24LC16B 16K I2C Serial EEPROM High Temp Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/24LC16B-16K-I2C-Serial-EEPROM-High-Temp-Data-Sheet-20006054A-html.html
background image

 2018 Microchip Technology Inc.

DS20006054A-page  1

24LC16B

Device Selection Table 

Features

• Single Supply with Operation down to 2.5V
• Low-Power CMOS Technology:

- Active current, 1 mA, typical
- Standby current, 1 

A, typical

• 2-Wire Serial Interface, I

2

C Compatible

• Schmitt Trigger inputs for Noise Suppression
• Output Slope Control to Eliminate Ground Bounce
• 100 kHz and 400 kHz Clock Compatibility
• Page Write Time 5 ms Maximum
• Self-Timed Erase/Write Cycle
• 16-Byte Page Write Buffer
• Hardware Write-Protect
• ESD Protection > 4,000V
• More than 1 Million Erase/Write Cycles
• Data Retention > 200 Years
• Factory Programming Available
• Packages include 8-lead SOIC and 5-lead SOT-23 
• RoHS Compliant
• Temperature Ranges:

 

- Extended (H): -40°C to +150°C

Description

The Microchip Technology Inc. 24LC16B is a 16 Kbit
Electrically Erasable PROM. The device is organized
as  eight  blocks  of  256  x  8-bit  memory  with  a  2-wire
serial interface. Low-voltage design permits operation
down to 2.5V with standby and active currents of only

A and 1 mA, respectively. The 24LC16B also has a

page  write  capability  for  up  to  16  bytes  of  data. The
24LC16B  is  available  in  the  standard  8-pin  surface
mount SOIC and in the 5-lead SOT-23 packages.

Block Diagram 

Package Types (not to scale)

Part Number

V

CC

 Range

Max. Clock Frequency

Temp. Ranges

Packages

24LC16B

2.5-5.5V

400 kHz

H

SN, OT

HV

 

EEPROM

 

Array

Page

 

YDEC

XDEC

Sense Amp.

Memory

Control

Logic

I/O

Control

Logic

I/O

WP

SDA

SCL

V

CC

V

SS

R/W Control

Latches

Generator

A0

A1

A2

V

SS

V

CC

WP

SCL

SDA

1

2

3

4

8

7

6

5

SOIC

SOT-23

1

2

3

4

5

WP

V

CC

SCL

V

SS

SDA

Note 1:

Pins A0, A1 and A2 are not used by the 24LC16B 
(no internal connections).

16K I

2

C Serial EEPROM High Temp Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/24LC16B-16K-I2C-Serial-EEPROM-High-Temp-Data-Sheet-20006054A-html.html
background image

24LC16B

DS20006054A-page  2

 2018 Microchip Technology Inc.

1.0

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings 

(†)

V

CC

............................................................................................................................................................................ 6.5V

All inputs and outputs w.r.t. V

SS

......................................................................................................... -0.3V to V

CC

 +1.0V

Storage Temperature.............................................................................................................................. -65°C to +155°C
Ambient Temperature with Power Applied...........................................................................................-40°C to +150°C

(

1

)

ESD Protection on all Pins

  4 kV

TABLE 1-1:

DC CHARACTERISTICS 

 

Note 1: AEC-Q100 reliability testing for devices intended to operate at 150°C is 1,000 hours. Any design in which

the total operating time from 125°C to 150°C will be greater than 1,000 hours is not warranted without prior
written approval from Microchip Technology Inc.

† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at those or any other conditions above those
indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.

DC CHARACTERISTICS

Extended (H): T

A

 = -40°C to +150°C, V

CC

 = +2.5V to +5.5V

Param.

No.

Symbol

Characteristic

Min.

Max.

Units

Conditions

WP, SCL and SDA pins

D1

V

IH

High-level input voltage

0.7 V

CC

V

D2

V

IL

Low-level input voltage

0.3 

V

CC

V

D3

V

HYS

Hysteresis of Schmitt
Trigger inputs

0.05 V

CC

V

(

Note 1

)

D4

V

OL

Low-level output voltage

0.40

V

I

OL

 = 3.0 mA, V

CC

 = 2.5V

D5

I

LI

Input leakage current

±1

A

V

IN

 = V

SS

 or V

CC

D6

I

LO

Output leakage current

±1

A

V

OUT

 = V

SS

 or V

CC

D7

C

IN

C

OUT

Pin capacitance
(all inputs/outputs)

10

pF

V

CC

 = 5.0V (

Note 1

)

T

A

 = 25°C, F

CLK

 = 1 MHz

D8

I

CC

 write

Operating current

3

mA

V

CC

 = 5.5V, SCL = 400 kHz

D9

I

CC

 read

1

mA

D10

I

CCS

Standby current


1
5

A

A

T

A

 = -40°C to +85°C

T

A

 = +85°C to +150°C

SDA = SCL = V

CC

WP = V

SS

Note 1: This parameter is periodically sampled and not 100% tested.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/24LC16B-16K-I2C-Serial-EEPROM-High-Temp-Data-Sheet-20006054A-html.html
background image

 2018 Microchip Technology Inc.

DS20006054A-page  3

24LC16B

TABLE 1-2:

AC CHARACTERISTICS 

 

AC CHARACTERISTICS

Extended (H): T

A

 = -40°C to +150°C, V

CC

 = +2.5V to +5.5V

Param.

No.

Symbol

Characteristic

Min.

Max.

Units

Conditions

1

F

CLK

Clock frequency

400

kHz

2

T

HIGH

Clock High Time

600

ns

3

T

LOW

Clock Low Time

1300

ns

4

T

R

SDA and SCL rise time 

300

ns

(

Note 1

)

5

T

F

SDA and SCL fall time

300

ns

(

Note 1

)

6

T

HD

:

STA

Start condition hold time

600

ns

7

T

SU

:

STA

Start condition setup time

600

ns

8

T

HD

:

DAT

Data input hold time

0

ns

(

Note 2

)

9

T

SU

:

DAT

Data input setup time

100

ns

10

T

SU

:

STO

Stop condition setup time

600

ns

11

T

AA

Output valid from clock 
(

Note 2

)

900

ns

12

T

BUF

Bus free time: Time the bus 
must be free before a new 
transmission can start

1300

ns

13

T

OF

Output fall time from V

IH 

minimum to V

IL

 maximum

20+0.1C

B

250

ns

14

T

SP

Input filter spike suppression
(SDA and SCL pins)

50

ns

(

Notes 1

 and

 3

)

15

T

WC

Write cycle time 
(byte or page)

5

ms

16

Endurance

1M

cycles Page mode, 25°C, 5.5V (

Note 4

)

Note 1: Not 100% tested. C

B

 = total capacitance of one bus line in pF.

2: As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region 

(minimum 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

3: The combined T

SP

 and V

HYS

 specifications are due to new Schmitt Trigger inputs which provide improved 

noise spike suppression. This eliminates the need for a 

T

I

 specification for standard operation.

4: This parameter is not tested but ensured by characterization. For endurance estimates in a specific 

application, consult the Total Endurance™ Model which can be obtained from Microchip’s website at 
www.microchip.com.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/24LC16B-16K-I2C-Serial-EEPROM-High-Temp-Data-Sheet-20006054A-html.html
background image

24LC16B

DS20006054A-page  4

 2018 Microchip Technology Inc.

FIGURE 1-1:

BUS TIMING DATA

FIGURE 1-2:

BUS TIMING START/STOP 

7

5

2

4

8

9

10

12

11

14

6

SCL

SDA

IN

SDA

OUT

3

7

6

D3

10

Start

Stop

SCL

SDA

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/24LC16B-16K-I2C-Serial-EEPROM-High-Temp-Data-Sheet-20006054A-html.html
background image

 2018 Microchip Technology Inc.

DS20006054A-page  5

24LC16B

2.0

PIN DESCRIPTIONS

The descriptions of the pins are listed in 

Table 2-1

.

TABLE 2-1:

PIN FUNCTION TABLE

 

2.1

Serial Address/Data Input/Output 
(SDA)

The  SDA  is  a  bidirectional  pin  used  to  transfer
addresses and data into and out of the device. Since it
is an open-drain terminal, the SDA bus requires a pull-
up resistor to V

CC

 (typical 10 k

 for 100 kHz, 2 k for

400 kHz).
For  normal  data  transfer,  SDA  is  allowed  to  change
only  during  SCL  low.  Changes  during  SCL  high  are
reserved for indicating Start and Stop conditions.

2.2

Serial Clock (SCL)

The SCL input is used to synchronize the data transfer
to and from the device.

2.3

Write-Protect (WP) 

The WP pin must be connected to either V

SS

 or V

CC

.

If  tied  to  V

SS

,  normal  memory  operation  is  enabled

(read/write the entire memory 000-7FF).
If tied to V

CC

, write operations are inhibited. The entire

memory  will  be  write-protected.  Read  operations  are
not affected.

2.4

A0, A1, A2

The A0, A1 and A2 pins are not used by the 24LC16B.
They may be left floating or tied to either V

SS

 or V

CC

.

Name

SOIC

SOT-23

Description

A0

1

Not Connected

A1

2

Not Connected

A2

3

Not Connected

V

SS

4

2

Ground

SDA

5

3

Serial Address/Data I/O

SCL

6

1

Serial Clock

WP

7

5

Write-Protect Input

V

CC

8

4

+2.5V to 5.5V Power Supply

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/24LC16B-16K-I2C-Serial-EEPROM-High-Temp-Data-Sheet-20006054A-html.html
background image

24LC16B

DS20006054A-page  6

 2018 Microchip Technology Inc.

3.0

FUNCTIONAL DESCRIPTION

The 24LC16B supports a bidirectional, 2-wire bus and
data  transmission  protocol. A device  that  sends  data
onto the bus is defined as a transmitter, while a device
receiving data is defined as a receiver. The bus has to
be controlled by a master device which generates the
Serial  Clock  (SCL),  controls  the  bus  access  and
generates  the  Start  and  Stop  conditions,  while  the
24LC16B works as slave. Both master and slave can
operate  as  transmitter  or  receiver,  but  the  master
device determines which mode is activated.

4.0

BUS CHARACTERISTICS

The following bus protocol has been defined:
• Data transfer may be initiated only when the bus 

is not busy.

• During data transfer, the data line must remain 

stable whenever the clock line is high. Changes in 
the data line while the clock line is high will be 
interpreted as a Start or Stop condition.

Accordingly,  the  following  bus  conditions  have  been
defined (

Figure 4-1

).

4.1

Bus Not Busy (A)

Both data and clock lines remain high.

4.2

Start Data Transfer (B)

A high-to-low transition of the SDA line while the clock
(SCL)  is  high  determines  a  Start  condition.  All
commands must be preceded by a Start condition.

4.3

Stop Data Transfer (C)

A low-to-high transition of the SDA line while the clock
(SCL)  is  high  determines  a  Stop  condition.  All
operations must be ended with a Stop condition.

4.4

Data Valid (D)

The state of the data line represents valid data when,
after  a  Start  condition,  the  data  line  is  stable  for  the
duration of the high period of the clock signal.
The data on the line must be changed during the low
period of the clock signal. There is one clock pulse per
bit of data.
Each data transfer is initiated with a Start condition and
terminated with a Stop condition. The number of data
bytes transferred between Start and Stop conditions is
determined by the master device and is, theoretically,
unlimited (although only the last sixteen will be stored
when doing a write operation). When an overwrite does
occur it will replace data in a First-in First-out (FIFO)
fashion.

4.5

Acknowledge

Each receiving device, when addressed, is obliged to
generate an Acknowledge after the reception of each
byte. The master device must generate an extra clock
pulse which is associated with this Acknowledge bit.  

The  device  that  acknowledges  has  to  pull  down  the
SDA line during the acknowledge clock pulse in such a
way  that  the  SDA  line  is  stable-low  during  the  high
period of the acknowledge related clock pulse. Setup
and  hold  times  must  be  taken  into  account.  During
reads, a master must signal an end of data to the slave
by not generating an Acknowledge bit on the last byte
that has been clocked out of the slave. In this case, the
slave (24LC16B) will leave the data line high to enable
the master to generate the Stop condition.

FIGURE 4-1:

DATA TRANSFER SEQUENCE ON THE SERIAL BUS 

Note:

The  24LC16B  does  not  generate  any
Acknowledge 

bits 

if 

an 

internal

programming cycle is in progress.

SCL

SDA

(A)

(B)

(D)

(D)

(A)

(C)

Start

Condition

Address or

Acknowledge

Valid

Data

Allowed

to Change

Stop

Condition

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/24LC16B-16K-I2C-Serial-EEPROM-High-Temp-Data-Sheet-20006054A-html.html
background image

 2018 Microchip Technology Inc.

DS20006054A-page  7

24LC16B

5.0

DEVICE ADDRESSING

A control byte is the first byte received following the
Start  condition  from  the  master  device  (

Figure 5-1

).

The  control  byte  consists  of  a  four-bit  control  code.
For the 24LC16B, this is set as ‘

1010

’ binary for read

and write operations. The next three bits of the control
byte are the block-select bits (B2, B1, B0). They are
used by the master device to select which of the eight
256  word-blocks  of  memory  are  to  be  accessed.
These bits are in effect the three Most Significant bits
(MSb) of the word address. It should be noted that the
protocol limits the size of the memory to eight blocks
of 256 words, therefore, the protocol can support only
one 24LC16B per system.
The last bit of the control byte defines the operation to
be  performed.  When  set  to  ‘

1

’,  a  read  operation  is

selected. When set to ‘

0

’, a write operation is selected.

Following  the  Start  condition,  the  24LC16B  monitors
the SDA bus, checking the device type identifier being
transmitted  and,  upon  receiving  a  ‘

1010

’  code,  the

slave  device  outputs  an  Acknowledge  signal  on  the
SDA line. Depending on the state of the R/W bit, the
24LC16B will select a read or write operation.

FIGURE 5-1:

CONTROL BYTE 
ALLOCATION   

FIGURE 5-2:

ADDRESS SEQUENCE BIT ASSIGNMENTS

Operation

Control 

Code

Block Select

R/W

Read

1010

Block Address

1

Write

1010

Block Address

0

1

0

1

0

B2 B1 B0 R/W ACK

Start bit

Read/Write bit

S

Slave Address

Acknowledge bit

Control Code

Block

Select 

bits

1

0

1

0

B

2

B

1

B

0 R/W

A

7

A

0

Control byte

Address Low byte

Control

Code

Block

Select

bits

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/24LC16B-16K-I2C-Serial-EEPROM-High-Temp-Data-Sheet-20006054A-html.html
background image

24LC16B

DS20006054A-page  8

 2018 Microchip Technology Inc.

6.0

WRITE OPERATION

6.1

Byte Write

Following  the  Start  condition  from  the  master,  the
device code (4 bits), the block address (3 bits) and the
R/W bit, which is a logic-low, is placed onto the bus by
the master transmitter. This indicates to the addressed
slave  receiver  that  a  byte  with  a  word  address  will
follow once it has generated an Acknowledge bit during
the ninth clock cycle. Therefore, the next byte transmit-
ted  by  the  master  is  the  word  address  and  will  be
written into the Address Pointer of the 24LC16B. After
receiving  another  Acknowledge  signal  from  the
24LC16B, the master device will transmit the data word
to be written into the addressed memory location. The
24LC16B  acknowledges  again  and  the  master
generates  a  Stop  condition. This  initiates  the  internal
write cycle and, during this time, the 24LC16B will not
generate Acknowledge signals (

Figure 6-1

).

6.2

Page Write 

The write control byte, word address and the first data
byte are transmitted to the 24LC16B in the same way
as  in  a  byte  write.  However,  instead  of  generating  a
Stop  condition,  the  master  transmits  up  to  16  data
bytes to the 24LC16B, which are temporarily stored in
the on-chip page buffer and will be written into memory
once  the  master  has  transmitted  a  Stop  condition.
Upon  receipt  of  each  word,  the  four  lower-order
Address Pointer bits are internally incremented by ‘

1

’.

The  higher-order  7  bits  of  the  word  address  remain
constant. If the master should transmit more than 16
bytes  prior  to  generating  the  Stop  condition,  the
address  counter  will  roll  over  and  the  previously
received data will be overwritten. As with the byte write
operation,  once  the  Stop  condition  is  received  an
internal write cycle will begin (

Figure 6-2

). 

6.3

Write Protection 

The WP pin allows the user to write-protect the entire
array (000-7FF) when the pin is tied to V

CC

. If tied to

V

SS

 the write protection is disabled.

FIGURE 6-1:

BYTE WRITE   

FIGURE 6-2:

PAGE WRITE    

Note:

Page write operations are limited to writ-
ing  bytes  within  a  single  physical  page,
regardless  of  the  number  of  bytes
actually  being  written.  Physical  page
boundaries  start  at  addresses  that  are
integer  multiples  of  the  page  buffer  size
(or ‘page-size’) and end at addresses that
are integer multiples of [page size – 1]. If
a page write command attempts to write
across  a  physical  page  boundary,  the
result is that the data wraps around to the
beginning of the current page (overwriting
data  previously  stored  there),  instead  of
being written to the next page, as might be
expected. It is therefore necessary for the
application software to prevent page write
operations that would attempt to cross a
page boundary.

S

P

Bus Activity
Master

SDA Line

Bus Activity

S

T

A

R

T

S

T

O

P

Control

byte

Word

Address

Data

A

C

K

A

C

K

A

C

K

1 0 1 0 B2 B1 B0 0

Block

Select

bits

S

P

Bus Activity
Master

SDA Line

Bus Activity

S

T

A

R

T

Control

byte

Word

Address

 (

n)

Data (n)

Data (n + 15)

S

T

O

P

A

C

K

A

C

K

A

C

K

A

C

K

A

C

K

Data (n + 1)

B1

B2

B0

1 0 1 0

0

Block

Select

bits

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/24LC16B-16K-I2C-Serial-EEPROM-High-Temp-Data-Sheet-20006054A-html.html
background image

 2018 Microchip Technology Inc.

DS20006054A-page  9

24LC16B

7.0

ACKNOWLEDGE POLLING

Since  the  device  will  not  acknowledge  during  a  write
cycle, this can be used to determine when the cycle is
complete  (this  feature  can  be  used  to  maximize  bus
throughput).  Once  the  Stop  condition  for  a  write
command has been issued from the master, the device
initiates the internally-timed write cycle and ACK polling
can  then  be  initiated  immediately.  This  involves  the
master sending a Start condition followed by the control
byte for a write command (R/W = 

0

). If the device is still

busy with the write cycle, no ACK will be returned. If the
cycle is complete, the device will return the ACK and
the master can then proceed with the next read or write
command.  See 

Figure 7-1

  for  a  flow  diagram  of  this

operation.

FIGURE 7-1:

ACKNOWLEDGE POLLING 
FLOW 

8.0

READ OPERATION

Read operations are initiated in the same way as write
operations, with the exception that the R/W bit of the
slave address is set to ‘

1

’. There are three basic types

of read operations: current address read, random read
and sequential read.

8.1

Current Address Read

The 24LC16B contains an address counter that main-
tains the address of the last word accessed, internally
incremented by ‘

1

’. Therefore, if the previous access

(either a read or write operation) was to address 

n

, the

next current address read operation would access data
from address 

n + 1

. Upon receipt of the slave address

with R/W bit set to ‘

1

’, the 24LC16B issues an acknowl-

edge and transmits the 8-bit data word. The master will
not acknowledge the transfer, but does generate a Stop
condition and the 24LC16B discontinues transmission
(

Figure 8-1

).

8.2

Random Read

Random  read  operations  allow  the  master  to  access
any memory location in a random manner. To perform
this type of read operation, the word address must first
be  set.  This  is  accomplished  by  sending  the  word
address to the 24LC16B as part of a write operation.
Once the word address is sent, the master generates a
Start  condition  following  the  acknowledge.  This
terminates the write operation, but not before the inter-
nal Address Pointer is set. The master then issues the
control byte again, but with the R/W bit set to a ‘

1

’. The

24LC16B will then issue an acknowledge and transmit
the 8-bit data word. The master will not acknowledge
the  transfer,  but  does  generate  a  Stop  condition  and
the  24LC16B  will  discontinue  transmission  (

Figure 8-

2

).

8.3

Sequential Read

Sequential  reads  are  initiated  in  the  same  way  as  a
random read, except that once the 24LC16B transmits
the first data byte, the master issues an acknowledge
as opposed to a Stop condition in a random read. This
directs the 24LC16B to transmit the next sequentially-
addressed 8-bit word (

Figure 8-3

).

To provide sequential reads, the 24LC16B contains an
internal Address  Pointer  that  is  incremented  by  one
upon  completion  of  each  operation.  This  Address
Pointer allows the entire memory contents to be serially
read during one operation.

Send

Write Command

Send Stop

Condition to

Initiate Write Cycle

Send Start

Send Control Byte

with R/W = 0

Did Device

Acknowledge

(ACK = 0)?

Next

Operation

No

Yes

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/24LC16B-16K-I2C-Serial-EEPROM-High-Temp-Data-Sheet-20006054A-html.html
background image

24LC16B

DS20006054A-page  10

 2018 Microchip Technology Inc.

8.4

Noise Protection

The 24LC16B employs a V

CC

 threshold detector circuit

which disables the internal erase/write logic if the V

CC

is below 1.5V at nominal conditions.
The  SCL  and  SDA  inputs  have  Schmitt  Trigger  and
filter  circuits  which  suppress  noise  spikes  to  assure
proper device operation, even on a noisy bus.

FIGURE 8-1:

CURRENT ADDRESS READ    

FIGURE 8-2:

RANDOM READ    

FIGURE 8-3:

SEQUENTIAL READ   

S

P

Bus Activity
Master

SDA Line

Bus Activity

S

T

O

P

Control

byte

Data (n)

A

C

K

N

o

 

A

C

K

S

T

A

R
T

1 0 1 0

1

B2 B1 B0

Block

Select

bits

S

P

S

Bus Activity
Master

SDA Line

Bus Activity

S

T

A

R

T

S

T

O

P

Control

byte

A

C

K

Word

Address (n)

Control

byte

S

T

A

R

T

Data (n)

A

C

K

A

C

K

N

o

A

C

K

1 0 1 0

0

B2B1B0

1

1

0

0

1

B2 B1B0

Block

Select

bits

Block

Select

bits

P

Bus Activity
Master

SDA Line

Bus Activity

S

T

O

P

Control

byte

A

C

K

N

o

 

A

C

K

Data (n)

Data (n + 1)

Data (n + 2)

Data (n + x)

A

C

K

A

C

K

A

C

K

1

Maker
Microchip Technology Inc.