2A Synchronous Buck Power MOSFET Driver

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22083a-html.html
background image

© 2008 Microchip Technology Inc.

DS22083A-page 1

MCP14628

Features

• Dual Output MOSFET Driver for Synchronous 

Applications

• High Peak Output Current: 2A (typical)

• Adaptive Cross Conduction Protection

• Internal Bootstrap Blocking Device

• +36V BOOT Pin Maximum Rating

• Enhanced Light Load Efficiency Mode

• Low Supply Current: 80 µA (typical)

• High Capacitive Load Drive Capability:

- 3300 pF in 10 ns (typical)

• Tri-State PWM Pin for Power Stage Shutdown

• Input Voltage Undervoltage Lockout Protection

• Space Saving Packages:

- 8-Lead SOIC

- 8-Lead 3x3 DFN

Applications

• High Efficient Synchronous DC/DC Buck 

Converters

• High Current Low Output Voltage Synchronous 

DC/DC Buck Converters

• High Input Voltage Synchronous DC/DC Buck 

Converters

• Core Voltage Supplies for Microprocessors

General Description

The MCP14628 is a dual MOSFET gate driver
designed to optimally drive two N-Channel MOSFETs
arranged in a non-isolated synchronous buck converter
topology. With the capability to source 2A peaks
typically from both the high-side and low-side drives,
the MCP14628 is an ideal companion to buck control-
lers that lack integrated gate drivers. Additionally,
greater design flexibility is offered by allowing the gate
drivers to be placed close to the power MOSFETs.

The MCP14628 features the capability to sink 3.5A
peak typically for the low-side gate drive. This allows
the MCP14628 the capability of holding off the low-side
power MOSFET during the rising edge of the PHASE
node. Internal adaptive cross conduction protection
circuitry is also used to mitigate both external power
MOSFETs from simultaneously conducting.

The low resistance pull-up and pull-down drives allow
the MCP14628 to quickly transition a 3300 pF load in
typically 10 ns and with a propagation time of typically
20 ns. Bootstrapping for the high-side drive is internally
implemented which allows for a reduced system cost
and design complexity.

The PWM input to the MCP14628 can be tri-stated to
force both drive outputs low for true power stage
shutdown. Light load system efficiency is improved by
using the diode emulation feature of the MCP14628.
When the FCCM pin is grounded, diode emulation
mode is entered. In this mode, discontinuous conduc-
tion is allowed by sensing when the inductor current
reach zero and turning off the low-side power
MOSFET.

Package Types

1

2

3

4

8

7

6

5

HIGHDR

BOOT

PWM

GND

LOWDR

V

CC

FCCM

PHASE

8-Lead SOIC

1

2

3

4

8

7

6

5

HIGHDR

BOOT

PWM

GND

LOWDR

V

CC

FCCM

PHASE

8-Lead DFN

Note 1: Exposed pad on the DFN is electrically isolated.

2A Synchronous Buck Power MOSFET Driver

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22083a-html.html
background image

MCP14628

DS22083A-page 2

© 2008 Microchip Technology Inc.

Typical Application Schematic

Functional Block Diagram

UGATE

LGATE

PHASE

GND

BOOT

V

CC

FCCM

PWM

C

BOOT

FB

V

REF

COMP

GND

VEXT

V

CC

CS

OSC IN

MCP1630

MCP14628

REFERENCE VOLTAGE

V

SUPPLY

 = 12V

V

CC

 = 5V

OSCILLATOR

FROM MCU

CURRENT
SENSE

CURRENT
SENSE

Q

H

Q

L

FCCM
CONTROL

BOOT

HIGHDR

PHASE

LOWDR

V

CC

FCCM

PWM

GND

V

CC

R

R

Level

Shift

Control

Logic &

Protection

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22083a-html.html
background image

© 2008 Microchip Technology Inc.

DS22083A-page 3

MCP14628

1.0

ELECTRICAL 
CHARACTERISTICS

Absolute Maximum Ratings †

V

CC

, Device Supply Voltage............................. -0.3V to +7.0V

V

BOOT

, BOOT Voltage.................................... -0.3V to +36.0V

V

PHASE

, Phase Voltage........... V

BOOT

- 7.0V to V

BOOT

+ 0.3V

V

FCCM

, FCCM Voltage ........................... -0.3V to V

CC

+ .0.3V

V

PWM

, PWM Voltage ............................... -0.3V to V

CC

+ 0.3V

V

UGATE

, UGATE Voltage ....... V

PHASE

- 0.3V to V

BOOT

+ 0.3V

V

LGATE

, LGATE Voltage .......................... -0.3V to V

CC

+ 0.3V

ESD Protection on all Pins ....................................2 kV (HBM)

†  Notice: Stresses above those listed under "Maximum
Ratings" may cause permanent damage to the device. This is
a stress rating only and functional operation of the device at
those or any other conditions above those indicated in the
operational sections of this specification is not intended.
Exposure to maximum rating conditions for extended periods
may affect device reliability.

DC CHARACTERISTICS

Electrical Specifications: Unless otherwise noted, V

CC

= 5V,  T

J

= -40°C to +125°C

Parameters

Sym

Min

Typ

Max

Units

Conditions

V

CC 

Supply Requirements

Recommended Operating Range

V

CC

4.5

5.0

5.5

V

Bias Supply Voltage

I

VCC

80

µA

PWM pin floating, 
V

FCCM

= 5V

UVLO (Rising V

CC

)

3.40

3.90

V

UVLO (Falling V

CC

)

2.40

2.90

V

Hysteresis

500

mV

PWM Input Requirements

PWM Input Current

I

PWM

250

µA

V

PWM

= 5V

-250

µA

V

PWM

= 0V

PWM Rising Threshold

0.70

1.00

1.30

V

PWM Falling Threshold

3.50

3.80

4.10

V

Tri-State Shutdown Hold-off Time

t

TSSHD

100

175

250

ns

T

A

= +25°C, Note 2

FCCM input Requirements

FCCM Low Threshold

0.50

V

FCCM High Threshold

2.0

V

Output Requirements

High Drive Source Resistance

1.0

2.5

Ω

500 mA source current, 
Note 1

High Drive Sink Resistance

1.0

2.5

Ω

500 mA sink current, 
Note 1

High Drive Source Current

2.0

A

Note 1

High Drive Sink Current

2.0

A

Note 1

Low Drive Source Resistance

1

2.5

Ω

500 mA source current, 
Note 1

Low Drive Sink Resistance

0.5

1.0

Ω

500 mA sink current, 
Note 1

Low Drive Source Current

2.0

A

Note 1

Low Drive Sink Current

3.5

A

Note 1

Note 1:

Parameter ensured by design, not production tested.

2:

See 

Figure 4-1

 for parameter definition.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22083a-html.html
background image

MCP14628

DS22083A-page 4

© 2008 Microchip Technology Inc.

TEMPERATURE CHARACTERISTICS

Switching Times

HIGHDR Rise Time

t

RH

10

ns

C

L

= 3.3nF,

Note 1Note 2

LOWDR Rise Time

t

RL

10

ns

C

L

= 3.3nF, 

Note 1, Note 2

HIGHDR Fall Time

t

FH

10

ns

C

L

= 3.3nF,

Note 1, Note 2

LOWDR Fall Time

t

FL

6.0

ns

C

L

= 3.3nF,

Note 1, Note 2

HIGHDR Turn-off Propagation 
Delay

t

PDLH

15

ns

No Load, Note 2

LOWDR Turn-off Propagation 
Delay

t

PDLL

16

ns

No Load, Note 2

HIGHDR Turn-on Propagation 
Delay

t

PDHH

10

18

30

ns

No Load, Note 2

LOWDR Turn-on Propagation 
Delay

t

PDHL

10

22

30

ns

No Load, Note 2

Tri-State Propagation Delay

t

PTS

35

ns

No Load, Note 2

Minimum LOWDR On Time in DCM

t

LGMIN

400

ns

FCCM pin low Note 1

Electrical Specifications: Unless otherwise noted, all parameters apply with V

CC

 = 5V.

Parameter

Sym

Min

Typ

Max

Units

Comments

Temperature Ranges

Specified Temperature Range

T

A

-40

+85

°C

Maximum Junction Temperature

T

J

+150

°C

Storage Temperature

T

A

-65

+150

°C

Package Thermal Resistances

Thermal Resistance, 8L-SOIC

θ

JA

149.5

°C/W

Thermal Resistance, 8L-DFN (3x3)

θ

JA

60.0

°C/W

Typical Four-layer board 
with vias to ground plane

DC CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise noted, V

CC

= 5V,  T

J

= -40°C to +125°C

Parameters

Sym

Min

Typ

Max

Units

Conditions

Note 1:

Parameter ensured by design, not production tested.

2:

See 

Figure 4-1

 for parameter definition.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22083a-html.html
background image

© 2008 Microchip Technology Inc.

DS22083A-page 5

MCP14628

2.0

TYPICAL PERFORMANCE CURVES

Note: Unless otherwise indicated, T

A

 = +25°C with V

CC

 = 5.0V.

FIGURE 2-1:

Rise Times vs. Capacitive 

Load.

FIGURE 2-2:

HIGHDR Rise and Fall Time 

vs. Temperature.

FIGURE 2-3:

HIGHDR Propagation Delay 

vs. Temperature.

FIGURE 2-4:

Fall Times vs. Capacitive 

Load.

FIGURE 2-5:

LOWDR Rise and Fall Time 

vs. Temperature.

FIGURE 2-6:

LOWDR Propagation Delay 

vs. Temperature.

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein are
not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

0

5

10

15

20

25

0

1500

3000

4500

6000

7500

Capacitive Load (pF)

Ri

se Ti

m

e

 (ns

)

t

RH

t

RL

6

7

8

9

10

11

12

13

14

-40 -25 -10

5

20

35

50

65

80

95 110 125

Temperature (°C)

Time (

n

s)

t

RH

t

FH

C

LOAD

 = 3,300 pF

10

12

14

16

18

20

22

24

-40 -25 -10

5

20

35

50

65

80

95 110 125

Temperature (°C)

P

ropagation Delay (ns)

t

PDHH

t

PDLH

C

LOAD

 = 3,300 pF

0

5

10

15

20

25

0

1500

3000

4500

6000

7500

Capacitive Load (pF)

Fall Time (ns)

t

FH

t

FL

4

5

6

7

8

9

10

11

12

-40 -25 -10

5

20

35

50

65

80

95 110 125

Temperature (°C)

Time (

n

s)

t

RL

t

FL

C

LOAD

 = 3,300 pF

12

14

16

18

20

22

24

26

28

30

-40 -25 -10

5

20

35

50

65

80

95 110 125

Temperature (°C)

Time (

n

s)

t

PDHL

t

PDLL

C

LOAD

 = 3,300 pF

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22083a-html.html
background image

MCP14628

DS22083A-page 6

© 2008 Microchip Technology Inc.

Typical Performance Curves (Continued)

Note: Unless otherwise indicated, T

A

 = +25°C with V

CC

 = 5.0V.

FIGURE 2-7:

Supply Current vs. 

Frequency.

FIGURE 2-8:

DCM to CCM Transition 

Operation.

FIGURE 2-9:

Load Transition

(0.5A - 15A).

FIGURE 2-10:

Supply Current vs. 

Temperature.

FIGURE 2-11:

CCM to DCM Transition 

Operation.

FIGURE 2-12:

Load Transition

(15A - 0.5A).

0

10

20

30

40

50

60

70

100

1000

10000

Frequency (kHz)

S

upply Current

 (mA)

C

LOAD

 = 3,300 pF

Duty Cycle = 30%

580

600

620

640

660

680

700

-40 -25 -10

5

20

35

50

65

80

95

110 125

Temperature (°C)

Supp

ly Curre

nt

 (

µ

A)

C

LOAD

 = 3,300 pF

F

SW

 = 12.5 kHz

Duty Cycle = 30%

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22083a-html.html
background image

© 2008 Microchip Technology Inc.

DS22083A-page 7

MCP14628

Typical Performance Curves (Continued)

Note: Unless otherwise indicated, T

A

 = +25°C with V

CC

 = 5.0V.

FIGURE 2-13:

HIGHDR and LOWDR 

Operation.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22083a-html.html
background image

MCP14628

DS22083A-page 8

© 2008 Microchip Technology Inc.

3.0

PIN DESCRIPTIONS

The descriptions of the pins are listed in 

Table 3-1

.

TABLE 3-1:

PIN FUNCTION TABLE .

3.1

High-side Gate Driver Pin 
(HIGHDR)

The HIGHDR pin provides the gate drive signal to
control the high-side power MOSFET. The gate of the
high-side power MOSFET is connected to this pin.

3.2

Floating Bootstrap Supply Pin 
(BOOT)

The BOOT pin is the floating bootstrap supply pin for
the high-side gate drive. A capacitor is connected
between this pin and the PHASE pin to provide the
necessary charge to turn on the high-side power MOS-
FET.

3.3

PWM Input Control Pin (PWM)

The control input signal is supplied to the PWM pin.
This tri-state pin controls the state of the HIGHDR and
LOWDR pins. Placing a voltage equal to V

CC

/2 on this

pin causes both the HIGHDR and LOWDR to a low
state.

3.4

Ground Pin (GND)

The GND pin provides ground for the MCP14628 cir-
cuitry. It should have a low impedance connection to
the bias supply source return. High peak currents will
flow out the GND pin when the low-side power
MOSFET is being turned off.

3.5

Low-side Gate Driver Pin 
(LOWDR)

The LOWDR pin provides the gate drive signal to
control the low-side power MOSFET. The gate of the
low-side power MOSFET is connected to this pin.

3.6

Supply Input Voltage Pin (V

CC

)

The V

CC

 pin provides bias to the MCP14628. A bypass

capacitor is to be placed between this pin and the GND
pin. This capacitor should be placed as close to the
MCP14628 as possible.

3.7

Forced Continuous Conduction 
Mode Pin (FCCM)

The FCCM pin enables or disables the forced
continuous conduction mode. With the FCCM pin con-
nected to ground the MCP14628 enters a diode emula-
tion mode to improve system efficiency at light loads.
Continuous conduction is forced if the FCCM pin is
connected to V

CC

.

3.8

Switch Node Pin (PHASE)

The PHASE pin provides the return path for the high-
side gate driver. The source of the high-side power
MOSFET is connected to this pin.

3.9

DFN Exposed Pad

The exposed metal pad of the DFN package is not
internally connected to any potential. Therefore, this
pad can be connected to a ground plane or other
copper plane on a printed circuit board to aid in heat
removal from the package.

SOIC

3x3 DFN

Symbol

Description

1

1

HIGHDR

High-side Gate Driver Pin

2

2

BOOT

Floating Bootstrap Supply Pin

3

3

PWM

PWM Input Control Pin

4

4

GND

Ground

5

5

LOWDR

Low-side Gate Driver Pin

6

6

V

CC

Supply Input Voltage

7

7

FCCM

Forced Continuous Conduction Mode Pin

8

8

PHASE

Switch Node Pin

PAD

NC

Exposed Metal Pad

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22083a-html.html
background image

© 2008 Microchip Technology Inc.

DS22083A-page 9

MCP14628

4.0

DETAILED DESCRIPTION

4.1

Device Overview

The MCP14628 is a dual MOSFET gate driver
designed to optimally drive both high-side and low-side
N-channel MOSFETs arranged in a non-isolated
synchronous buck converter topology.

The MCP14628 is capable of suppling 2A (typical)
peak current to the floating high-side power MOSFET
that is connected to the HIGHDR pin. With the excep-
tion of a capacitor, all of the circuitry needed to drive
this high-side N-channel MOSFET is internal to the
MCP14628. A blocking device is placed between the
V

CC

 and BOOT pins that allows the bootstrap capacitor

to be charged to V

CC

 when the low-side power MOS-

FET is conducting. Refer to Section 5.1, for informa-
tion on determining the proper size of the bootstrap
capacitor. The HIGHDR is also capable of sinking 2A
(typical) peak current.

The LOWDR is capable of sourcing 2A (typical) peak
current and sinking 3.5A (typical) peak current. This
helps ensure that the low-side power MOSFET stays
turned off during the high dv/dt of the PHASE node.

4.2

Adaptive Cross-Conduction 
Protection 

The MCP14628 prevents cross-conduction power loss
by adaptively ensuring that the high-side and low-side
power MOSFETs are not conducting simultaneously.
When the PWM signal goes low, the HIGHDR is pulled
low and the LOWDR signal is held low until the
HIGHDR reach 1V (typically). At that time, the LOWDR
is allowed to turn on.

4.3

FCCM Mode

The MCP14628 features a diode emulation mode to
enhance the light load system efficiency. The FCCM
pin enables or disables the diode emulating mode. With
the FCCM pin grounded, diode emulation mode is
entered. The forced continuous conduction mode is
entered when the FCCM pin is connected to V

CC

.

In diode emulation mode, the MCP14628 turns off the
low-side power MOSFET when the inductor current
reaches approximately zero even if the PWM input sig-
nal is still low. The LOWDR and HIGHDR both stay low
until the next switching cycle begins. To prevent false
termination of the LOWDR signal, there is a 400 ns
minimum on time, t

LGMIN

, of the LOWDR. This also

ensures that the bootstrap capacitor is fully charged.

In forced continuous conduction mode, the LOWDR of
the MCP14628 does not terminate until the PWM input
signal transitions from a low to a high.

4.4

Tri-State PWM

The PWM input pin of the MCP14628 controls the high
current LOWDR and HIGHDR drive signals. These
signals have three distinct operating modes depending
upon the state of the PWM input signal.

A logic low on the PWM pin cause the LOWDR drive
signal to be high and the HIGHDR drive signal to be
low. When the PWM signal transitions to a logic high,
the LOWDR signal goes low and the HIGHDR signal go
high. To ensure proper operation the PWM input signal
should be capable of a logic low of 0V and a logic high
of 5V.

The third operating mode of the drive signals occurs
when the PWM signal is set to a value equal to V

CC

/2

(typically). When the PWM signal dwells at this voltage
for 175 ns (typically) the MCP14628 disables both
LOWDR and HIGHDR drive signals. Both drive signals
are pulled and held low. Once the PWM signal moves
beyond V

CC

/2, the MCP14628 removes the shutdown

state of the drive signals.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22083a-html.html
background image

MCP14628

DS22083A-page 10

© 2008 Microchip Technology Inc.

4.5

Timing Diagram

The PWM signal applied to the MCP14628 is suppled
by a controller IC that regulates the power supply
output. The timing diagram in 

Figure 4-1

 graphically

depicts the PWM signal and the output signals of the
MCP14628.

FIGURE 4-1:

MCP14628 Timing Diagram.

PWM

HIGHDR

LOWDR

t

PDLL

t

FL

t

PDHH

t

RH

t

PDLH

t

FH

t

RL

t

PDHL

1V

1

V

PWM

HIGHDR

LOWDR

V

CC

/2

t

PTS

t

TSSHD

t

RH

t

PTS

t

FH

t

FL

t

TSSHD

1V

V

CC

0V

V

CC

Maker
Microchip Technology Inc.
Datasheet PDF Download