250 mA, 16V, Low Quiescent Current LDO Regulator

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22049f-html.html
background image

© 2011 Microchip Technology Inc.

DS22049F-page 1

MCP1703

Features:

• 2.0 µA Typical Quiescent Current

• Input Operating Voltage Range: 2.7V to16.0V

• 250 mA Output Current for Output Voltages 

≥ 2.5V

• 200 mA Output Current for Output Voltages < 2.5V

• Low Dropout Voltage, 625 mV typical @ 250 mA 

for V

R

 = 2.8V

• 0.4% Typical Output Voltage Tolerance

• Standard Output Voltage Options:

- 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 4.0V, 

5.0V

• Output Voltage Range: 1.2V to 5.5V in 0.1V  

Increments (50 mV increments available upon 
request)

• Stable with 1.0 µF to 22 µF Ceramic Output 

Capacitance

• Short-Circuit Protection

• Overtemperature Protection

Applications:

• Battery-Powered Devices

• Battery-Powered Alarm Circuits

• Smoke Detectors

• CO

2

 Detectors

• Pagers and Cellular Phones

• Smart Battery Packs

• Low Quiescent Current Voltage Reference

• PDAs

• Digital  Cameras

• Microcontroller Power

• Solar-Powered Instruments

• Consumer Products

• Battery-Powered Data Loggers

Related Literature:

• AN765, “Using Microchip’s Micropower LDOs”, 

DS00765, Microchip Technology Inc., 2002

• AN766, “Pin-Compatible CMOS Upgrades to 

Bipolar LDOs”, DS00766, 
Microchip Technology Inc., 2002

• AN792, “A Method to Determine How Much 

Power a SOT23 Can Dissipate in an Application”, 
DS00792, Microchip Technology Inc., 2001

Description:

The MCP1703 is a family of CMOS low dropout (LDO)
voltage regulators that can deliver up to 250 mA of
current while consuming only 2.0 µA of quiescent
current (typical). The input operating range is specified
from 2.7V to 16.0V, making it an ideal choice for two to
six primary cell battery-powered applications, 9V
alkaline and one or two cell Li-Ion-powered
applications.

The MCP1703 is capable of delivering 250 mA with
only 625 mV (typical) of input to output voltage
differential (V

OUT

= 2.8V). The output voltage tolerance

of the MCP1703 is typically ±0.4% at +25°C and ±3%
maximum over the operating junction temperature
range of -40°C to +125°C. Line regulation is ±0.1%
typical at +25°C.

Output voltages available for the MCP1703 range from
1.2V to 5.5V. The LDO output is stable when using only
1 µF of output capacitance. Ceramic, tantalum, or
aluminum electrolytic capacitors can all be used for
input and output. Overcurrent limit and overtemperature
shutdown provide a robust solution for any application.
Package options include the SOT-223-3, SOT-23A,
2x3 DFN-8, and SOT-89-3.

Package Types

1

3

2

V

IN

GND V

OUT

1

2

3

V

IN

GND

V

OUT

3-Pin SOT-23A

3-Pin SOT-89

V

IN

1

2

3

SOT-223-3

GND

V

IN

V

OUT

NC

NC

GND

NC

NC

1

2

3

4

8

7

6

5 NC

V

OUT

EP

9

* Includes Exposed Thermal Pad (EP); see 

Table 3-1

.

V

IN

2x3 DFN-8 *

250 mA, 16V, Low Quiescent Current LDO Regulator

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22049f-html.html
background image

MCP1703

DS22049F-page 2

© 2011 Microchip Technology Inc.

Functional Block Diagrams

Typical Application Circuits

+

-

MCP1703

V

IN

V

OUT

GND

+V

IN

Error Amplifier

  Voltage
Reference

    Overcurrent
Overtemperature

MCP1703

V

IN

C

IN

1 µF  Ceramic

C

OUT

1 µF  Ceramic

V

OUT

V

IN

3.3V

I

OUT

50 mA

V

IN

V

OUT

9V

Battery

+

GND

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22049f-html.html
background image

© 2011 Microchip Technology Inc.

DS22049F-page 3

MCP1703

1.0

ELECTRICAL 
CHARACTERISTICS

Absolute Maximum Ratings †

V

DD

..................................................................................+18V

All inputs and outputs w.r.t.  .............(V

SS

-0.3V) to (V

IN

+0.3V)

Peak Output Current ...................................................500 mA

Storage temperature .....................................-65°C to +150°C

Maximum Junction Temperature ................................. +150°C

ESD protection on all pins (HBM;MM)

............... ≥ 4 kV; ≥ 400V

† Notice: Stresses above those listed under “Maximum
Ratings” may cause permanent damage to the device. This is
a stress rating only and functional operation of the device at
those or any other conditions above those indicated in the
operational listings of this specification is not implied.
Exposure to maximum rating conditions for extended periods
may affect device reliability.

DC CHARACTERISTICS

Electrical Specifications: Unless otherwise specified, all limits are established for V

IN

 = V

OUT(MAX)

 + V

DROPOUT(MAX)

Note 1

I

LOAD

 = 100 µA, C

OUT

 = 1 µF (X7R), C

IN

 = 1 µF (X7R), T

A

 = +25°C. 

Boldface type applies for junction temperatures, T

(

Note 7

) of -40°C to +125°C.

Parameters

Symbol

Min

Typ

Max

Units

Conditions

Input / Output Characteristics

Input Operating Voltage

V

IN

2.7

16.0

V

Note 1

Input Quiescent Current

I

q

2.0

5

µA

I

L

 = 0 mA

Maximum Output Current

I

OUT_mA

250

mA

For V

R

 

≥ 2.5V 

50

100

mA

For V

R

 < 2.5V, V

IN

 

≥ 2.7V

100

130

mA

For V

R

 < 2.5V, V

IN

 

≥ 2.95V

150

200

mA

For V

R

 < 2.5V, V

IN

 

≥ 3.2V

200

250

mA

For V

R

 < 2.5V, V

IN

 

≥ 3.45V

Output Short Circuit Current

I

OUT_SC

400

mA

V

IN

 = V

IN(MIN)

 (

Note 1

), V

OUT

 = GND,

Current (average current) measured 
10 ms after short is applied.

Output Voltage Regulation

V

OUT

V

R

-3.0% V

R

±0.4%

V

R

+3.0%

V

Note 2

V

R

-2.0%

V

R

±0.4%

V

R

+2.0%

V

V

R

-1.0%

V

R

±0.4%

V

R

+1.0%

V

1% Custom

V

OUT

 Temperature Coefficient

TCV

OUT

50

ppm/°C

Note 3

Line Regulation

ΔV

OUT

/

(V

OUT

X

ΔV

IN

)

-0.3

±0.1

+0.3

%/V

(V

OUT(MAX)

 + V

DROPOUT(MAX)

)  

≤ V

IN

  

≤ 16V, 

Note 1

Load Regulation

Δ

V

OUT

/V

OUT

-2.5

±1.0

+2.5

%

I

L

 = 1.0 mA to 250 mA for V

R

 >= 2.5V

I

L

 = 1.0 mA to 200 mA for V

R

 < 2.5V

V

IN

 = 3.65V, 

Note 4

Note 1:

The minimum V

IN

 must meet two conditions: V

IN

 ≥ 2.7V and V

IN

 

 ≥ (V

OUT(MAX)

 + V

DROPOUT(MAX)

).

2:

V

R

 is the nominal regulator output voltage. For example: V

R

 = 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 4.0V, or 5.0V. 

The input voltage V

IN

 = V

OUT(MAX)

 + V

DROPOUT(MAX)

 or Vi

IN

 = 2.7V (whichever is greater); I

OUT

 = 100 µA.

3:

TCV

OUT

 = (V

OUT-HIGH

 - V

OUT-LOW

) *10

6

 / (V

R

 * 

ΔTemperature), V

OUT-HIGH

 = highest voltage measured over the 

temperature range. V

OUT-LOW

 = lowest voltage measured over the temperature range.

4:

Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output 
voltage due to heating effects are determined using thermal regulation specification TCV

OUT

.

5:

Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured 
value with an applied input voltage of V

OUT(MAX)

 + V

DROPOUT(MAX)

 or 2.7V, whichever is greater.

6:

The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction     
temperature and the thermal resistance from junction to air (i.e., T

A

, T

J

θ

JA

). Exceeding the maximum allowable power 

dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained    
junction temperatures above 150°C can impact the device reliability.

7:

The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the 
desired junction temperature. The test time is small enough such that the rise in the junction temperature over the 
ambient temperature is not significant.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22049f-html.html
background image

MCP1703

DS22049F-page 4

© 2011 Microchip Technology Inc.

TEMPERATURE SPECIFICATIONS

(

1

)

 

Dropout Voltage

Note 1

Note 5

V

DROPOUT

330

650

mV

I

L

 = 250 mA, V

R

 = 5.0V

525

725

mV

I

L

 = 250 mA, 3.3V  

≤ V

R

 < 5.0V

625

975

mV

I

L

 = 250 mA, 2.8V  

≤ V

R

 < 3.3V

750

1100

mV

I

L

 = 250 mA, 2.5V 

≤ V

R

 < 2.8V

mV

V

R

 < 2.5V, See Maximum Output 

Current Parameter

Output Delay Time

T

DELAY

1000

µs

V

IN

 = 0V to 6V, V

OUT

 = 90% V

R

,

 R

L

 = 50

Ω resistive

Output Noise

e

N

8

µV/(Hz)

1/2

I

L

 = 50 mA, f = 1 kHz, C

OUT

 = 1 µF

Power Supply Ripple 
Rejection Ratio

PSRR

44

dB

f = 100 Hz, C

OUT

 = 1 µF, I

L

 = 100 µA, 

V

INAC

 = 100 mV pk-pk, C

IN

 = 0 µF, 

V

R

= 1.2V

Thermal Shutdown Protection

T

SD

150

°C

Parameters

Sym

Min

Typ

Max

Units

Conditions

Temperature Ranges

Operating Junction Temperature Range

T

J

-40

+125

°C

Steady State

Maximum Junction Temperature

T

J

+150

°C

Transient

Storage Temperature Range

T

A

-65

+150

°C

Thermal Package Resistance (

Note 2

)

Thermal Resistance, 3LD SOT-223

θ

JA

θ

JC


62
15


°C/W

EIA/JEDEC JESD51-7
FR-4 0.063   4-Layer Board

Thermal Resistance, 3LD SOT-23A

θ

JA

θ

JC


336

110


°C/W

EIA/JEDEC JESD51-7
FR-4 0.063   4-Layer Board

Thermal Resistance, 3LD SOT-89

θ

JA

θ

JC


153,3

100


°C/W

EIA/JEDEC JESD51-7
FR-4 0.063   4-Layer Board

Thermal Resistance, 8LD 2x3 DFN

θ

JA

θ

JC


93
26


°C/W

EIA/JEDEC JESD51-7
FR-4 0.063   4-Layer Board

Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction

temperature and the thermal resistance from junction to air (i.e., T

A

, T

J

θ

JA

). Exceeding the maximum allowable power

dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained
junction temperatures above 150°C can impact the device reliability.

2: Thermal Resistance values are subject to change. Please visit the Microchip web site for the latest packaging

information.

DC CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise specified, all limits are established for V

IN

 = V

OUT(MAX)

 + V

DROPOUT(MAX)

Note 1

I

LOAD

 = 100 µA, C

OUT

 = 1 µF (X7R), C

IN

 = 1 µF (X7R), T

A

 = +25°C. 

Boldface type applies for junction temperatures, T

(

Note 7

) of -40°C to +125°C.

Parameters

Symbol

Min

Typ

Max

Units

Conditions

Note 1:

The minimum V

IN

 must meet two conditions: V

IN

 ≥ 2.7V and V

IN

 

 ≥ (V

OUT(MAX)

 + V

DROPOUT(MAX)

).

2:

V

R

 is the nominal regulator output voltage. For example: V

R

 = 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 4.0V, or 5.0V. 

The input voltage V

IN

 = V

OUT(MAX)

 + V

DROPOUT(MAX)

 or Vi

IN

 = 2.7V (whichever is greater); I

OUT

 = 100 µA.

3:

TCV

OUT

 = (V

OUT-HIGH

 - V

OUT-LOW

) *10

6

 / (V

R

 * 

ΔTemperature), V

OUT-HIGH

 = highest voltage measured over the 

temperature range. V

OUT-LOW

 = lowest voltage measured over the temperature range.

4:

Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output 
voltage due to heating effects are determined using thermal regulation specification TCV

OUT

.

5:

Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured 
value with an applied input voltage of V

OUT(MAX)

 + V

DROPOUT(MAX)

 or 2.7V, whichever is greater.

6:

The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction     
temperature and the thermal resistance from junction to air (i.e., T

A

, T

J

θ

JA

). Exceeding the maximum allowable power 

dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained    
junction temperatures above 150°C can impact the device reliability.

7:

The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the 
desired junction temperature. The test time is small enough such that the rise in the junction temperature over the 
ambient temperature is not significant.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22049f-html.html
background image

© 2011 Microchip Technology Inc.

DS22049F-page 5

MCP1703

2.0

TYPICAL PERFORMANCE CURVES

Note: Unless otherwise indicated: V

R

 = 1.8V, C

OUT

 = 1 µF Ceramic (X7R), C

IN

 = 1 µF Ceramic (X7R), I

L

 = 100 µA,

T

A

 = +25°C, V

IN

 = V

OUT(MAX)

 + V

DROPOUT(MAX)

 or 2.7V, whichever is greater.

Note: Junction Temperature (T

J

) is approximated by soaking the device under test to an ambient temperature equal to the desired junction

temperature. The test time is small enough such that the rise in Junction temperature over the Ambient temperature is not significant.

FIGURE 2-1:

Quiescent Current vs. Input 

Voltage.

FIGURE 2-2:

Quiescent Current vs. Input 

Voltage.

FIGURE 2-3:

Quiescent Current vs. Input 

Voltage.

FIGURE 2-4:

Ground Current vs. Load 

Current.

FIGURE 2-5:

Ground Current vs. Load 

Current.

FIGURE 2-6:

Quiescent Current vs. 

Junction Temperature.

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

2

4

6

8

10

12

14

16

18

Input Voltage (V)

Qu

ie

sc

e

n

t Cu

rre

n

t (

µ

A)

V

OUT

 = 1.2V

I

OUT

 = 0 µA

+25°C

+130°C

-45°C

0°C

+90°C

0.00

1.00

2.00

3.00

4.00

5.00

6.00

2

4

6

8

10

12

14

16

18

Input Voltage (V)

Quie

s

c

ent C

u

rr

en

t (µA)

V

OUT

 = 2.5V

I

OUT

 = 0 µA

+25°C

+130°C

-45°C

0°C

+90°C

1.00

2.00

3.00

4.00

5.00

6.00

6

8

10

12

14

16

18

Input Voltage (V)

Q

u

iesc

en

t C

u

rr

ent

 (

µ

A

)

V

OUT

 = 5.0V

I

OUT

 = 0 µA

+25°C

+130°C

-45°C

0°C

+90°C

0

20

40

60

80

100

120

0

40

80

120

160

200

Load Current (mA)

GND Cu

rre

n

t (µ

A

)

V

OUT

 = 1.2V

V

IN

 = 2.7V

0

20

40

60

80

100

120

0

50

100

150

200

250

Load Current (mA)

GND

 Cu

rre

n

t (µ

A)

V

OUT

 = 5.0V

V

IN

 = 6.0V

V

OUT

 = 2.5V

V

IN

 = 3.5V

0.00

0.50

1.00

1.50

2.00

2.50

3.00

-45

-20

5

30

55

80

105

130

Junction Temperature (°C)

Q

u

ie

sc

ent

 C

u

rr

e

n

t (

µ

A

)

I

OUT

 = 0 mA

V

OUT

 = 5.0V

V

IN

 = 6.0V

V

OUT

 = 1.2V

V

IN

 = 2.7V

V

OUT

 = 2.5V

V

IN

 = 3.5V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22049f-html.html
background image

MCP1703

DS22049F-page 6

© 2011 Microchip Technology Inc.

Note: Unless otherwise indicated: V

R

 = 1.8V, C

OUT

 = 1 µF Ceramic (X7R), C

IN

 = 1 µF Ceramic (X7R), I

L

 = 100 µA,

T

A

 = +25°C, V

IN

 = V

OUT(MAX)

 + V

DROPOUT(MAX)

 or 2.7V, whichever is greater.

FIGURE 2-7:

Output Voltage vs. Input 

Voltage.

FIGURE 2-8:

Output Voltage vs. Input 

Voltage.

FIGURE 2-9:

Output Voltage vs. Input 

Voltage.

FIGURE 2-10:

Output Voltage vs. Load 

Current.

FIGURE 2-11:

Output Voltage vs. Load 

Current.

FIGURE 2-12:

Output Voltage vs. Load 

Current.

1.180

1.190

1.200

1.210

1.220

1.230

1.240

2

4

6

8

10

12

14

16

18

Input Voltage (V)

O

u

tput Volta

g

e (V)

V

OUT

 = 1.2V

I

LOAD

 = 0.1 mA

+25°C

+130°C

-45°C

0°C

+90°C

2.44

2.46

2.48

2.50

2.52

2.54

2.56

2.58

2

4

6

8

10

12

14

16

18

Input Voltage (V)

Outpu

t Vol

ta

g

e (V)

V

OUT

 = 2.5V

I

LOAD

 = 0.1 mA

+25°C

+130°C

-45°C

0°C

+90°C

4.88

4.92

4.96

5.00

5.04

5.08

5.12

5.16

6

8

10

12

14

16

18

Input Voltage (V)

O

u

tput Volta

g

e (V)

V

OUT

 = 5.0V

I

LOAD

 = 0.1 mA

+25°C

+130°C

-45°C

0°C

+90°C

1.18

1.19

1.20

1.21

1.22

1.23

1.24

0

20

40

60

80 100 120 140 160 180 200

Load Current (mA)

O

u

tput Volta

g

e (V)

V

IN

 = 3.0V

V

OUT

 = 1.2V

+25°C

+130°C

-45°C

0°C

+90°C

2.46

2.47

2.48

2.49

2.50

2.51

2.52

2.53

2.54

0

50

100

150

200

250

Load Current (mA)

O

u

tput Volta

g

e (V)

V

IN

 = 3.5V

V

OUT

 = 2.5V

+25°C

+130°C

-45°C

0°C

+90°C

4.92

4.94

4.96

4.98

5.00

5.02

5.04

5.06

0

50

100

150

200

250

Load Current (mA)

O

u

tput

 Volt

age

 (V)

V

IN

 = 6V

V

OUT

 = 5.0V

+25°C

+130°C

-45°C

0°C

+90°C

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22049f-html.html
background image

© 2011 Microchip Technology Inc.

DS22049F-page 7

MCP1703

Note: Unless otherwise indicated: V

R

 = 1.8V, C

OUT

 = 1 µF Ceramic (X7R), C

IN

 = 1 µF Ceramic (X7R), I

L

 = 100 µA,

T

A

 = +25°C, V

IN

 = V

OUT(MAX)

 + V

DROPOUT(MAX)

 or 2.7V, whichever is greater.

FIGURE 2-13:

Dropout Voltage vs. Load 

Current.

FIGURE 2-14:

Dropout Voltage vs. Load 

Current.

FIGURE 2-15:

Dynamic Line Response.

FIGURE 2-16:

Dynamic Line Response.

FIGURE 2-17:

Short Circuit Current vs. 

Input Voltage.

FIGURE 2-18:

Load Regulation vs. 

Temperature.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0

25

50

75 100 125 150 175 200 225 250

Load Current (mA)

D

ropou

t Vol

tage

 (V)

V

OUT

 = 2.5V

+25°C

+130°C

+0°C

-45°C

+90°C

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0

25

50

75 100 125 150 175 200 225 250

Load Current (mA)

D

ropout

 Volt

age

 (V)

V

OUT

 = 5.0V

+25°C

+130°C

+0°C

-45°C

+90°C

0

100

200

300

400

500

600

700

800

900

2

4

6

8

10

12

14

16

18

Input Voltage (V)

Sh

or

t C

ir

cuit

 C

u

rr

e

nt

 (m

A

)

V

OUT

 = 2.5V

R

OUT

 < 0.1

?

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

-45

-20

5

30

55

80

105

130

Temperature (°C)

Loa

d R

egula

tion

 (%

)

V

OUT

 = 1.2V

I

OUT

 = 1 mA to 200 mA

V

IN

 = 3.8V

V

IN

 = 14V

V

IN

 = 16V

V

IN

 = 12V

V

IN

 = 6V

V

IN

 = 3.2V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22049f-html.html
background image

MCP1703

DS22049F-page 8

© 2011 Microchip Technology Inc.

Note: Unless otherwise indicated: V

R

 = 1.8V, C

OUT

 = 1 µF Ceramic (X7R), C

IN

 = 1 µF Ceramic (X7R), I

L

 = 100 µA,

T

A

 = +25°C, V

IN

 = V

OUT(MAX)

 + V

DROPOUT(MAX)

 or 2.7V, whichever is greater.

FIGURE 2-19:

Load Regulation vs. 

Temperature.

FIGURE 2-20:

Load Regulation vs. 

Temperature.

FIGURE 2-21:

Line Regulation vs. 

Temperature.

FIGURE 2-22:

Line Regulation vs. 

Temperature.

FIGURE 2-23:

Line Regulation vs. 

Temperature.

FIGURE 2-24:

PSRR vs. Frequency.

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

1.20

-45

-20

5

30

55

80

105

130

Temperature (°C)

Loa

d R

egula

tion

 (%

)

V

OUT

 = 2.5V

I

OUT

 = 1 mA to 250 mA

V

IN

 = 3.5V

V

IN

 = 14V

V

IN

 = 12V

V

IN

 = 6V

V

IN

 = 16V

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

-45

-20

5

30

55

80

105

130

Temperature (°C)

Load

 R

e

gul

ati

on (

%

)

V

OUT

 = 5.0V

I

OUT

 = 1 to 250 mA

V

IN

 = 6V

V

IN

 = 14V

V

IN

 = 12V

V

IN

 = 8V

V

IN

 = 16V

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

-45

-20

5

30

55

80

105

130

Temperature (°C)

Li

ne R

egula

tion

 (%

/V)

V

IN

 = 3.0 to 16.0V

V

OUT

 = 1.2V

1 mA

100 mA

0 mA

200 mA

0.00

0.04

0.08

0.12

0.16

0.20

-45

-20

5

30

55

80

105

130

Temperature (°C)

Li

ne R

egula

tion

 (%

/V)

V

OUT

 = 2.5V

V

IN

 = 3.5V to 16V

200 mA

100 mA

0 mA

250 mA

0.06

0.08

0.10

0.12

0.14

0.16

0.18

-45

-20

5

30

55

80

105

130

Temperature (°C)

Li

n

e R

egu

la

ti

on

 (%

/V

)

V

OUT

 = 5.0V

V

IN

 = 6.0V to 16.0V

200mA

100 mA

0 mA

250 mA

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

0.01

0.1

1

10

100

1000

Frequency (kHz)

PSRR (d

B)

V

R

=1.2V

V

IN

=2.7V

V

INAC

 = 100 mV p-p

C

IN

=0 μF

I

OUT

=100 µA

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22049f-html.html
background image

© 2011 Microchip Technology Inc.

DS22049F-page 9

MCP1703

Note: Unless otherwise indicated: V

R

 = 1.8V, C

OUT

 = 1 µF Ceramic (X7R), C

IN

 = 1 µF Ceramic (X7R), I

L

 = 100 µA,

T

A

 = +25°C, V

IN

 = V

OUT(MAX)

 + V

DROPOUT(MAX)

 or 2.7V, whichever is greater.

FIGURE 2-25:

PSRR vs. Frequency.

FIGURE 2-26:

Output Noise vs. Frequency.

FIGURE 2-27:

Power Up Timing.

FIGURE 2-28:

Dynamic Load Response.

FIGURE 2-29:

Dynamic Load Response.

FIGURE 2-30:

Output Voltage vs. Input 

Voltage.

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

0.01

0.1

1

10

100

1000

Frequency (KHz)

PS

RR

 (d

B)

V

R

=5.0V

V

IN

=6.0V

V

INAC

 = 100 mV p-p

C

IN

=0 μF

I

OUT

=100 µA

0.001

0.01

0.1

1

10

100

0.01

0.1

1

10

100

1000

Frequency (kHz)

Noi

se (

µ

V

/

Hz

)

V

R

=5.0V, V

IN

=6.0V

I

OUT

=50 mA

V

R

=2.8V, V

IN

=3.8V

V

R

=1.2V, V

IN

=2.7V

0.0

1.0

2.0

3.0

4.0

0.0

1.0

2.0

3.0

4.0

Input Voltage (V)

O

u

tp

u

t V

o

lt

ag

(V

)

R

LOAD

=10 kΩ

V

R

 = 2.5V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22049f-html.html
background image

MCP1703

DS22049F-page 10

© 2011 Microchip Technology Inc.

FIGURE 2-31:

Output Voltage vs. Input 

Voltage.

0.0

1.0

2.0

3.0

4.0

0.0

1.0

2.0

3.0

4.0

Input Voltage (V)

O

u

tput V

o

lta

g

(V

)

V

= 3.3V

I

LOAD

 = 1 mA

I

LOAD

 = 44 µA

Maker
Microchip Technology Inc.
Datasheet PDF Download