24AA512/24LC512/24FC512 512K I2C Serial EEPROM Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21754M-html.html
background image

 2010 Microchip Technology Inc.

DS21754M-page 1

24AA512/24LC512/24FC512

Device Selection Table

Features:

• Single Supply with Operation down to 1.7V for 

24AA512 and 24FC512 Devices, 2.5V for 
24LC512 Devices

• Low-Power CMOS Technology:

- Active current 400 uA, typical
- Standby current 100 nA, typical

• 2-Wire Serial Interface, I

2

C

 Compatible

• Cascadable for up to Eight Devices
• Schmitt Trigger Inputs for Noise Suppression
• Output Slope Control to Eliminate Ground Bounce
• 100 kHz and 400 kHz Clock Compatibility
• Page Write Time 5 ms max.
• Self-Timed Erase/Write Cycle
• 128-Byte Page Write Buffer
• Hardware Write-Protect
• ESD Protection >4000V
• More than 1 Million Erase/Write Cycles
• Data Retention > 200 years
• Packages Include 8-lead PDIP, SOIJ, SOIC, 

TSSOP, DFN, Chip Scale and 14-lead TSSOP

• Pb-Free and RoHS Compliant
• Temperature Ranges:

- Industrial (I):

-40

C to +85C

- Automotive (E):-40

C to +125C

Description:

The Microchip Technology Inc. 24AA512/24LC512/
24FC512 (24XX512*) is a 64K x 8 (512 Kbit) Serial
Electrically Erasable PROM, capable of operation
across a broad voltage range (1.7V to 5.5V). It has
been developed for advanced, low-power applications
such as personal communications and data acquisi-
tion. This device also has a page write capability of up
to 128 bytes of data. This device is capable of both
random and sequential reads up to the 512K boundary.
Functional address lines allow up to eight devices on
the same bus, for up to 4 Mbit address space. This
device is available in the standard 8-pin plastic DIP,
SOIJ, SOIC, TSSOP, DFN, and 14-lead TSSOP
packages. The 24AA512 is also available in the 8-lead
Chip Scale package.

Block Diagram

Package Type

Part 

Number

V

CC

 Range

Max. Clock

Frequency

Temp. 

Ranges

24AA512

1.7-5.5V

400 kHz

(1)

I

24LC512

2.5-5.5V

400 kHz

I, E

24FC512

1.7-5.5V

1 MHz

(2)

I

Note 1:

100 kHz for V

CC

 < 2.5V

2:

400 kHz for V

CC

 < 2.5V

HV Generator

EEPROM 

Array

Page Latches

YDEC

XDEC

Sense Amp.
R/W Control

Memory

Control

Logic

I/O

Control

Logic

I/O

A0 A1 A2

SDA

SCL

V

CC

V

SS

WP

A0

A1

A2

V

SS

V

CC

WP

SCL

SDA

1

2

3

4

8

7

6

5

24X

X

5

12

TSSOP

A0
A1

A2

V

SS

1

2

3
4

8

7

6

5

V

CC

WP

SCL

SDA

24

X

X

512

DFN

A0

A1

A2

V

SS

WP

SCL

SDA

24

X

X

5

12

5

6

7

8

4

3

2

1

V

CC

PDIP/SOIJ/SOIC/TSSOP

9

10

11

12

13

14

NC

NC
NC

NC

NC

NC

Note 1: Available in I-temp, “AA” only.

CS (Chip Scale)

(1)

1

2

3

4

5

6

7

8

V

CC

A1 A0

WP

A2

SDA SCL V

SS

(TOP DOWN VIEW,
BALLS NOT VISIBLE)

512K I

2

C

 Serial EEPROM

* 24XX512 is used in this document as a generic part number for the 24AA512/24LC512/24FC512 devices.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21754M-html.html
background image

24AA512/24LC512/24FC512

DS21754M-page 2

 2010 Microchip Technology Inc.

1.0

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings 

(†)

V

CC

.............................................................................................................................................................................6.5V

All inputs and outputs w.r.t. V

SS

......................................................................................................... -0.6V to V

CC

 +1.0V

Storage temperature ...............................................................................................................................-65°C to +150°C
Ambient temperature with power applied................................................................................................-40°C to +125°C
ESD protection on all pins

  4 kV

TABLE 1-1:

DC CHARACTERISTICS

† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at those or any other conditions above those
indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.

DC CHARACTERISTICS

Electrical Characteristics:
Industrial (I):

V

CC

 = +1.7V to 5.5V

T

A

 = -40°C to +85°C

Automotive (E):

V

CC

 = +2.5V to 5.5V

T

A

 = -40°C to +125°C

Param.

No.

Sym.

Characteristic

Min.

Max.

Units

Conditions

D1

A0, A1, A2, SCL, SDA 
and WP pins:

D2

V

IH

High-level input voltage

0.7 V

CC

V

D3

V

IL

Low-level input voltage

0.3 V

CC

0.2 V

CC

V
V

V

CC

 

 2.5V

V

CC

 < 2.5V

D4

V

HYS

Hysteresis of Schmitt 
Trigger inputs
(SDA, SCL pins)

0.05 V

CC

V

V

CC

 

 2.5V (Note)

D5

V

OL

Low-level output voltage

0.40

V

I

OL

 = 3.0 ma @ V

CC

 = 4.5V

I

OL

 = 2.1 ma @ V

CC

 = 2.5V

D6

I

LI

Input leakage current

±1

A

V

IN

 = V

SS

 or V

CC

, WP = V

SS

V

IN

 = V

SS

 or V

CC

, WP = V

CC

D7

I

LO

Output leakage current

±1

A

V

OUT

 = V

SS

 or V

CC

D8

C

IN

C

OUT

Pin capacitance 
(all inputs/outputs)

10

pF

V

CC

 = 5.0V (Note)

T

A

 = 25°C, F

CLK

 = 1 MHz

D9

I

CC

 Read Operating current

400

A

V

CC

 = 5.5V, SCL = 400 kHz

I

CC

 Write

5

mA

V

CC

 = 5.5V

D10

I

CCS

Standby current

1

A

T

A

 = -40°C to +85°C

SCL = SDA = V

CC

 = 5.5V

A0, A1, A2, WP = V

SS

5

A

T

A

 = -40°C to +125°C

SCL = SDA = V

CC

 = 5.5V

A0, A1, A2, WP = V

SS

Note:

This parameter is periodically sampled and not 100% tested.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21754M-html.html
background image

 2010 Microchip Technology Inc.

DS21754M-page 3

24AA512/24LC512/24FC512

TABLE 1-2:

AC CHARACTERISTICS

AC CHARACTERISTICS

Electrical Characteristics:
Industrial (I):

V

CC

 = +1.7V to 5.5V

T

A

 = -40°C to +85°C

Automotive (E):

V

CC

 = +2.5V to 5.5V

T

A

 = -40°C to +125°C

Param.

No.

Sym.

Characteristic

Min.

Max.

Units

Conditions

1

F

CLK

Clock frequency




100
400
400

1000

kHz

1.7V 

 V

CC

 

 2.5V

2.5V 

 V

CC

 

 5.5V

1.7V 

 V

CC

 

 2.5V 24FC512

2.5V 

 V

CC

 

 5.5V 24FC512

2

T

HIGH

Clock high time

4000

600
600
500




ns

1.7V 

 V

CC

 

 2.5V

2.5V 

 V

CC

 

 5.5V

1.7V 

 V

CC

 

 2.5V 24FC512

2.5V 

 V

CC

 

 5.5V 24FC512

3

T

LOW

Clock low time

4700
1300
1300

500




ns

1.7V 

 V

CC

 

 2.5V

2.5V 

 V

CC

 

 5.5V

1.7V 

 V

CC

 

 2.5V 24FC512

2.5V 

 V

CC

 

 5.5V 24FC512

4

T

R

SDA and SCL rise time (Note 1)



1000

300
300

ns

1.7V 

 V

CC

< 2.5V

2.5V 

 V

CC

 

 5.5V

1.7V 

 V

CC

 

 5.5V 24FC512

5

T

F

SDA and SCL fall time (Note 1)


300
100

ns

All except, 24FC512
1.7V 

 V

CC

 

 5.5V 24FC512

6

T

HD

:

STA

Start condition hold time

4000

600
600
250




ns

1.7V 

 V

CC

 

 2.5V

2.5V 

 V

CC

 

 5.5V

1.7V 

 V

CC

 

 2.5V 24FC512

2.5V 

 V

CC

 

 5.5V 24FC512

7

T

SU

:

STA

Start condition setup time

4700

600
600
250




ns

1.7V 

 V

CC

 

 2.5V

2.5V 

 V

CC

 

 5.5V

1.7V 

 V

CC

 

 2.5V 24FC512

2.5V 

 V

CC

 

 5.5V 24FC512

8

T

HD

:

DAT

Data input hold time

0

ns

(Note 2)

9

T

SU

:

DAT

Data input setup time

250
100
100



ns

1.7V 

 V

CC

 

 2.5V

2.5V 

 V

CC

 

 5.5V

1.7V 

 V

CC

 

 5.5V 24FC512

10

T

SU

:

STO

Stop condition setup time

4000

600
600
250




ns

1.7V 

 V

CC

 

 2.5V

2.5V 

 V

CC

 

 5.5V

1.7V 

 V

CC

 

 2.5V 24FC512

2.5V 

 V

CC

 

 5.5V 24FC512

11

T

SU

:

WP

WP setup time

4000

600
600



ns

1.7V 

 V

CC

 

 2.5V

2.5V 

 V

CC

 

 5.5V

1.7V 

 V

CC

 

 5.5V 24FC512

12

T

HD

:

WP

WP hold time

4700
1300
1300



ns

1.7V 

 V

CC

 

 2.5V

2.5V 

 V

CC

 

 5.5V

1.7V 

 V

CC

 

 5.5V 24FC512

13

T

AA

Output valid from clock (Note 2)




3500

900
900
400

ns

1.7V 

 V

CC

 

 2.5V

2.5V 

 V

CC

 

 5.5V

1.7V 

 V

CC

 

 2.5V 24FC512

2.5V 

 V

CC

 

 5.5V 24FC512

14

T

BUF

Bus free time: Time the bus 
must be free before a new trans-
mission can start

4700
1300
1300

500




ns

1.7V 

 V

CC

 

 2.5V

2.5V 

 V

CC

 

 5.5V

1.7V 

 V

CC

 

 2.5V 24FC512

2.5V 

 V

CC

 

 5.5V 24FC512

Note 1:

Not 100% tested. C

B

 = total capacitance of one bus line in pF.

2:

As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region (minimum 
300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

3:

The combined T

SP

 and V

HYS

 specifications are due to new Schmitt Trigger inputs which provide improved noise spike 

suppression. This eliminates the need for a T

I

 specification for standard operation.

4:

This parameter is not tested but ensured by characterization. For endurance estimates in a specific application, please 
consult the Total Endurance™ Model which can be obtained from Microchip’s web site at www.microchip.com.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21754M-html.html
background image

24AA512/24LC512/24FC512

DS21754M-page 4

 2010 Microchip Technology Inc.

16

T

SP

Input filter spike suppression
(SDA and SCL pins)

50

ns

All except, 24FC512 (Notes 1 and 3)

17

T

WC

Write cycle time (byte or page)

5

ms

18

Endurance

1,000,000

cycles

Page Mode, 25°C, V

CC

 = 5.5V 

(Note 4)

AC CHARACTERISTICS (Continued)

Electrical Characteristics:
Industrial (I):

V

CC

 = +1.7V to 5.5V

T

A

 = -40°C to +85°C

Automotive (E):

V

CC

 = +2.5V to 5.5V

T

A

 = -40°C to +125°C

Param.

No.

Sym.

Characteristic

Min.

Max.

Units

Conditions

Note 1:

Not 100% tested. C

B

 = total capacitance of one bus line in pF.

2:

As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region (minimum 
300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

3:

The combined T

SP

 and V

HYS

 specifications are due to new Schmitt Trigger inputs which provide improved noise spike 

suppression. This eliminates the need for a T

I

 specification for standard operation.

4:

This parameter is not tested but ensured by characterization. For endurance estimates in a specific application, please 
consult the Total Endurance™ Model which can be obtained from Microchip’s web site at www.microchip.com.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21754M-html.html
background image

 2010 Microchip Technology Inc.

DS21754M-page 5

24AA512/24LC512/24FC512

FIGURE 1-1:

BUS TIMING DATA

(unprotected)

(protected)

SCL

SDA
IN

SDA
OUT

WP

5

7

6

16

3

2

8

9

13

D4

4

10

11

12

14

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21754M-html.html
background image

24AA512/24LC512/24FC512

DS21754M-page 6

 2010 Microchip Technology Inc.

2.0

PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

TABLE 2-1:

PIN FUNCTION TABLE

2.1

A0, A1 and A2 Chip Address 
Inputs

The A0, A1 and A2 inputs are used by the 24XX512 for
multiple device operations. The logic levels on these
inputs are compared with the corresponding bits in the
slave address. The chip is selected if the compare is
true.
Up to eight devices may be connected to the same bus
by using different Chip Select bit combinations. These
inputs must be connected to either V

CC

 or V

SS

.

In most applications, the chip address inputs A0, A1
and A2 are hard-wired to logic ‘0’ or logic ‘1’. For
applications in which these pins are controlled by a
microcontroller or other programmable logic device,
the chip address pins must be driven to logic ‘0’ or logic
‘1’ before normal device operation can proceed.

2.2

Serial Data (SDA)

This is a bidirectional pin used to transfer addresses
and data into and data out of the device. It is an open-
drain terminal, therefore, the SDA bus requires a pull-
up resistor to V

CC

 (typical 10 k

 for 100 kHz, 2 kfor

400 kHz  and  1 MHz).
For normal data transfer, SDA is allowed to change
only during SCL low. Changes during SCL high are
reserved for indicating the Start and Stop conditions.

2.3

Serial Clock (SCL)

This input is used to synchronize the data transfer from
and to the device.

2.4

Write-Protect (WP)

This pin must be connected to either V

SS

 or V

CC

. If tied

to V

SS

, write operations are enabled. If tied to V

CC

,

write operations are inhibited but read operations are
not affected.

3.0

FUNCTIONAL DESCRIPTION

The 24XX512 supports a bidirectional 2-wire bus and
data transmission protocol. A device that sends data
onto the bus is defined as a transmitter and a device
receiving data as a receiver. The bus must be
controlled by a master device which generates the
Serial Clock (SCL), controls the bus access and
generates the Start and Stop conditions, while the
24XX512 works as a slave. Both master and slave
can operate as a transmitter or receiver, but the
master device determines which mode is activated.

Name

PDIP

SOIC

SOIJ

TSSOP

14-lead 

TSSOP

DFN

CS

Function

A0

1

1

1

1

1

1

3

User Configured Chip Select

A1

2

2

2

2

2

2

2

User Configured Chip Select

(NC)

3, 4, 5

Not Connected

A2

3

3

3

3

6

3

5

User Configured Chip Select

V

SS

4

4

4

4

7

4

8

Ground

SDA

5

5

5

5

8

5

6

Serial Data

SCL

6

6

6

6

9

6

7

Serial Clock

(NC)

10, 11, 12

Not Connected

WP

7

7

7

7

13

7

4

Write-Protect Input

V

CC

8

8

8

8

14

8

1

+1.7V to 5.5V (24AA512)
+2.5V to 5.5V (24LC512)
+1.7V to 5.5V (24FC512)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21754M-html.html
background image

 2010 Microchip Technology Inc.

DS21754M-page 7

24AA512/24LC512/24FC512

4.0

BUS CHARACTERISTICS

The following bus protocol has been defined:
• Data transfer may be initiated only when the bus 

is not busy.

• During data transfer, the data line must remain 

stable whenever the clock line is high. Changes in 
the data line, while the clock line is high, will be 
interpreted as a Start or Stop condition.

Accordingly, the following bus conditions have been
defined (Figure 4-1).

4.1

Bus Not Busy (A)

Both data and clock lines remain high.

4.2

Start Data Transfer (B)

A high-to-low transition of the SDA line while the clock
(SCL) is high determines a Start condition. All
commands must be preceded by a Start condition.

4.3

Stop Data Transfer (C)

A low-to-high transition of the SDA line while the clock
(SCL) is high determines a Stop condition. All
operations must end with a Stop condition.

4.4

Data Valid (D)

The state of the data line represents valid data when,
after a Start condition, the data line is stable for the
duration of the high period of the clock signal.
The data on the line must be changed during the low
period of the clock signal. There is one bit of data per
clock pulse.
Each data transfer is initiated with a Start condition and
terminated with a Stop condition. The number of the
data bytes transferred between the Start and Stop
conditions is determined by the master device.

4.5

Acknowledge

Each receiving device, when addressed, is obliged to
generate an Acknowledge signal after the reception of
each byte. The master device must generate an extra
clock pulse which is associated with this Acknowledge
bit. See Figure 4-2 for acknowledge timing.

A device that acknowledges must pull down the SDA
line during the Acknowledge clock pulse in such a way
that the SDA line is stable low during the high period of
the acknowledge related clock pulse. Of course, setup
and hold times must be taken into account. During
reads, a master must signal an end of data to the slave
by NOT generating an Acknowledge bit on the last byte
that has been clocked out of the slave. In this case, the
slave (24XX512) will leave the data line high to enable
the master to generate the Stop condition.

Note:

The 24XX512 does not generate any
Acknowledge bits if an internal programming
cycle is in progress.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21754M-html.html
background image

24AA512/24LC512/24FC512

DS21754M-page 8

 2010 Microchip Technology Inc.

FIGURE 4-1:

DATA TRANSFER SEQUENCE ON THE SERIAL BUS

FIGURE 4-2:

ACKNOWLEDGE TIMING

Address or

Acknowledge

Valid

Data

Allowed

to Change

Stop

Condition

Start

Condition

SCL

SDA

(A)

(B)

(D)

(D)

(C)

(A)

SCL

9

8

7

6

5

4

3

2

1

1

2

3

Transmitter must release the SDA line at this point
allowing the Receiver to pull the SDA line low to
acknowledge the previous eight bits of data.

Receiver must release the SDA line
at this point so the Transmitter can
continue sending data.

Data from transmitter

SDA

Acknowledge

Bit

Data from transmitter

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21754M-html.html
background image

 2010 Microchip Technology Inc.

DS21754M-page 9

24AA512/24LC512/24FC512

5.0

DEVICE ADDRESSING

A control byte is the first byte received following the
Start condition from the master device (Figure 5-1).
The control byte consists of a 4-bit control code; for the
24XX512 this is set as ‘

1010’

 binary for read and write

operations. The next three bits of the control byte are
the Chip Select bits (A2, A1 and A0). The Chip Select
bits allow the use of up to eight 24XX512 devices on
the same bus and are used to select which device is
accessed. The Chip Select bits in the control byte must
correspond to the logic levels on the corresponding A2,
A1 and A0 pins for the device to respond. These bits
are in effect the three Most Significant bits of the word
address. 
The last bit of the control byte defines the operation to
be performed. When set to a one a read operation is
selected and when set to a zero a write operation is
selected. The next two bytes received define the
address of the first data byte (Figure 5-2). Because all
A15…A0 are used, there are no upper address bits that
are “don’t care”. The upper address bits are transferred
first, followed by the Less Significant bits. 
Following the Start condition, the 24XX512 monitors
the SDA bus checking the device type identifier being
transmitted. Upon receiving a ‘

1010’

 code and appro-

priate device select bits, the slave device outputs an
Acknowledge signal on the SDA line. Depending on the
state of the R/W bit, the 24XX512 will select a read or
write operation.

FIGURE 5-1:

CONTROL BYTE FORMAT

5.1

Contiguous Addressing Across 
Multiple Devices

The Chip Select bits A2, A1 and A0 can be used to
expand the contiguous address space for up to 4 Mbit
by adding up to eight 24XX512 devices on the same
bus. In this case, software can use A0 of the control
byte
 as address bit A16; A1 as address bit A17; and A2
as address bit A18. It is not possible to sequentially
read across device boundaries.

FIGURE 5-2:

ADDRESS SEQUENCE BIT ASSIGNMENTS

1

0

1

0

A2

A1

A0

S

ACK

R/W

Control Code

Chip Select

Bits

Slave Address

Acknowledge Bit

Start Bit

Read/Write Bit

1

0

1

0

A

2

A

1

A

0 R/W

A

11

A

10

A

9

A

7

A

0

A

8

A

12

Control Byte

Address High Byte

Address Low Byte

Control

Code

Chip

Select

Bits

A

13

A

14

A

15

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21754M-html.html
background image

24AA512/24LC512/24FC512

DS21754M-page 10

 2010 Microchip Technology Inc.

6.0

WRITE OPERATIONS

6.1

Byte Write

Following the Start condition from the master, the
control code (four bits), the Chip Select (three bits) and
the R/W bit (which is a logic low) are clocked onto the
bus by the master transmitter. This indicates to the
addressed slave receiver that the address high byte will
follow after it has generated an Acknowledge bit during
the ninth clock cycle. Therefore, the next byte
transmitted by the master is the high-order byte of the
word address and will be written into the Address
Pointer of the 24XX512. The next byte is the Least
Significant Address Byte. After receiving another
Acknowledge signal from the 24XX512, the master
device will transmit the data word to be written into the
addressed memory location. The 24XX512 acknowl-
edges again and the master generates a Stop
condition. This initiates the internal write cycle and
during this time, the 24XX512 will not generate
Acknowledge signals (Figure 6-1). If an attempt is
made to write to the array with the WP pin held high, the
device will acknowledge the command, but no write
cycle will occur, no data will be written and the device
will immediately accept a new command. After a byte
Write command, the internal address counter will point
to the address location following the one that was just
written.

6.2

Page Write

The write control byte, word address and the first data
byte are transmitted to the 24XX512 in the same way
as in a byte write. But instead of generating a Stop
condition, the master transmits up to 127 additional
bytes, which are temporarily stored in the on-chip page
buffer and will be written into memory after the master
has transmitted a Stop condition. After receipt of each
word, the seven lower Address Pointer bits are inter-
nally incremented by one. If the master should transmit
more than 128 bytes prior to generating the Stop con-
dition, the address counter will roll over and the previ-
ously received data will be overwritten. As with the byte
write operation, once the Stop condition is received, an
internal write cycle will begin (Figure 6-2). If an attempt
is made to write to the array with the WP pin held high,
the device will acknowledge the command, but no write
cycle will occur, no data will be written and the device
will immediately accept a new command.

6.3

Write Protection

The WP pin allows the user to write-protect the entire
array (0000-FFFF) when the pin is tied to V

CC

. If tied to

V

SS

 the write protection is disabled. The WP pin is

sampled at the Stop bit for every Write command
(Figure 1-1). Toggling the WP pin after the Stop bit will
have no effect on the execution of the write cycle.

Note:

When doing a write of less than 128 bytes
the data in the rest of the page is refreshed
along with the data bytes being written.
This will force the entire page to endure a
write cycle, for this reason endurance is
specified per page.

Note:

Page write operations are limited to writing
bytes within a single physical page,
regardless of the number of bytes
actually being written. Physical page
boundaries start at addresses that are
integer multiples of the page buffer size (or
‘page size’) and end at addresses that are
integer multiples of [page size – 1]. If a
Page Write command attempts to write
across a physical page boundary, the
result is that the data wraps around to the
beginning of the current page (overwriting
data previously stored there), instead of
being written to the next page as might be
expected. It is therefore necessary for the
application software to prevent page write
operations that would attempt to cross a
page boundary.

Maker
Microchip Technology Inc.
Datasheet PDF Download