
background image

MCP1403/4/5

DS22022B-page 4

© 2007 Microchip Technology Inc.

DC CHARACTERISTICS (OVER OPERATING TEMPERATURE RANGE)

TEMPERATURE CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, operating temperature range with 4.5V 

 ≤ V

DD

 ≤ 18V.

Parameters

Sym

Min

Typ

Max

Units

Conditions

Input
Logic ‘1’, High Input Voltage

V

IH

2.4

V

Logic ‘0’, Low Input Voltage

V

IL

0.8

V

Input Current

I

IN

–10

+10

µA

0V

 ≤ V

IN

 ≤ V

DD

Output
High Output Voltage

V

OH

V

DD

 – 0.025

V

DC TEST

Low Output Voltage

V

OL

0.025

V

DC TEST

Output Resistance, High

R

OH

3.1

6.0

Ω

I

OUT

 = 10 mA, V

DD

 = 18V

Output Resistance, Low

R

OL

3.7

7

Ω

I

OUT

 = 10 mA, V

DD

 = 18V

Switching Time (Note 1)
Rise Time

t

R

25

40

ns

Figure 4-1

Figure 4-2

C

L

 = 2200 pF

Fall Time

t

F

25

40

ns

Figure 4-1

Figure 4-2

C

L

 = 2200 pF

Delay Time

t

D1

50

65

ns

Figure 4-1

Figure 4-2

 

Delay Time

t

D2

50

65

ns

Figure 4-1

Figure 4-2

Power Supply
Power Supply Current

I

S


2.0
0.2

3.0
0.3

mA

V

IN

 = 3V (Both Inputs)

V

IN

 = 0V (Both Inputs)

Note 1: Switching times ensured by design.

2: Tested during characterization, not production tested.

Electrical Specifications: Unless otherwise noted, all parameters apply with 4.5V  

≤ V

DD

 

≤ 18V.

Parameters

Sym

Min

Typ

Max

Units

Conditions

Temperature Ranges
Specified Temperature Range

T

A

–40

+125

°C

Maximum Junction Temperature

T

J

+150

°C

Storage Temperature Range

T

A

–65

+150

°C

Package Thermal Resistances
Thermal Resistance, 8L-6x5 DFN

θ

JA

33.2

°C/W

Typical four-layer board with 
vias to ground plane

Thermal Resistance, 8L-PDIP

θ

JA

125

°C/W

Thermal Resistance, 8L-SOIC

θ

JA

155

°C/W

Thermal Resistance, 16L-SOIC

θ

JA

155

°C/W

4-Layer JC51-7 Standard 
Board, Natural Convection

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22022b-html.html
background image

© 2007 Microchip Technology Inc.

DS22022B-page 5

MCP1403/4/5

2.0

TYPICAL PERFORMANCE CURVES

Note: Unless otherwise indicated, T

A

 = +25°C with 4.5V 

≤ V

DD

 

≤ 18V.

FIGURE 2-1:

Rise Time vs. Supply 

Voltage.

FIGURE 2-2:

Rise Time vs. Capacitive 

Load.

FIGURE 2-3:

Rise and Fall Times vs. 

Temperature.

FIGURE 2-4:

Fall Time vs. Supply 

Voltage.

FIGURE 2-5:

Fall Time vs. Capacitive 

Load.

FIGURE 2-6:

Propagation Delay vs. Input 

Amplitude.

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

10

20

30

40

50

60

70

80

90

100

4

6

8

10

12

14

16

18

Supply Voltage (V)

Ri

se Ti

me (

n

s

)

6800 pF

4700 pF

2200 pF

1800 pF

10

20

30

40

50

60

70

80

1000

10000

Capacitive Load (pF)

R

ise

 T

im

e (

n

s)

5V

18V

12V

12

14

16

18

20

22

24

-40 -25 -10 5

20 35 50 65 80 95 110 125

Temperature (

o

C)

Time (ns

)

t

FALL

t

RISE

C

LOAD

 = 1800 pF

10

20

30

40

50

60

70

80

90

100

4

6

8

10

12

14

16

18

Supply Voltage (V)

F

all

 T

im

e (n

s)

6800 pF

4700 pF

2200 pF

1800 pF

10

20

30

40

50

60

70

80

90

100

1000

10000

Capacitive Load (pF)

Fa

ll Time

 (

n

s)

5V

18V

12V

35

60

85

110

135

160

2

3

4

5

6

7

8

9

10

Input Amplitude (V)

Pr

op

ag

at

io

n

 De

lay

 (

n

s)

t

D1

t

D2

V

DD

 = 12V

C

LOAD

 = 1800 pF

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22022b-html.html
background image

MCP1403/4/5

DS22022B-page 6

© 2007 Microchip Technology Inc.

Typical Performance Curves (Continued)

Note: Unless otherwise indicated, T

A

 = +25°C with 4.5V 

≤ V

DD

 

≤ 18V.

FIGURE 2-7:

Propagation Delay Time vs. 

Supply Voltage.

FIGURE 2-8:

Propagation Delay Time vs. 

Temperature.

FIGURE 2-9:

Quiescent Current vs. 

Supply Voltage.

FIGURE 2-10:

Quiescent Current vs. 

Temperature.

FIGURE 2-11:

Output Resistance (Output 

High) vs. Supply Voltage.

FIGURE 2-12:

Output Resistance (Output 

Low) vs. Temperature.

30

40

50

60

70

80

90

100

4

6

8

10

12

14

16

18

Supply Voltage (V)

P

rop

ag

ati

o

n

 D

e

la

(ns

)

t

D1

t

D2

C

LOAD

 = 1800 pF

30

35

40

45

50

55

60

65

70

-40 -25 -10 5

20 35 50 65 80 95 110 125

Temperature (

o

C)

Pr

op

ag

at

io

n

 D

el

ay 

(n

s

)

t

D1

t

D2

C

LOAD

 = 1800 pF

0

0.1

0.2

0.3

0.4

0.5

4

6

8

10

12

14

16

18

Supply Voltage (V)

Qu

ie

sc

en

t Cu

rre

n

t (mA

)

Both Inputs = 1

Both Inputs = 0

0

0.1

0.2

0.3

0.4

0.5

-40 -25 -10 5

20 35 50 65 80 95 110 125

Temperature (

o

C)

Qu

iesc

en

t Cu

rre

nt

 (

m

A)

Both Inputs = 1

Both Inputs = 0

1

2

3

4

5

6

7

4

6

8

10

12

14

16

18

Supply Voltage (V)

R

OUT-HI

 (

::

)

T

J

 = +150

o

C

T

J

 = +25

o

C

V

IN

 = 5V (MCP1404)

V

IN

 = 0V (MCP1403)

2

3

4

5

6

7

8

4

6

8

10

12

14

16

18

Supply Voltage (V)

R

OUT-LO

 (

::

)

T

J

 = +150

o

C

T

J

 = +25

o

C

V

IN

 = 0V (MCP1404)

V

IN

 = 5V (MCP1403)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22022b-html.html
background image

© 2007 Microchip Technology Inc.

DS22022B-page 7

MCP1403/4/5

Typical Performance Curves (Continued)

Note: Unless otherwise indicated, T

A

 = +25°C with 4.5V 

≤ V

DD

 

≤ 18V.

FIGURE 2-13:

Supply Current vs. 

Capacitive Load.

FIGURE 2-14:

Supply Current vs. 

Capacitive Load.

FIGURE 2-15:

Supply Current vs. 

Capacitive Load.

FIGURE 2-16:

Supply Current vs. 

Frequency.

FIGURE 2-17:

Supply Current vs. 

Frequency.

FIGURE 2-18:

Supply Current vs. 

Frequency.

0

10

20

30

40

50

60

70

80

90

100

100

1000

10000

Capacitive Load (pF)

Su

pply Cu

rr

en

(mA

)

650 kHz

V

DD

 = 18V

50 kHz

100 kHz

200 kHz

400 kHz

0

20

40

60

80

100

120

100

1000

10000

Capacitive Load (pF)

Supply Current (mA)

2 MHz

V

DD

 = 12V

500 kHz

200 kHz

100 kHz

1 MHz

0

20

40

60

80

100

120

100

1000

10000

Capacitive Load (pF)

Su

ppl

y Cu

rr

e

n

t (m

A

)

3.5 MHz

V

DD

 = 6V

1 MHz

500 kHz

200 kHz

2 MHz

0

10

20

30

40

50

60

70

80

10

100

1000

Frequency (kHz)

S

u

ppl

y Cu

rre

n

t (mA

)

V

DD

 = 18V

6,800 pF

100 pF

2,200 pF

4,700 pF

0

20

40

60

80

100

120

140

10

100

1000

10000

Frequency (kHz)

S

u

ppl

y Cu

rre

n

t (mA

)

V

DD

 = 12V

6,800 pF

100 pF

2,200 pF

4,700 pF

0

20

40

60

80

100

120

140

10

100

1000

10000

Frequency (kHz)

Supp

ly

 Curre

nt (mA)

V

DD

 = 6V

6,800 pF

100 pF

2,200 pF

4,700 pF

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22022b-html.html
background image

MCP1403/4/5

DS22022B-page 8

© 2007 Microchip Technology Inc.

Typical Performance Curves (Continued)

Note: Unless otherwise indicated, T

A

 = +25°C with 4.5V 

≤ V

DD

 

≤ 18V.

FIGURE 2-19:

Crossover Energy vs. 

Supply Voltage.

1.00E-09

1.00E-08

1.00E-07

1.00E-06

4

6

8

10

12

14

16

18

Supply Voltage (V)

C

ros

sov

er En

erg

y (A*

sec)

10

-6

10

-7

10

-8

10

-9

Note:

The values on this graph represent the
loss seen by both drivers in a package
during one complete cycle. For a sin-
gle driver, divide the stated value by 2.
For a single transition of a single driver
divide the stated value by 4.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22022b-html.html
background image

© 2007 Microchip Technology Inc.

DS22022B-page 9

MCP1403/4/5

3.0

PIN DESCRIPTIONS

The descriptions of the pins are listed in 

Table 3-1

.

TABLE 3-1:

PIN FUNCTION TABLE 

(1)

3.1

Supply Input (V

DD

)

V

DD

 is the bias supply input for the MOSFET driver and

has a voltage range of 4.5V to 18V. This input must be
decoupled to ground with a local capacitor. This bypass
capacitor provides a localized low-impedance path for
the peak currents that are to be provided to the load.

3.2

Control Inputs A and B

The MOSFET driver input is a high-impedance, TTL/
CMOS-compatible input. The input also has hysteresis
between the high and low input levels, allowing them to
be driven from slow rising and falling signals, and to
provide noise immunity.

3.3

Ground (GND)

Ground is the device return pin. The ground pin should
have a low impedance connection to the bias supply
source return. High peak currents will flow out the
ground pin when the capacitive load is being
discharged.

3.4

Outputs A and B

Outputs A and B are CMOS push-pull output that is
capable of sourcing and sinking 4.5A of peak current
(V

DD

 = 18V). The low output impedance ensures the

gate of the external MOSFET will stay in the intended
state even during large transients. These output also
has a reverse current latch-up rating of 1.5A.

3.5

Exposed Metal Pad

The exposed metal pad of the DFN package is not
internally connected to any potential. Therefore, this
pad can be connected to a ground plane or other
copper plane on a printed circuit board to aid in heat
removal from the package.

8-Pin

PDIP

SOIC

8-Pin

DFN

16-Pin 

SOIC

Symbol

Description

1

1

1

NC

No Connection

2

2

2

IN A

Control Input for Output A

3

NC

No Connection

3

3

4

GND

Ground

5

GND

Ground

6

NC

No Connection

4

4

7

IN B

Control Input for Output B

8

NC

No Connection

9

NC

No Connection

5

5

10

OUT B

Output B

11

OUT B

Output B

6

6

12

V

DD

Supply Input

13

V

DD

Supply Input

7

7

14

OUT A

Output A

15

OUT A

Output A

8

8

16

NC

No Connection

PAD

NC

Exposed Metal Pad

Note 1: Duplicate pins must be connected for proper operation.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22022b-html.html
background image

MCP1403/4/5

DS22022B-page 10

© 2007 Microchip Technology Inc.

4.0

APPLICATION INFORMATION

4.1

General Information

MOSFET drivers are high-speed, high current devices
which are intended to source/sink high peak currents to
charge/discharge the gate capacitance of external
MOSFETs or IGBTs. In high frequency switching
power supplies, the PWM controller may not have the
drive capability to directly drive the power MOSFET. A
MOSFET driver like the MCP1403/4/5 family can be
used to provide additional source/sink current
capability.

4.2

MOSFET Driver Timing

The ability of a MOSFET driver to transition from a fully
off state to a fully on state are characterized by the driv-
ers rise time (t

R

), fall time (t

F

), and propagation delays

(t

D1

 and t

D2

). The MCP1403/4/5 family of drivers can

typically charge and discharge a 2200 pF load capaci-
tance in 15 ns along with a typical matched propaga-
tion delay of 40 ns. 

Figure 4-1

 and 

Figure 4-2

 show the

test circuit and timing waveform used to verify the
MCP1403/4/5 timing.

FIGURE 4-1:

Inverting Driver Timing 

Waveform.

FIGURE 4-2:

Non-Inverting Driver Timing 

Waveform.

4.3

Decoupling Capacitors

Careful layout and decoupling capacitors are highly
recommended when using MOSFET drivers. Large
currents are required to charge and discharge
capacitive loads quickly. For example, 2.5A are needed
to charge a 2200 pF load with 18V in 16 ns.
To operate the MOSFET driver over a wide frequency
range with low supply impedance a ceramic and low
ESR film capacitor are recommended to be placed in
parallel between the driver V

DD

 and GND. A 1.0 µF low

ESR film capacitor and a 0.1 µF ceramic capacitor
placed between 

V

DD

 and GND pins

 should be used.

These capacitors should be placed close to the driver
to minimized circuit board parasitics and provide a local
source for the required current.

4.4

PCB Layout Considerations

Proper PCB layout is important in a high current, fast
switching circuit to provide proper device operation and
robustness of design. PCB trace loop area and
inductance should be minimized by the use of ground
planes or trace under MOSFET gate drive signals,
separate analog and power grounds, and local driver
decoupling.

0.1 µF

+5V

10%

90%

10%

90%

10%

90%

18V

1 µF

0V

0V

MCP1403

 C

L

 = 2200 pF

Input

Input

Output

t

D1

t

F

t

D2

Output

t

R

V

DD

 = 18V

Ceramic

Input

(1/2 MCP1405)

90%

Input

t

D1

t

F

t

D2

Output

t

R

10%

10%

10%

+5V

18V

0V

0V

90%

90%

0.1 µF

1 µF

MCP1404

 C

L

 = 2200 pF

Input

Output

V

DD

 = 18V

Ceramic

Input

(1/2 MCP1405)

Maker
Microchip Technology Inc.
Datasheet PDF Download