24AA32AF/24LC32AF 32K I2C Serial EEPROM with Quarter-Array Write-Protect Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22184A-html.html
background image

© 2009 Microchip Technology Inc.

DS22184A-page 1

24AA32AF/24LC32AF

Device Selection Table 

Features:

• Single Supply with Operation down to 1.7V for

 

24AA32AF devices, 2.5V for 24LC32AF devices

• Low-Power CMOS Technology:

- Read current 400 

μA, max.

- Standby current 1 

μA, max. (I-temp)

• 2-Wire Serial Interface, I

2

C™ Compatible

• Packages with 3 Address Pins are Cascadable up 

to Eight Devices

• Schmitt Trigger Inputs for Noise Suppression

• Output Slope Control to Eliminate Ground Bounce

• 100 kHz and 400 kHz Clock Compatibility

• Page Write Time 5 ms max.

• Self-Timed Erase/Write Cycle

• 32-Byte Page Write Buffer

• Hardware Write-Protect for 1/4 Array 

 

(C00h-FFFh)

• ESD Protection > 4,000V

• More than 1 Million Erase/Write Cycles

• Data Retention > 200 Years

• Factory Programming Available

• Packages Include 8-lead PDIP, SOIC, TSSOP, 

MSOP, TDFN and 5-lead SOT-23

• Pb-Free and RoHS Compliant

• Temperature Ranges:

 

- Industrial (I): 

-40°C to +85°C

- Automotive (E):  -40°C to +125°C

Description:

The Microchip Technology Inc. 24AA32AF/24LC32AF
(24XX32AF*) is a 32 Kbit Electrically Erasable PROM. 
The device is organized as a single block of 4K x 8-bit 
memory with a 2-wire serial interface. Low-voltage 
design permits operation down to 1.7V, with standby 
and read currents of only 1 

μA and 400 

μA,

respectively. It has been developed for advanced, low-
power applications such as personal communications 
or data acquisition. The 24XX32AF also has a page
write capability for up to 32 bytes of data. Functional 
address lines allow up to eight devices on the same 
bus, for up to 256 Kbits address space. The 24XX32AF
is available in the standard 8-pin PDIP, surface mount 
SOIC, TSSOP, TDFN and MSOP packages. The 
24XX32AF is also available in the 5-lead SOT-23 
package.

Block Diagram 

Package Types

Part 

Number

V

CC

 

Range

Max. Clock 

Frequency

Temp. 

Ranges

24AA32AF

1.7-5.5

400 kHz

(1)

I

24LC32AF

2.5-5.5

400 kHz

I, E

Note 1:

100 kHz for V

CC

 <2.5V.

HV Generator

EEPROM

 

Array

Page Latches

YDEC

XDEC

Sense Amp.

R/W Control

I/O

Control

Logic

I/O

Memory

Control

Logic

A0 A1

WP

A2

SCL

SDA

Vcc

V

SS

A0

A1

A2

V

SS

V

CC

WP

SCL

SDA

1

2

3

4

8

7

6

5

PDIP, MSOP, SOIC, TSSOP

SOT-23

1

2

3

4

5

WP

V

CC

SCL

V

SS

SDA

TDFN

A0

A1

A2

V

SS

WP

SCL

SDA

V

CC

8

7

6

5

1

2

3

4

32K I

2

C

 Serial EEPROM with Quarter-Array Write-Protect

*24XX32AF is used in this document as a generic part number for the 24AA32AF/24LC32AF devices.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22184A-html.html
background image

24AA32AF/24LC32AF

DS22184A-page 2

© 2009 Microchip Technology Inc.

1.0

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings 

(†)

V

CC

.............................................................................................................................................................................6.5V

All inputs and outputs w.r.t. V

SS

......................................................................................................... -0.3V to V

CC

 +1.0V

Storage temperature ...............................................................................................................................-65°C to +150°C

Ambient temperature with power applied ................................................................................................-40°C to +125°C

ESD protection on all pins

......................................................................................................................................................≥ 4 kV

TABLE 1-1:

DC CHARACTERISTICS 

 

† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to 
the device. This is a stress rating only and functional operation of the device at those or any other conditions 
above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating 
conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

Industrial (I):

T

A

 = -40°C to +85°C, V

CC

 = +1.7V to +5.5V

Automotive (E): T

A

 = -40°C to +125°C, V

CC

 = +2.5V to +5.5V

Param.

No.

Symbol

Characteristic

Min.

Typ.

Max.

Units

Conditions

D1

A0, A1, A2, WP, SCL 
and SDA pins

D2

V

IH

High-level input voltage

0.7 V

CC

V

D3

V

IL

Low-level input voltage

0.3 V

CC

0.2 V

CC

V
V

V

CC

 

≥ 2.5V

V

CC

 < 2.5V

D4

V

HYS

Hysteresis of Schmitt

 

Trigger inputs (SDA, 
SCL pins)

0.05 V

CC

V

V

CC

 

≥ 2.5V (Note 1)

D5

V

OL

Low-level output voltage

0.40

V

I

OL

 = 3.0 mA, V

CC

 = 4.5V

I

OL

 = 2.1 mA, Vcc = 2.5V

D6

I

LI

Input leakage current

±1

μA

V

IN

 = V

SS

 or V

CC

D7

I

LO

Output leakage current

±1

μA

V

OUT

 = V

SS

 or V

CC

D8

C

IN

C

OUT

Pin capacitance

 

(all inputs/outputs)

10

pF

V

CC

 = 5.0V (Note 1)

T

A

 = 25°C, F

CLK

 = 1 MHz

D9

I

CC

 write

Operating current

0.1

3

mA

V

CC

 = 5.5V, SCL = 400 kHz

D10

I

CC

 read

0.05

400

μA

D11

I

CCS

Standby current


0.01

1
5

μA
μA

Industrial
Automotive
SDA = SCL = V

CC

 = 5.5V

A0, A1, A2, WP = V

SS

Note 1:

This parameter is periodically sampled and not 100% tested.

2:

Typical measurements taken at room temperature.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22184A-html.html
background image

© 2009 Microchip Technology Inc.

DS22184A-page 3

24AA32AF/24LC32AF

TABLE 1-2:

AC CHARACTERISTICS 

 

AC CHARACTERISTICS

Electrical Characteristics:
Industrial (I):

V

CC

 = +1.7V to 5.5V

T

A

 = -40°C to +85°C

Automotive (E):

V

CC

 = +2.5V to 5.5V

T

A

 = -40°C to 125°C

Param.

No.

Sym.

Characteristic

Min.

Max.

Units

Conditions

1

F

CLK

Clock frequency


100
400

kHz

1.7V 

≤ V

CC

 

< 2.5V 

2.5V 

≤ V

CC

 

≤ 5.5V

2

T

HIGH

Clock high time

4000

600


ns

1.7V 

≤ V

CC

 

< 2.5V 

2.5V 

≤ V

CC

 

≤ 5.5V

3

T

LOW

Clock low time

4700
1300


ns

1.7V 

≤ V

CC

 

< 2.5V 

2.5V 

≤ V

CC

 

≤ 5.5V

4

T

R

SDA and SCL rise time
(Note 1)


1000

300

ns

1.7V 

≤ V

CC

 

< 2.5V 

2.5V 

≤ V

CC

 

≤ 5.5V

5

T

F

SDA and SCL fall time
(Note 1)

300

ns

6

T

HD

:

STA

Start condition hold time

4000

600


ns

1.7V 

≤ V

CC

 

< 2.5V 

2.5V 

≤ V

CC

 

≤ 5.5V

7

T

SU

:

STA

Start condition setup time

4700

600


ns

1.7V 

≤ V

CC

 

< 2.5V 

2.5V 

≤ V

CC

 

≤ 5.5V

8

T

HD

:

DAT

Data input hold time

0

ns

(Note 2)

9

T

SU

:

DAT

Data input setup time

250
100


ns

1.7V 

≤ V

CC

 

< 2.5V 

2.5V 

≤ V

CC

 

≤ 5.5V

10

T

SU

:

STO

Stop condition setup time

4000

600


ns

1.7 V 

≤ V

CC

 

< 2.5V 

2.5 V 

≤ V

CC

 

≤ 5.5V

11

T

SU

:

WP

WP setup time

4000

600


ns

1.7V 

≤ V

CC

 

< 2.5V 

2.5V 

≤ V

CC

 

≤ 5.5V

12

T

HD

:

WP

WP hold time

4700
1300


ns

1.7V 

≤ V

CC

 

< 2.5V 

2.5V 

≤ V

CC

 

≤ 5.5V

13

T

AA

Output valid from clock
(Note 2)


3500

900

ns

1.7V 

≤ V

CC

 

< 2.5V 

2.5V 

≤ V

CC

 

≤ 5.5V

14

T

BUF

Bus free time: Time the bus 
must be free before a new 
transmission can start

4700
1300


ns

1.7V 

≤ V

CC

 

< 2.5V 

2.5V 

≤ V

CC

 

≤ 5.5V

15

T

OF

Output fall time from V

IH

 

minimum to V

IL

 maximum

C

B

 

≤ 100 pF

10 + 

0.1C

B

250

ns

(Note 1)

16

T

SP

Input filter spike suppression

 

(SDA and SCL pins)

50

ns

(Notes 1 and 3)

17

T

WC

Write cycle time (byte or 
page)

5

ms

18

Endurance

1,000,000

cycles

25°C (Note 4)

Note 1: Not 100% tested. C

B

 = total capacitance of one bus line in pF.

2: As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region 

(minimum 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

3: The combined T

SP

 and V

HYS

 specifications are due to new Schmitt Trigger inputs, which provide improved 

noise spike suppression. This eliminates the need for a T

I

 specification for standard operation.

4: This parameter is not tested but ensured by characterization. For endurance estimates in a specific 

application, please consult the Total Endurance™ Model, which can be obtained from Microchip’s web site 
at www.microchip.com.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22184A-html.html
background image

24AA32AF/24LC32AF

DS22184A-page 4

© 2009 Microchip Technology Inc.

FIGURE 1-1:

BUS TIMING DATA 

(unprotected)

(protected)

SCL

SDA
IN

SDA
OUT

WP

5

7

6

16

3

2

8

9

13

D4

4

10

11

12

14

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22184A-html.html
background image

© 2009 Microchip Technology Inc.

DS22184A-page 5

24AA32AF/24LC32AF

2.0

PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

TABLE 2-1:

PIN FUNCTION TABLE

2.1

A0, A1, A2 Chip Address Inputs

The A0, A1 and A2 inputs are used by the 24XX32AF
for multiple device operation. The levels on these 
inputs are compared with the corresponding bits in the 
slave address. The chip is selected if the comparison is 
true.

Up to eight devices may be connected to the same bus 
by using different Chip Select bit combinations. These 
inputs must be connected to either V

CC

 or V

SS

.

In most applications, the chip address inputs A0, A1 
and A2 are hard-wired to logic ‘0’ or logic ‘1’. For 
applications in which these pins are controlled by a 
microcontroller or other programmable device, the chip 
address pins must be driven to logic ‘0’ or logic ‘1’ 
before normal device operation can proceed. Address 
pins are not available in the SOT-23 package.

2.2

Serial Data (SDA)

SDA is a bidirectional pin used to transfer addresses 
and data into and out of the device. It is an open-drain 
terminal, therefore, the SDA bus requires a pull-up 
resistor to V

CC

 (typical 10 k

Ω for 100 kHz, 2 kΩ  for 

400 kHz)

For normal data transfer, SDA is allowed to change 
only during SCL low. Changes during SCL high are 
reserved for indicating Start and Stop conditions.

2.3

Serial Clock (SCL)

The SCL input is used to synchronize the data transfer 
to and from the device.

2.4

Write-Protect (WP)

This pin must be connected to either V

SS

 or V

CC

. If tied 

to V

SS

, write operations are enabled. If tied to V

CC

write operations are inhibited for the upper 1/4 of the 
array (C00h-FFFh), but read operations are not 
affected.

Name

PDIP

SOIC

TSSOP

TDFN

MSOP

SOT-23

Description

A0

1

1

1

1

1

Chip Address Input

A1

2

2

2

2

2

Chip Address Input

A2

3

3

3

3

3

Chip Address Input

V

SS

4

4

4

4

4

2

Ground

SDA

5

5

5

5

5

3

Serial Address/Data I/O

SCL

6

6

6

6

6

1

Serial Clock

WP

7

7

7

7

7

5

Write-Protect Input

V

CC

8

8

8

8

8

4

+1.7V to 5.5V Power Supply

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22184A-html.html
background image

24AA32AF/24LC32AF

DS22184A-page 6

© 2009 Microchip Technology Inc.

3.0

FUNCTIONAL DESCRIPTION

The 24XX32AF supports a bidirectional, 2-wire bus and 
data transmission protocol. A device that sends data 
onto the bus is defined as transmitter, while a device 
receiving data is defined as a receiver. The bus has to 
be controlled by a master device which generates the 
Serial Clock (SCL), controls the bus access and gener-
ates the Start and Stop conditions, while the 24XX32AF
works as slave. Both master and slave can operate as 
transmitter or receiver, but the master device 
determines which mode is activated.

4.0

BUS CHARACTERISTICS

The following bus protocol has been defined:

• Data transfer may be initiated only when the bus 

is not busy.

• During data transfer, the data line must remain 

stable whenever the clock line is high. Changes in 
the data line while the clock line is high will be 
interpreted as a Start or Stop condition.

Accordingly, the following bus conditions have been 
defined (Figure 4-1).

4.1

Bus Not Busy (A)

Both data and clock lines remain high.

4.2

Start Data Transfer (B)

A high-to-low transition of the SDA line while the clock 
(SCL) is high determines a Start condition. All 
commands must be preceded by a Start condition.

4.3

Stop Data Transfer (C)

A low-to-high transition of the SDA line while the clock 
(SCL) is high determines a Stop condition. All 
operations must be ended with a Stop condition.

4.4

Data Valid (D)

The state of the data line represents valid data when, 
after a Start condition, the data line is stable for the 
duration of the high period of the clock signal.

The data on the line must be changed during the low 
period of the clock signal. There is one clock pulse per 
bit of data.

Each data transfer is initiated with a Start condition and 
terminated with a Stop condition. The number of data 
bytes transferred between Start and Stop conditions is 
determined by the master device and is, theoretically,
unlimited (although only the last thirty-two bytes will be 
stored when doing a write operation). When an over-
write does occur, it will replace data in a first-in first-out 
(FIFO) fashion.

4.5

Acknowledge

Each receiving device, when addressed, is obliged to 
generate an Acknowledge after the reception of each 
byte. The master device must generate an extra clock 
pulse which is associated with this Acknowledge bit. 

The device that acknowledges, has to pull down the 
SDA line during the Acknowledge clock pulse in such a 
way that the SDA line is stable low during the high 
period of the Acknowledge related clock pulse. Of 
course, setup and hold times must be taken into 
account. During reads, a master must signal an end of 
data to the slave by not generating an Acknowledge bit 
on the last byte that has been clocked out of the slave. 
In this case, the slave (24XX32AF) will leave the data 
line high to enable the master to generate the Stop 
condition.

FIGURE 4-1:

DATA TRANSFER SEQUENCE ON THE SERIAL BUS 

Note:

The 24XX32AF does not generate any 
Acknowledge bits if an internal 
programming cycle is in progress.

SCL

SDA

(A)

(B)

(D)

(D)

(A)

(C)

Start

Condition

Address or

Acknowledge

Valid

Data

Allowed

to Change

Stop

Condition

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22184A-html.html
background image

© 2009 Microchip Technology Inc.

DS22184A-page 7

24AA32AF/24LC32AF

5.0

DEVICE ADDRESSING 

A control byte is the first byte received following the 
Start condition from the master device (Figure 5-1). 
The control byte consists of a four-bit control code. For 
the 24XX32AF, this is set as ‘1010’ binary for read and 
write operations. The next three bits of the control byte 
are the Chip Select bits (A2, A1, A0). The Chip Select 
bits allow the use of up to eight 24XX32AF devices on 
the same bus and are used to select which device is 
accessed. The Chip Select bits in the control byte must 
correspond to the logic levels on the corresponding A2, 
A1 and A0 pins for the device to respond. These bits 
are in effect the three Most Significant bits of the word 
address. 

For the SOT-23 package, the address pins are not 
available. During device addressing, the A1, A2, and 
A0 Chip Select bits (Figure 5-2) should be set to ‘0’.

The last bit of the control byte defines the operation to 
be performed. When set to a ‘1’, a read operation is 
selected. When set to a zero, a write operation is 
selected. The next two bytes received define the 
address of the first data byte (Figure 5-2). Because 
only A11 to A0 are used, the upper four address bits are 
“don’t care” bits. The upper address bits are transferred 
first, followed by the Less Significant bits. 

Following the Start condition, the 24XX32AF monitors 
the SDA bus checking the device type identifier being 
transmitted and, upon receiving a ‘1010’ code and 
appropriate device select bits, the slave device outputs 

an Acknowledge signal on the SDA line. Depending on 
the state of the R/W bit, the 24XX32AF will select a 
read or write operation.

FIGURE 5-1:

CONTROL BYTE FORMAT 

5.1

Contiguous Addressing Across 
Multiple Devices

The Chip Select bits A2, A1 and A0 can be used to 
expand the contiguous address space for up to 256K 
bits by adding up to eight 24XX32AF devices on the 
same bus. In this case, software can use A0 of the con-
trol byte as address bit A12; A1 as address bit A13; and 
A2 as address bit A14. It is not possible to sequentially 
read across device boundaries.

The SOT-23 package does not support multiple device 
addressing on the same bus.

FIGURE 5-2:

ADDRESS SEQUENCE BIT ASSIGNMENTS 

1

0

1

0

A2

A1

A0

S

ACK

R/W

Control Code

Chip Select

Bits

Slave Address

Acknowledge Bit

Start Bit

Read/Write Bit

1

0

1

0

A

2

A

1

A

0 R/W

x

x

x

x

A

11

A

10

A

9

A

7

A

0

A

8

Control Byte

Address High Byte

Address Low Byte

Control

Code

Chip

Select

Bits

x

 = “don’t care” bit

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22184A-html.html
background image

24AA32AF/24LC32AF

DS22184A-page 8

© 2009 Microchip Technology Inc.

6.0

WRITE OPERATIONS

6.1

Byte Write

Following the Start condition from the master, the 
control code (4 bits), the Chip Select (3 bits), and the 
R/W bit (which is a logic low) are clocked onto the bus 
by the master transmitter. This indicates to the 
addressed slave receiver that the address high byte 
will follow once it has generated an Acknowledge bit 
during the ninth clock cycle. Therefore, the next byte 
transmitted by the master is the high-order byte of the 
word address and will be written into the Address 
Pointer of the 24XX32AF. The next byte is the Least 
Significant Address Byte. After receiving another 
Acknowledge signal from the 24XX32AF, the master 
device will transmit the data word to be written into the 
addressed memory location. The 24XX32AF acknowl-
edges again and the master generates a Stop 
condition. This initiates the internal write cycle and, 
during this time, the 24XX32AF will not generate 
Acknowledge signals (Figure 6-1). If an attempt is 
made to write to the array with the WP pin held high, 
the device will acknowledge the command, but no 
write cycle will occur. No data will be written and the 
device will immediately accept a new command. After 
a byte Write command, the internal address counter 
will point to the address location following the one that 
was just written.

6.2

Page Write 

The write control byte, word address and the first data 
byte are transmitted to the 24XX32AF in the same way 
as in a byte write. However, instead of generating a 
Stop condition, the master transmits up to 31 additional 
bytes which are temporarily stored in the on-chip page 
buffer and will be written into memory once the master 
has transmitted a Stop condition. Upon receipt of each 
word, the five lower Address Pointer bits are internally 
incremented by ‘1’. If the master should transmit more 
than 32 bytes prior to generating the Stop condition, the 
address counter will roll over and the previously 
received data will be overwritten. As with the byte write 
operation, once the Stop condition is received, an 
internal write cycle will begin (Figure 6-2). If an attempt 
is made to write to the array with the WP pin held high, 
the device will acknowledge the command, but no write 
cycle will occur, no data will be written, and the device 
will immediately accept a new command.

6.3

Write Protection

The WP pin allows the user to write-protect 1/4 of the
array (C00h-FFFh) when the pin is tied to V

CC

. If tied to 

V

SS

 the write protection is disabled. The WP pin is 

sampled at the Stop bit for every Write command 
(Figure 4-1). Toggling the WP pin after the Stop bit will 
have no effect on the execution of the write cycle. 

Note:

Page write operations are limited to writing 
bytes within a single physical page, 
regardless of the number of bytes 
actually being written. Physical page 
boundaries start at addresses that are 
integer multiples of the page buffer size (or 
‘page size’) and end at addresses that are 
integer multiples of [page size – 1]. If a 
Page Write command attempts to write 
across a physical page boundary, the 
result is that the data wraps around to the 
beginning of the current page (overwriting 
data previously stored there), instead of 
being written to the next page as might be 
expected. It is therefore necessary for the 
application software to prevent page write 
operations that would attempt to cross a 
page boundary.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22184A-html.html
background image

© 2009 Microchip Technology Inc.

DS22184A-page 9

24AA32AF/24LC32AF

FIGURE 6-1:

BYTE WRITE

FIGURE 6-2:

PAGE WRITE

x x x

Bus Activity

Master

SDA Line

Bus Activity

S

T

A

R

T

Control

Byte

Address

High Byte

Address

Low Byte

Data

S

T

O

P

A

C

K

A

C

K

A

C

K

A

C

K

x

 = “don’t care” bit

S 1 0 1 0

0

A

2

A

1

A

0

P

x

x x x

Bus Activity

Master

SDA Line

Bus Activity

S

T

A

R

T

Control

Byte

Address

High Byte

Address

Low Byte

Data Byte 0

S

T

O

P

A

C

K

A

C

K

A

C

K

A

C

K

Data Byte 31

A

C

K

x

 = “don’t care” bit

S 1 0 1 0

0

A

2

A

1

A

0

P

x

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22184A-html.html
background image

24AA32AF/24LC32AF

DS22184A-page 10

© 2009 Microchip Technology Inc.

7.0

ACKNOWLEDGE POLLING

Since the device will not acknowledge during a write 
cycle, this can be used to determine when the cycle is 
complete (this feature can be used to maximize bus 
throughput). Once the Stop condition for a Write 
command has been issued from the master, the device 
initiates the internally-timed write cycle. ACK polling 
can then be initiated immediately. This involves the 
master sending a Start condition followed by the control 
byte for a Write command (R/W = 0). If the device is still 
busy with the write cycle, then no ACK will be returned. 
If no ACK is returned, the Start bit and control byte must 
be re-sent. If the cycle is complete, the device will 
return the ACK and the master can then proceed with 
the next Read or Write command. See Figure 7-1 for 
flow diagram of this operation.

FIGURE 7-1:

ACKNOWLEDGE POLLING 
FLOW

Send

Write Command

Send Stop

Condition to

Initiate Write Cycle

Send Start

Send Control Byte

with R/W = 0

Did Device

Acknowledge

(ACK = 0)?

Next

Operation

No

Yes

Maker
Microchip Technology Inc.
Datasheet PDF Download