2uA Low-Dropout Positive Voltage Regulator DS

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21991c-html.html
background image

© 2007 Microchip Technology Inc.

DS21991C-page 1

MCP1701A

Features

• 2.0 µA Typical Quiescent Current
• Input Operating Voltage Range up to 10.0V
• Low-Dropout Voltage (LDO):

- 120 mV (typical) @ 100 mA
- 380 mV (typical) @ 200 mA

• High Output Current: 250 mA (V

OUT

 = 5.0V)

• High-Accuracy Output Voltage: ±2% (max)
• Low Temperature Drift: ±100 ppm/°C (typical)
• Excellent Line Regulation: 0.2%/V (typical)
• Package Options: 3-Pin SOT-23A, 3-Pin SOT-89, 

and 3-Pin TO-92

• Short Circuit Protection
• Standard Output Voltage Options:

- 1.8V, 2.5V, 3.0V, 3.3V, 5.0V 

Applications

• Battery-Powered Devices
• Battery-Powered Alarm Circuits
• Smoke Detectors
• CO

2

 Detectors

• Smart Battery Packs
• PDAs
• Low-Quiescent Current Voltage Reference
• Cameras and Portable Video Equipment
• Pagers and Cellular Phones
• Solar-Powered Instruments
• Consumer Products
• Microcontroller Power

General Description

The MCP1701A is a family of CMOS low-dropout,
positive voltage regulators that can deliver up to
250 mA of current while consuming only 2.0 µA of
quiescent current (typ.). The input operating range is
specified up to 10V, making it ideal for lithium-ion (one
or two cells), 9V alkaline and other two and three
primary cell battery-powered applications.
The MCP1701A is capable of delivering 250 mA with
an input-to-output voltage differential (dropout voltage)
of 650 mV. The low-dropout voltage extends the battery
operating lifetime. It also permits high currents in small
packages when operated with minimum V

IN

 – V

OUT

differentials. The MCP1701A offers improved startup
and transient response.
The MCP1701A has a tight tolerance output voltage
regulation of ±0.5% (typ.) and very good line regulation
at ±0.2%. The LDO output is stable when using only
1 µF of output capacitance of either tantalum or
aluminum-electrolytic style capacitors. The MCP1701A
LDO also incorporates short circuit protection to ensure
maximum reliability.
Package options include the 3-pin SOT-23A, 3-pin
SOT-89 and 3-Pin TO-92.

Package Types

V

IN

GND

V

OUT

3

1

2

MCP1701A

GND V

IN

V

OUT

1

2

3

MCP1701A

3-Pin SOT-23A

3-Pin SOT-89

V

IN

Note: 3-Pin SOT-23A is equivalent to the EIAJ

SC-59.

3-Pin TO-92

1 2 3

V

OUT

V

IN

GND

Bottom

View

2 µA Low-Dropout Positive Voltage Regulator

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21991c-html.html
background image

MCP1701A

DS21991C-page 2

© 2007 Microchip Technology Inc.

Functional Block Diagram

Typical Application Circuits

V

IN

V

OUT

GND

Short-Circuit

Protection

Voltage

Reference

+

MCP1701A

MCP1701A

GND

V

OUT

V

IN

C

IN

1 µF Tantalum

C

OUT

1 µF Tantalum

V

OUT

V

IN

3.3V

I

OUT

50 mA

9V Alkaline Battery

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21991c-html.html
background image

© 2007 Microchip Technology Inc.

DS21991C-page 3

MCP1701A

1.0

ELECTRICAL 
CHARACTERISTICS

Absolute Maximum Ratings †

Input Voltage ........................................................+12V
Output Current (Continuous)..........P

D

/(V

IN

 – V

OUT

)mA

Output Current (peak) .....................................  500 mA
Output Voltage ............... (GND – 0.3V) to (V

IN

 + 0.3V)

Continuous Power Dissipation:

3-Pin SOT-23A ............................................ 150 mW
3-Pin SOT-89............................................... 500 mW
3-Pin TO-92 ................................................. 300 mW

  Notice: Stresses above those listed under “Absolute
Maximum Ratings” may cause permanent damage to the
device. These are stress ratings only and functional operation
of the device at these or any other conditions above those
indicated in the operation sections of the specifications is not
implied. Exposure to Absolute Maximum Rating conditions for
extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Electrical Specifications: Unless otherwise specified, all limits are established for an ambient temperature of T

A

 = +25°C.

Parameters

Sym

Min

Typ

Max

Units

Conditions

Output Voltage Regulation

V

OUT

V

R

 - 2% V

R

±0.5%

V

R

 + 2%

V

I

OUT

 = 40 mA (Note 1)

Maximum Output Current

I

OUT

MAX

250

mA

V

OUT

 = 5.0V     (V

IN

 = V

R

 + 1.0V)

200

V

OUT

 = 4.0V

150

V

OUT

 = 3.3V

150

V

OUT

 = 3.0V

125

V

OUT

 = 2.5V

110

V

OUT

 = 1.8V

Load Regulation (Note 3)

ΔV

OUT/ 

V

OUT

-1.60

±0.8

+1.60

%

V

OUT

 = 5.0V, 1 mA 

≤ I

OUT

 ≤ 100 mA

-2.25

±1.1

+2.25

V

OUT

 = 4.0V, 1 mA 

≤ I

OUT

 ≤ 100 mA

-2.72

±1.3

+2.72

V

OUT

 = 3.3V, 1 mA 

≤ I

OUT

 ≤ 80 mA

-3.00

±1.5

+3.00

V

OUT

 = 3.0V, 1 mA 

≤ I

OUT

 ≤ 80 mA

-3.60

±1.8

+3.60

V

OUT

 = 2.5V, 1 mA 

≤ I

OUT

 ≤ 60 mA

-1.60

±0.8

+1.60

V

OUT

 = 1.8V, 1 mA 

≤ I

OUT

 ≤ 30 mA

Dropout Voltage

V

IN 

- V

OUT

380

600

mV

I

OUT

 = 200 mA, V

R

 = 5.0V

400

630

I

OUT

 = 200 mA, V

R

 = 4.0V

400

700

I

OUT

 = 150 mA, V

R

 = 3.3V

400

700

I

OUT

 = 150 mA, V

R

 = 3.0V

400

700

I

OUT

 = 120 mA, V

R

 = 2.5V

180

300

I

OUT

 = 20 mA, V

R

 = 1.8V

Input Quiescent Current

I

Q

2.0

4.5

µA

V

IN

 = V

R

 + 1.0V

Line Regulation

 

ΔV

OUT

•100 

ΔV

IN

•V

OUT

0.2

0.3

%/V

I

OUT

 = 40 mA, (V

R

 +1) 

≤ V

IN

 ≤ 10.0V

Input Voltage

V

IN

10

V

Temperature Coefficient of 
Output Voltage

TCV

OUT

±100

ppm/

°C

I

OUT

 = 40 mA, -40°C 

≤ T

A

 ≤ +85°C 

(Note 2)

Output Rise Time

T

R

200

µs

10% V

R

 to 90% V

R

, V

IN

 = 0V to V

R

 +1V, 

R

L

 = 25

Ω resistive

1: V

R

 is the nominal regulator output voltage. For example: V

R

 = 1.8V, 2.5V, 3.3V, 4.0V, 5.0V.

The input voltage V

IN

 = V

R

 + 1.0V, I

OUT

 = 40 mA.

2: TCV

OUT

 = (V

OUT-HIGH

 – V

OUT-LOW

) *10

6

 / (V

R

 * 

Δ

Temperature), V

OUT-HIGH

 = Highest voltage measured 

over the temperature range. V

OUT-LOW

 = Lowest voltage measured over the temperature range.

3: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21991c-html.html
background image

MCP1701A

DS21991C-page 4

© 2007 Microchip Technology Inc.

TEMPERATURE CHARACTERISTICS

Electrical Specifications: Unless otherwise specified,

 

T

A

 = +25

°C.

Parameters

Sym

Min

Typ

Max

Units

Conditions

Temperature Ranges
Specified Temperature Range (I)

T

A

-40

+85

°C

Storage Temperature Range

T

A

-40

+125

°C

Package Thermal Resistances
Thermal Resistance, 3L-SOT-23A

θ

JA

335

°C/W

Minimum trace width single 
layer application

230

°C/W

Typical FR4, 4-layer 
application

Thermal Resistance, 3L-SOT-89

θ

JA

52

°C/W

Typical, when mounted on 1 
square inch of copper

Thermal Resistance, 3L-TO-92

θ

JA

131.9

°C/W

EIA/JEDEC JESD51-751-7
4-layer board

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21991c-html.html
background image

© 2007 Microchip Technology Inc.

DS21991C-page 5

MCP1701A

2.0

TYPICAL PERFORMANCE CURVES

Notes: Unless otherwise specified, V

OUT

 = 1.8V, 3.3V, 5.0V, T

A

 = +25°C, C

IN

 = 1 µF Tantalum, C

OUT

 = 1 µF Tantalum.

FIGURE 2-1:

Supply Current vs. Input 

Voltage (V

R

 = 1.8V).

FIGURE 2-2:

Supply Current vs. Input 

Voltage (V

R

 = 3.3V).

FIGURE 2-3:

Supply Current vs. Input 

Voltage (V

R

 = 5.0V).

FIGURE 2-4:

Supply Current vs. Load 

Current (V

R

 = 3.3V).

FIGURE 2-5:

Supply Current vs. Load 

Current (V

R

 = 5.0V).

FIGURE 2-6:

Supply Current vs. 

Temperature.

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3

5

7

9

11

Input Voltage (V)

Supply

 C

u

rren

t (

μ

A)

V

R

 = 1.8V

+90°C

+25°C

-45°C

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

4

6

8

10

12

Input Voltage (V)

S

u

pp

ly Cu

rrent 

A)

+90°C

+25°C

-45°C

V

R

 = 3.3V

1

1.2

1.4

1.6

1.8

2

2.2

2.4

6

7

8

9

10

11

12

Input Voltage (V)

Sup

p

ly

 Current (

μ

A)

+25°C

-45°C

+90°C

V

R

 = 5.0V

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0

50

100

150

200

Load Current (mA)

Supply

 C

u

rren

t (

μ

A)

+90°C

+25°C

-45°C

V

IN

 = 4.3V

V

R

  = 3.3V

1

1.2

1.4

1.6

1.8

2

2.2

0

50

100

150

200

Load Current (mA)

Sup

p

ly

 Cu

rren

A)

+90°C

+25°C

-45°C

V

IN

 = 6.0V

V

R

  = 5.0V

1.2

1.4

1.6

1.8

2

2.2

-45

-25

-5

15

35

55

75

95

Temperature (°C)

Supp

ly

 C

u

rr

ent

 (

μ

A)

V

R

 = 5.0V

V

R

 = 3.3V

V

R

 = 1.8V

V

IN

 = V

R

 + 1.0V

      I

OUT

 = 0 μA

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21991c-html.html
background image

MCP1701A

DS21991C-page 6

© 2007 Microchip Technology Inc.

Note: Unless otherwise indicated, V

OUT

 = 1.8V, 3.3V, 5.0V, T

A

 = +25°C, C

IN

 = 1 µF Tantalum, C

OUT

 = 1 µF Tantalum.

FIGURE 2-7:

Output Voltage vs. Input 

Voltage (V

R

 = 1.8V).

FIGURE 2-8:

Output Voltage vs. Input 

Voltage (V

R

 = 3.3V).

FIGURE 2-9:

Output Voltage vs. Input 

Voltage (V

R

 = 5.0V).

FIGURE 2-10:

Output Voltage vs. Load 

Current (V

R

 = 1.8V).

FIGURE 2-11:

Output Voltage vs. Load 

Current (V

R

 = 3.3V).

FIGURE 2-12:

Output Voltage vs. Load 

Current (V

R

 = 5.0V).

1.72

1.74

1.76

1.78

1.8

1.82

1.84

1.86

1.88

3

4

5

6

7

8

9

10

11

12

Input Voltage (V)

Ou

tp

ut Vol

tag

e

 (V)

+90°C

+25°C

-45°C

V

R

 = 1.8V

I

OUT

 = 0.1 mA

3.24

3.26

3.28

3.3

3.32

3.34

3.36

3.38

3.4

4

5

6

7

8

9

10

11

12

Input Voltage (V)

Ou

tp

ut Vo

ltag

e (V)

+90°C

+25°C

-45°C

V

R

 = 3.3V

I

OUT

 = 0.1 mA

4.98

5

5.02

5.04

5.06

5.08

5.1

5.12

6

7

8

9

10

11

12

Input Voltage (V)

Ou

tp

ut Vo

ltag

e (V)

+90°C

+25°C

-45°C

V

R

 = 5.0V

I

OUT

 = 0.1 mA

1.71

1.72

1.73

1.74

1.75

1.76

1.77

1.78

1.79

1.8

1.81

1.82

0

20

40

60

80

100

Load Current (mA)

Ou

tp

ut Vol

tag

e

 (V)

+90°C

+25°C

-45°C

V

R

 = 1.8V

V

IN

 = 3.0V

3.25

3.26

3.27

3.28

3.29

3.3

3.31

3.32

3.33

0

30

60

90

120

150

Load Current (mA)

Ou

tp

u

t Vo

lta

g

e (V)

+90°C

+25°C

-45°C

V

R

 = 3.3V

V

IN

 = 4.3V

4.97

4.98

4.99

5

5.01

5.02

5.03

5.04

0

50

100

150

200

250

Load Current (mA)

Ou

tp

ut Vo

ltag

e (V)

+90°C

+25°C

-45°C

V

R

 = 5.0V

V

IN

 = 6.0V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21991c-html.html
background image

© 2007 Microchip Technology Inc.

DS21991C-page 7

MCP1701A

Note: Unless otherwise indicated, V

OUT

 = 1.8V, 3.3V, 5.0V, T

A

 = +25°C, C

IN

 = 1 µF Tantalum, C

OUT

 = 1 µF Tantalum.

FIGURE 2-13:

Dropout Voltage vs. Load 

Current (V

R

 = 1.8V).

0

FIGURE 2-14:

Dropout Voltage vs. Load 

Current (V

R

 = 3.3V).

FIGURE 2-15:

Dropout Voltage vs. Load 

Current (V

R

 = 5.0V).

FIGURE 2-16:

Start-up From V

IN

 

(V

R

 = 1.8V).

FIGURE 2-17:

Start-up From V

IN

 

(V

R

 = 3.3V).

FIGURE 2-18:

Start-up From V

IN

 

(V

R

 = 5.0V).

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

20

40

60

80

100

Load Current (mA)

D

rop

o

u

t Vo

ltag

e (V)

+90°C

+25°C

-45°C

V

R

 = 1.8V

0.00

0.10

0.20

0.30

0.40

0.50

0

25

50

75

100

125

150

Load Current (mA)

D

ro

pou

t Vol

tag

e

 (V)

+90°C

+25°C

-45°C

V

R

 = 3.3V

0

0.1

0.2

0.3

0.4

0.5

0.6

0

50

100

150

200

250

Load Current (mA)

Dropo

ut Vo

lt

ag

e (V)

+90°C

+25°C

-45°C

V

R

 = 5.0V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21991c-html.html
background image

MCP1701A

DS21991C-page 8

© 2007 Microchip Technology Inc.

Note: Unless otherwise indicated, V

OUT

 = 1.8V, 3.3V, 5.0V, T

A

 = +25°C, C

IN

 = 1 µF Tantalum, C

OUT

 = 1 µF Tantalum.

FIGURE 2-19:

Load Regulation vs. 

Temperature (V

R

 = 1.8V).

FIGURE 2-20:

Load Regulation vs. 

Temperature (V

R

 = 3.3V).

FIGURE 2-21:

Load Regulation vs. 

Temperature (V

R

 = 5.0V).

FIGURE 2-22:

Line Regulation vs. 

Temperature (V

R

 = 1.8V).

FIGURE 2-23:

Line Regulation vs. 

Temperature (V

R

 = 3.3V).

FIGURE 2-24:

Line Regulation vs. 

Temperature (V

R

 = 5.0V).

-0.40

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

-45 -30 -15

0

15

30

45

60

75

90

Temperature (°C)

Loa

d

 R

egul

at

io

n

 (

%

)

V

IN

 = 12.0V

V

IN

 = 6.0V

V

IN

 = 8.0V

V

IN

 = 10.0V

            V

R

 = 1.8V

I

OUT

 = 1 to 30 mA

V

IN

 = 3.0V

-0.75

-0.70

-0.65

-0.60

-0.55

-0.50

-0.45

-0.40

-0.35

-45

-25

-5

15

35

55

75

Temperature (°C)

Lo

ad

 Reg

u

latio

n (%)

V

IN

 = 12.0V

V

IN

 = 8.0V

V

IN

 = 10.0V

            V

R

 = 3.3V

I

OUT

 = 1 to 80 mA

V

IN

 = 4.3V

-0.65

-0.60

-0.55

-0.50

-0.45

-0.40

-0.35

-0.30

-0.25

-0.20

-45

-25

-5

15

35

55

75

Temperature (°C)

Lo

ad

 Re

g

u

la

ti

on (%

)

V

IN

 = 12.0V

V

IN

 = 6.0V

V

IN

 = 8.0V

V

IN

 = 10.0V

            V

R

 = 5.0V

V

IN

 = 6.0V to 12V

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

-45 -30 -15

0

15

30

45

60

75

90

Temperature (°C)

Line

 R

e

g

u

lation

 (%/V)

I

OUT

 = 0 mA

I

OUT

 = 0.1 mA

I

OUT

 = 1.0 mA

I

OUT

 = 100 mA

I

OUT

 = 10 mA

            V

R

 = 1.8V

V

IN

 = 2.8V to 10V

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

-45 -30 -15

0

15

30

45

60

75

90

Temperature (°C)

Li

n

e

 Re

gula

ti

o

(%

/V)

I

OUT

 = 0 mA

I

OUT

 = 10 mA

I

OUT

 = 100 mA

I

OUT

 = 200 mA

            V

R

 = 3.3V

V

IN

 = 4.3V to 10V

I

OUT

 = 300 mA

0.06

0.08

0.10

0.12

0.14

0.16

0.18

-45 -30 -15

0

15

30

45

60

75

90

Temperature (°C)

Li

n

e

 Re

gula

ti

o

(%

/V)

I

OUT

 = 300 mA

I

OUT

 = 200 mA

I

OUT

 = 100 mA

I

OUT

 = 10 mA

I

OUT

 = 1 mA

I

OUT

 = 0 mA

            V

R

 = 5.0V

V

IN

 = 6.0V to 10V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21991c-html.html
background image

© 2007 Microchip Technology Inc.

DS21991C-page 9

MCP1701A

3.0

PIN DESCRIPTIONS

The descriptions of the pins are listed in 

Table 3-1

.

TABLE 3-1:

PIN FUNCTION TABLE

3.1

Ground Terminal (GND)

Regulator ground. Tie GND to the negative side of the
output and the negative side of the input capacitor.
Only the LDO bias current (2 µA, typ.) flows out of this
pin, there is no high current. The LDO output regulation
is referenced to this pin. Minimize voltage drops
between this pin and the negative side of the load.

3.2

Regulated Voltage Output (V

OUT

)

Connect V

OUT

 to the positive side of the load and the

positive terminal of the output capacitor. The positive
side of the output capacitor should be physically
located as close as possible to the LDO V

OUT

 pin. The

current flowing out of this pin is equal to the DC load
current.

3.3

Unregulated Supply Input (V

IN

)

Connect the input supply voltage and the positive side
of the input capacitor to V

IN

. Like all low-dropout linear

regulators, low source impedance is necessary for the
stable operation of the LDO. The amount of
capacitance required to ensure low source impedance
will depend on the proximity of the input source
capacitors or battery type. The input capacitor should
be physically located as close as possible to the V

IN

pin. For most applications, 1 µF of capacitance will
ensure stable operation of the LDO circuit. For
applications that have load currents below 100 mA, the
input capacitance requirement can be lowered. The
type of capacitor used can be ceramic, tantalum or
aluminum electrolytic. The low equivalent series
resistance characteristics of the ceramic will yield
better noise and PSRR performance at high frequency.
The current flow into this pin is equal to the DC load
current, plus the LDO bias current (2 µA, typical).

Pin No.

SOT-23A

Pin No.
SOT-89

Pin No.

TO-92

Name

Function

1

1

1

GND

Ground Terminal

2

3

3

V

OUT

Regulated Voltage Output

3

2

2

V

IN

Unregulated Supply Input

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21991c-html.html
background image

MCP1701A

DS21991C-page 10

© 2007 Microchip Technology Inc.

4.0

DETAILED DESCRIPTION

The MCP1701A is a low-quiescent current, precision,
fixed-output voltage LDO. Unlike bipolar regulators,
the MCP1701A supply current does not increase
proportionally with load current.

4.1

Output Capacitor

A minimum of 1 µF output capacitor is required. The
output capacitor should have an ESR greater than
0.1

Ω and less than 5Ω, plus a resonant frequency

above 1 MHz. Larger output capacitors can be used to
improve supply noise rejection and transient response.
Care should be taken when increasing C

OUT

 to ensure

that the input impedance is not high enough to cause
high input impedance oscillation.

4.2

Input Capacitor

A 1 µF input capacitor is recommended for most
applications when the input impedance is on the order
of 10

Ω. Larger input capacitance may be required for

stability when operating from a battery input, or if there
is a large distance from the input source to the LDO.
When large values of output capacitance are used, the
input capacitance should be increased to prevent high
source impedance oscillations.

4.3

Overcurrent

The MCP1701 internal circuitry monitors the amount of
current flowing through the P-channel pass transistor.
In the event of a short circuit or excessive output
current, the MCP1701 will act to limit the output current.

FIGURE 4-1:

MCP1701A Block Diagram.

V

IN

V

OUT

GND

Short Circuit

Protection

Voltage

Reference

+

Maker
Microchip Technology Inc.
Datasheet PDF Download