24AA128/24LC128/24FC128 Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21191s-html.html
background image

 2010 Microchip Technology Inc.

DS21191S-page 1

24AA128/24LC128/24FC128

Device Selection Table

Features:

• Single Supply with Operation down to 1.7V for 

24AA128/24FC128 devices, 2.5V for 24LC128 
Devices

• Low-Power CMOS Technology:

- Write current 3 mA, typical
- Standby current 100 nA, typical

• 2-Wire Serial Interface, I

2

C™ Compatible

• Cascadable up to Eight Devices
• Schmitt Trigger Inputs for Noise Suppression
• Output Slope Control to Eliminate Ground Bounce
• 100 kHz and 400 kHz Clock Compatibility
• 1 MHz Clock for FC Versions
• Page Write Time 5 ms, typical
• Self-Timed Erase/Write Cycle
• 64-Byte Page Write Buffer
• Hardware Write-Protect
• ESD Protection >4000V
• More than 1 Million Erase/Write Cycles
• Data Retention > 200 years
• Factory Programming Available
• Packages include 8-lead PDIP, SOIC, TSSOP, 

DFN, TDFN, MSOP, and Chip Scale Packages

• Pb-Free and RoHS Compliant

• Temperature Ranges:

Description:

The Microchip Technology Inc. 24AA128/24LC128/
24FC128 (24XX128*) is a 16K x 8 (128 Kbit) Serial
Electrically Erasable PROM (EEPROM), capable of
operation across a broad voltage range (1.7V to 5.5V).
It has been developed for advanced, low-power
applications such as personal communications or data
acquisition. This device also has a page write capabil-
ity of up to 64 bytes of data. This device is capable of
both random and sequential reads up to the 128K
boundary. Functional address lines allow up to eight
devices on the same bus, for up to 1 Mbit address
space. This device is available in the standard 8-pin
plastic DIP, SOIC (3.90 mm and 5.28 mm), TSSOP,
MSOP, DFN, TDFN and Chip Scale packages.

Block Diagram

*24XX128 is used in this document as a generic part number
for the 24AA128/24LC128/24FC128 devices.

Package Types

Part 

Number

V

CC

 Range

Max. Clock

Frequency

Temp. 

Ranges

24AA128

1.7-5.5V

400 kHz

(1)

I

24LC128

2.5-5.5V

400 kHz

I, E

24FC128

1.7-5.5V

1 MHz

(2)

I

Note 1:

100 kHz for V

CC

 < 2.5V.

2:

400 kHz for V

CC

 < 2.5V.

- Industrial (I):

 -40

C to +85C

- Automotive (E):

 -40

C to +125C

HV Generator

EEPROM 

Array

Page Latches

YDEC

XDEC

Sense Amp.

R/W Control

M

emory

C

ontrol

L

ogic

I/O

C

ontrol

L

ogic

I/O

A0 A1 A2

SDA

SCL

V

CC

V

SS

WP

A0

A1

A2

V

SS

V

CC

WP

SCL

SDA

1

2

3

4

8

7

6

5

24

X

X

1

28

PDIP/SOIC

TSSOP/MSOP

1

A0

A1

A2

V

SS

1

2

3

4

8

7

6

5

V

CC

WP

SCL

SDA

2

4X

X

128

DFN/TDFN

A0

A1

A2

V

SS

WP

SCL

SDA

24

X

X

128

5

6

7

8

4

3

2

1

V

CC

Note 1:  Pins A0 and A1 are no-connects for the MSOP package only.

CS (Chip Scale)

2

1

2

3

4

5

6

7

8

V

CC

A1 A0

WP

A2

SDA SCL V

SS

(TOP DOWN VIEW,
BALLS NOT VISIBLE)

         2:  Available in I-temp, “AA” only.

128K I

2

C

 CMOS Serial EEPROM

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21191s-html.html
background image

24AA128/24LC128/24FC128

DS21191S-page 2

 2010 Microchip Technology Inc.

1.0

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

(†)

V

CC

.............................................................................................................................................................................6.5V

All inputs and outputs w.r.t. V

SS

......................................................................................................... -0.6V to V

CC

 +1.0V

Storage temperature ...............................................................................................................................-65°C to +150°C
Ambient temperature with power applied................................................................................................-40°C to +125°C
ESD protection on all pins

  4 kV

TABLE 1-1:

DC CHARACTERISTICS

 NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at those or any other conditions above those
indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.

DC CHARACTERISTICS

Electrical Characteristics:
Industrial (I):

V

CC

 = +1.7V to 5.5V T

A

 = -40°C to +85°C

Automotive (E):

V

CC

 = +2.5V to 5.5V T

A

 = -40°C to 125°C

Param.

No.

Sym.

Characteristic

Min.

Max.

Units

Conditions

A0, A1, A2, SCL, SDA and 
WP pins:

D1

V

IH

High-level input voltage

0.7 V

CC

V

D2

V

IL

Low-level input voltage

0.3 V

CC

0.2 V

CC

V
V

V

CC

 

2.5V

V

CC

 < 2.5V

D3

V

HYS

Hysteresis of Schmitt Trigger 
inputs (SDA, SCL pins)

0.05 V

CC

V

V

CC

 

 2.5V (Note 1)

D4

V

OL

Low-level output voltage

0.40

V

I

OL

 = 3.0 mA @ V

CC

 = 4.5V

I

OL

 = 2.1 mA @ V

CC

 = 2.5V

D5

I

LI

Input leakage current

±1

A

V

IN

 = V

SS

 or V

CC

, WP = V

SS

V

IN

 = V

SS

 or V

CC

, WP = V

CC

D6

I

LO

Output leakage current

±1

A

V

OUT

 = V

SS

 or V

CC

D7

C

IN

C

OUT

Pin capacitance 
(all inputs/outputs)

10

pF

V

CC

 = 5.0V (Note 1)

T

A

 = 25°C, F

CLK

 = 1 MHz

D8

I

CC

 Read Operating current

400

A

V

CC

 = 5.5V, SCL = 400 kHz

I

CC

 Write

3

mA

V

CC

 = 5.5V

D9

I

CCS

Standby current

1

A

T

A

 = -40°C to +85°C

SCL = SDA = V

CC

 = 5.5V

A0, A1, A2, WP = V

SS

5

A

T

A

 = -40°C to 125°C

SCL = SDA = V

CC

 = 5.5V

A0, A1, A2, WP = V

SS

Note 1: This parameter is periodically sampled and not 100% tested.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21191s-html.html
background image

 2010 Microchip Technology Inc.

DS21191S-page 3

24AA128/24LC128/24FC128

TABLE 1-2:

AC CHARACTERISTICS

AC CHARACTERISTICS

Electrical Characteristics:
Industrial (I):

V

CC

 = +1.7V to 5.5V T

A

 = -40°C to +85°C

Automotive (E):

V

CC

 = +2.5V to 5.5V T

A

 = -40°C to 125°C

Param.

No.

Sym.

Characteristic

Min.

Max.

Units

Conditions

1

F

CLK

Clock frequency




100
400
400

1000

kHz

1.7V 

 V

CC

 

 2.5V 

2.5V 

 V

CC

 

 5.5V

1.7V 

 V

CC

 

 2.5V 24FC128

2.5V 

 V

CC

 

 5.5V 24FC128

2

T

HIGH

Clock high time

4000

600
600
500




ns

1.7V 

 V

CC

 

 2.5V 

2.5V 

 V

CC

 

 5.5V

1.7V 

 V

CC

 

 2.5V 24FC128

2.5V 

 V

CC

 

 5.5V 24FC128

3

T

LOW

Clock low time

4700
1300
1300

500




ns

1.7V 

 V

CC

 

 2.5V 

2.5V 

 V

CC

 

 5.5V

1.7V 

 V

CC

 

 2.5V 24FC128

2.5V 

 V

CC

 

 5.5V 24FC128

4

T

R

SDA and SCL rise time
(Note 1)



1000

300
300

ns

1.7V 

 V

CC

 

 2.5V 

2.5V 

 V

CC

 

 5.5V

1.7V 

 V

CC

 

 5.5V 24FC128

5

T

F

SDA and SCL fall time
(Note 1)


300
100

ns

All except, 24FC128
1.7V 

 V

CC

 

 5.5V 24FC128

6

T

HD

:

STA

Start condition hold time

4000

600
600
250




ns

1.7V 

 V

CC

 

 2.5V 

2.5V 

 V

CC

 

 5.5V

1.7V 

 V

CC

 

 2.5V 24FC128

2.5V 

 V

CC

 

 5.5V 24FC128

7

T

SU

:

STA

Start condition setup time

4700

600
600
250




ns

1.7V 

 V

CC

 

 2.5V 

2.5V 

 V

CC

 

 5.5V

1.7V 

 V

CC

 

 2.5V 24FC128

2.5V 

 V

CC

 

 5.5V 24FC128

8

T

HD

:

DAT

Data input hold time

0

ns

(Note 2)

9

T

SU

:

DAT

Data input setup time

250
100
100



ns

1.7V 

 V

CC

 

 2.5V 

2.5V 

 V

CC

 

 5.5V

1.7V 

 V

CC

 

 5.5V 24FC128

10

T

SU

:

STO

Stop condition setup time

4000

600
600
250




ns

1.7 V 

 V

CC

 

 2.5V 

2.5 V 

 V

CC

 

 5.5V

1.7V 

 V

CC

 

 2.5V 24FC128

2.5 V 

 V

CC

 

 5.5V 24FC128

11

T

SU

:

WP

WP setup time

4000

600
600



ns

1.7V 

 V

CC

 

 2.5V 

2.5V 

 V

CC

 

 5.5V

1.7V 

 V

CC

 

 5.5V 24FC128

12

T

HD

:

WP

WP hold time

4700
1300
1300



ns

1.7V 

 V

CC

 

 2.5V 

2.5V 

 V

CC

 

 5.5V

1.7V 

 V

CC

 

 5.5V 24FC128

Note 1: Not 100% tested. C

B

 = total capacitance of one bus line in pF.

2: As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region

(minimum 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

3: The combined T

SP

 and V

HYS

 specifications are due to new Schmitt Trigger inputs, which provide improved

noise spike suppression. This eliminates the need for a T

I

 specification for standard operation.

4: This parameter is not tested but ensured by characterization. For endurance estimates in a specific

application, please consult the Total Endurance™ Model, which can be obtained from Microchip’s web site
at www.microchip.com.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21191s-html.html
background image

24AA128/24LC128/24FC128

DS21191S-page 4

 2010 Microchip Technology Inc.

FIGURE 1-1:

BUS TIMING DATA

 

13

T

AA

Output valid from clock
(Note 2)




3500

900
900
400

ns

1.7V 

 V

CC

 

 2.5V 

2.5V 

 V

CC

 

 5.5V

1.7V 

 V

CC

 

 2.5V 24FC128

2.5V 

 V

CC

 

 5.5V 24FC128

14

T

BUF

Bus free time: Time the bus 
must be free before a new 
transmission can start

4700
1300
1300

500




ns

1.7V 

 V

CC

 

 2.5V 

2.5V 

 V

CC

 

 5.5V

1.7V 

 V

CC

 

 2.5V 24FC128

2.5V 

 V

CC

 

 5.5V 24FC128

15

T

OF

Output fall time from V

IH

minimum to V

IL

 maximum

C

B

 

 100 pF

10 + 0.1C

B

250
250

ns

All except, 24FC128 (Note 1)
24FC128 (Note 1)

16

T

SP

Input filter spike suppression
(SDA and SCL pins)

50

ns

All except, 24FC128 (Notes 1 
and 3)

17

T

WC

Write cycle time (byte or 
page)

5

ms

18

Endurance

1,000,000

cycles Page Mode, 25°C, 5.5V (Note 4)

TABLE 1-2:

AC CHARACTERISTICS (CONTINUED)

AC CHARACTERISTICS

Electrical Characteristics:
Industrial (I):

V

CC

 = +1.7V to 5.5V T

A

 = -40°C to +85°C

Automotive (E):

V

CC

 = +2.5V to 5.5V T

A

 = -40°C to 125°C

Param.

No.

Sym.

Characteristic

Min.

Max.

Units

Conditions

Note 1: Not 100% tested. C

B

 = total capacitance of one bus line in pF.

2: As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region

(minimum 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

3: The combined T

SP

 and V

HYS

 specifications are due to new Schmitt Trigger inputs, which provide improved

noise spike suppression. This eliminates the need for a T

I

 specification for standard operation.

4: This parameter is not tested but ensured by characterization. For endurance estimates in a specific

application, please consult the Total Endurance™ Model, which can be obtained from Microchip’s web site
at www.microchip.com.

(unprotected)

(protected)

SCL

SDA
IN

SDA
OUT

WP

5

7

6

16

3

2

8

9

13

D3

4

10

11

12

14

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21191s-html.html
background image

 2010 Microchip Technology Inc.

DS21191S-page 5

24AA128/24LC128/24FC128

2.0

PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

TABLE 2-1:

PIN FUNCTION TABLE

2.1

A0, A1, A2 Chip Address Inputs

The A0, A1 and A2 inputs are used by the 24XX128 for
multiple device operations. The levels on these inputs
are compared with the corresponding bits in the slave
address. The chip is selected if the compare is true.
For the MSOP package only, pins A0 and A1 are not
connected.
Up to eight devices (two for the MSOP package) may
be connected to the same bus by using different Chip
Select bit combinations. These inputs must be
connected to either V

CC

 or V

SS

.

In most applications, the chip address inputs A0, A1
and A2 are hard-wired to logic ‘0’ or logic ‘1’. For
applications in which these pins are controlled by a
microcontroller or other programmable device, the chip
address pins must be driven to logic ‘0’ or logic ‘1’
before normal device operation can proceed.

2.2

Serial Data (SDA)

This is a bidirectional pin used to transfer addresses
and data into and out of the device. It is an open drain
terminal. Therefore, the SDA bus requires a pull-up
resistor to V

CC

 (typical 10 k

 for 100 kHz, 2 k for

400 kHz  and  1 MHz).
For normal data transfer, SDA is allowed to change
only during SCL low. Changes during SCL high are
reserved for indicating the Start and Stop conditions.

2.3

Serial Clock (SCL)

This input is used to synchronize the data transfer to
and from the device.

2.4

Write-Protect (WP)

This pin must be connected to either V

SS

 or V

CC

. If tied

to V

SS

, write operations are enabled. If tied to V

CC

,

write operations are inhibited but read operations are
not affected.

3.0

FUNCTIONAL DESCRIPTION

The 24XX128 supports a bidirectional 2-wire bus and
data transmission protocol. A device that sends data
onto the bus is defined as a transmitter and a device
receiving data as a receiver. The bus must be
controlled by a master device which generates the
Serial Clock (SCL), controls the bus access and
generates the Start and Stop conditions while the
24XX128 works as a slave. Both master and slave can
operate as a transmitter or receiver, but the master
device determines which mode is activated.

Name

PDIP

SOIC

TSSOP

MSOP

DFN

(1)

TDFN

(1)

CS

Function

A0

1

1

1

1

1

3

User Configurable Chip Select

A1

2

2

2

2

2

2

User Configurable Chip Select

(NC)

1, 2

Not Connected

A2

3

3

3

3

3

3

5

User Configurable Chip Select

V

SS

4

4

4

4

4

4

8

Ground

SDA

5

5

5

5

5

5

6

Serial Data

SCL

6

6

6

6

6

6

7

Serial Clock

WP

7

7

7

7

7

7

4

Write-Protect Input

V

CC

8

8

8

8

8

8

1

+1.7V to 5.5V (24AA128)
+2.5V to 5.5V (24LC128)
+1.7V to 5.5V (24FC128)

Note 1:

The exposed pad on the DFN/TDFN package can be connected to V

SS

 or left floating.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21191s-html.html
background image

24AA128/24LC128/24FC128

DS21191S-page 6

 2010 Microchip Technology Inc.

4.0

BUS CHARACTERISTICS

The following bus protocol has been defined:
• Data transfer may be initiated only when the bus 

is not busy.

• During data transfer, the data line must remain 

stable whenever the clock line is high. Changes in 
the data line while the clock line is high will be 
interpreted as a Start or Stop condition.

Accordingly, the following bus conditions have been
defined (Figure 4-1).

4.1

Bus Not Busy (A)

Both data and clock lines remain high.

4.2

Start Data Transfer (B)

A high-to-low transition of the SDA line while the clock
(SCL) is high determines a Start condition. All
commands must be preceded by a Start condition.

4.3

Stop Data Transfer (C)

A low-to-high transition of the SDA line, while the clock
(SCL) is high, determines a Stop condition. All
operations must end with a Stop condition.

4.4

Data Valid (D)

The state of the data line represents valid data when,
after a Start condition, the data line is stable for the
duration of the high period of the clock signal.

The data on the line must be changed during the low
period of the clock signal. There is one bit of data per
clock pulse.
Each data transfer is initiated with a Start condition and
terminated with a Stop condition. The number of the
data bytes transferred between the Start and Stop
conditions is determined by the master device.

4.5

Acknowledge

Each receiving device, when addressed, is obliged to
generate an Acknowledge signal after the reception of
each byte. The master device must generate an extra
clock pulse, which is associated with this Acknowledge
bit.

A device that acknowledges must pull down the SDA
line during the acknowledge clock pulse in such a way
that the SDA line is stable low during the high period of
the acknowledge related clock pulse. Of course, setup
and hold times must be taken into account. During
reads, a master must signal an end of data to the slave
by NOT generating an Acknowledge bit on the last byte
that has been clocked out of the slave. In this case, the
slave (24XX128) will leave the data line high to enable
the master to generate the Stop condition.

FIGURE 4-1:

DATA TRANSFER SEQUENCE ON THE SERIAL BUS

FIGURE 4-2:

ACKNOWLEDGE TIMING

Note:

The 24XX128 does not generate any
Acknowledge bits if an internal
programming cycle is in progress.

Address or

Acknowledge

Valid

Data

Allowed

to Change

Stop

Condition

Start

Condition

SCL

SDA

(A)

(B)

(D)

(D)

(C)

(A)

SCL

9

8

7

6

5

4

3

2

1

1

2

3

Transmitter must release the SDA line at this point,
allowing the Receiver to pull the SDA line low to
acknowledge the previous eight bits of data.

Receiver must release the SDA line
at this point so the Transmitter can
continue sending data.

Data from transmitter

SDA

Acknowledge

Bit

Data from transmitter

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21191s-html.html
background image

 2010 Microchip Technology Inc.

DS21191S-page 7

24AA128/24LC128/24FC128

5.0

DEVICE ADDRESSING

A control byte is the first byte received following the
Start condition from the master device (Figure 5-1).
The control byte consists of a 4-bit control code. For the
24XX128, this is set as ‘1010

 binary for read and write

operations. The next three bits of the control byte are
the Chip Select bits (A2, A1, A0). The Chip Select bits
allow the use of up to eight 24XX128 devices on the
same bus and are used to select which device is
accessed. The Chip Select bits in the control byte must
correspond to the logic levels on the corresponding A2,
A1 and A0 pins for the device to respond. These bits
are, in effect, the three Most Significant bits of the word
address.
For the MSOP package, the A0 and A1 pins are not
connected. During device addressing, the A0 and A1
Chip Select bits (Figures 5-1 and  5-2) should be set to
‘0’. Only two 24XX128 MSOP packages can be
connected to the same bus.
The last bit of the control byte defines the operation to
be performed. When set to a one, a read operation is
selected. When set to a zero, a write operation is
selected. The next two bytes received define the
address of the first data byte (Figure 5-2). Because
only A13…A0 are used, the upper two address bits are
“don’t care” bits. The upper address bits are transferred
first, followed by the Less Significant bits.
Following the Start condition, the 24XX128 monitors
the SDA bus checking the device type identifier being
transmitted. Upon receiving a ‘1010

 code and

appropriate device select bits, the slave device outputs
an Acknowledge signal on the SDA line. Depending on
the state of the R/W bit, the 24XX128 will select a read
or write operation.

FIGURE 5-1:

CONTROL BYTE 
FORMAT

5.1

Contiguous Addressing Across 
Multiple Devices

The Chip Select bits A2, A1 and A0 can be used to
expand the contiguous address space for up to 1 Mbit
by adding up to eight 24XX128 devices on the same
bus. In this case, software can use A0 of the control
byte
 as address bit A14; A1 as address bit A15; and A2
as address bit A16. It is not possible to sequentially
read across device boundaries.
For the MSOP package, up to two 24XX128 devices
can be added for up to 256 Kbit of address space. In
this case, software can use A2 of the control byte as
address bit A16. Bits A0 (A14) and A1 (A15) of the
control byte must always be set to logic ‘0’ for the
MSOP.

FIGURE 5-2:

ADDRESS SEQUENCE BIT ASSIGNMENTS

1

0

1

0

A2

A1

A0

S

ACK

R/W

Control Code

Chip Select

Bits

Slave Address

Acknowledge Bit

Start Bit

Read/Write Bit

1

0

1

0

A

2

A

1

A

0 R/W

x

x

A

11

A

10

A

9

A

7

A

0

A

8

A

12

Control Byte

Address High Byte

Address Low Byte

Control

Code

Chip

Select

Bits

x = “don’t care” bit

A

13

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21191s-html.html
background image

24AA128/24LC128/24FC128

DS21191S-page 8

 2010 Microchip Technology Inc.

6.0

WRITE OPERATIONS

6.1

Byte Write

Following the Start condition from the master, the
control code (four bits), the Chip Select (three bits) and
the R/W bit (which is a logic low) are clocked onto the
bus by the master transmitter. This indicates to the
addressed slave receiver that the address high byte will
follow after it has generated an Acknowledge bit during
the ninth clock cycle. Therefore, the next byte
transmitted by the master is the high-order byte of the
word address and will be written into the Address
Pointer of the 24XX128. The next byte is the Least
Significant Address Byte. After receiving another
Acknowledge signal from the 24XX128, the master
device will transmit the data word to be written into the
addressed memory location. The 24XX128 acknowl-
edges again and the master generates a Stop
condition. This initiates the internal write cycle and
during this time, the 24XX128 will not generate
Acknowledge signals (Figure 6-1). If an attempt is
made to write to the array with the WP pin held high, the
device will acknowledge the command, but no write
cycle will occur, no data will be written, and the device
will immediately accept a new command. After a byte
Write command, the internal address counter will point
to the address location following the one that was just
written.

6.2

Page Write

The write control byte, word address, and the first data
byte are transmitted to the 24XX128 in much the same
way as in a byte write. The exception is that instead of
generating a Stop condition, the master transmits up to
63 additional bytes, which are temporarily stored in the
on-chip page buffer, and will be written into memory
once the master has transmitted a Stop condition.
Upon receipt of each word, the six lower Address
Pointer bits are internally incremented by ‘

1

’. If the

master should transmit more than 64 bytes prior to
generating the Stop condition, the address counter will
roll over and the previously received data will be over-
written. As with the byte write operation, once the Stop
condition is received, an internal write cycle will begin
(Figure 6-2). If an attempt is made to write to the array
with the WP pin held high, the device will acknowledge
the command, but no write cycle will occur, no data will
be written and the device will immediately accept a new
command.

6.3

Write Protection

The WP pin allows the user to write-protect the entire
array (0000-3FFF) when the pin is tied to V

CC

. If tied to

V

SS

 the write protection is disabled. The WP pin is

sampled at the Stop bit for every Write command
(Figure 1-1). Toggling the WP pin after the Stop bit will
have no effect on the execution of the write cycle. 

Note:

When doing a write of less than 64 bytes
the data in the rest of the page is refreshed
along with the data bytes being written.
This will force the entire page to endure a
write cycle, for this reason endurance is
specified per page.

Note:

Page write operations are limited to
writing bytes within a single physical
page,  regardless of the number of
bytes actually being written. Physical
page boundaries start at addresses
that are integer multiples of the page
buffer size (or ‘page size’) and end at
addresses that are integer multiples of
[page size – 1]. If a Page Write
command attempts to write across a
physical page boundary, the result is
that the data wraps around to the
beginning of the current page (over-
writing data previously stored there),
instead of being written to the next
page, as might be expected. It is,
therefore, necessary for the applica-
tion software to prevent page write
operations that would attempt to cross
a page boundary.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21191s-html.html
background image

 2010 Microchip Technology Inc.

DS21191S-page 9

24AA128/24LC128/24FC128

FIGURE 6-1:

BYTE WRITE

FIGURE 6-2:

PAGE WRITE

7.0

ACKNOWLEDGE POLLING

Since the device will not acknowledge during a write
cycle, this can be used to determine when the cycle is
complete (This feature can be used to maximize bus
throughput). Once the Stop condition for a Write
command has been issued from the master, the device
initiates the internally timed write cycle. ACK polling
can be initiated immediately. This involves the master
sending a Start condition, followed by the control byte
for a Write command (R/W = 0). If the device is still
busy with the write cycle, then no ACK will be returned.
If no ACK is returned, the Start bit and control byte must
be resent. If the cycle is complete, then the device will
return the ACK and the master can then proceed with
the next Read or Write command. See Figure 7-1 for
flow diagram.

FIGURE 7-1:

ACKNOWLEDGE 
POLLING FLOW

x x

Bus Activity

Master

SDA Line

Bus Activity

S

T

A

R

T

Control

Byte

Address

High Byte

Address

Low Byte

Data

S

T

O

P

A

C

K

A

C

K

A

C

K

A

C

K

x = “don’t care” bit

S 1 0 1 0

0

A

2

A

1

A

0

P

x x

Bus Activity

Master

SDA Line

Bus Activity

S

T

A

R

T

Control

Byte

Address

High Byte

Address

Low Byte

Data Byte 0

S

T

O

P

A

C

K

A

C

K

A

C

K

A

C

K

Data Byte 63

A

C

K

x = “don’t care” bit

S 1 0 1 0

0

A

2

A

1

A

0

P

Send

Write Command

Send Stop

Condition to

Initiate Write Cycle

Send Start

Send Control Byte

with R/W = 0

Did Device

Acknowledge

(ACK = 0)?

Next

Operation

No

Yes

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21191s-html.html
background image

24AA128/24LC128/24FC128

DS21191S-page 10

 2010 Microchip Technology Inc.

8.0

READ OPERATION

Read operations are initiated in much the same way as
write operations with the exception that the R/W bit of
the control byte is set to ‘

1

’. There are three basic types

of read operations: current address read, random read
and sequential read.

8.1

Current Address Read

The 24XX128 contains an address counter that main-
tains the address of the last word accessed, internally
incremented by ‘

1

’. Therefore, if the previous read

access was to address ‘

n

’ (

n

 is any legal address), the

next current address read operation would access data
from address 

n + 1

Upon receipt of the control byte with R/W bit set to ‘

1

’,

the 24XX128 issues an acknowledge and transmits the
8-bit data word. The master will not acknowledge the
transfer, but does generate a Stop condition and the
24XX128 discontinues transmission (Figure 8-1).

FIGURE 8-1:

CURRENT ADDRESS 
READ

8.2

Random Read

Random read operations allow the master to access
any memory location in a random manner. To perform
this type of read operation, the word address must first
be set. This is done by sending the word address to the
24XX128 as part of a write operation (R/W bit set to

0’

). Once the word address is sent, the master gener-

ates a Start condition following the acknowledge. This
terminates the write operation, but not before the inter-
nal Address Pointer is set. The master then issues the
control byte again, but with the R/W bit set to a ‘

1

’. The

24XX128 will then issue an acknowledge and transmit
the 8-bit data word. The master will not acknowledge
the transfer but does generate a Stop condition, which
causes the 24XX128 to discontinue transmission
(Figure 8-2). After a random Read command, the
internal address counter will point to the address
location following the one that was just read. 

8.3

Sequential Read

Sequential reads are initiated in the same way as a
random read except that after the 24XX128 transmits
the first data byte, the master issues an acknowledge
as opposed to the Stop condition used in a random
read. This acknowledge directs the 24XX128 to
transmit the next sequentially addressed 8-bit word
(Figure 8-3). Following the final byte transmitted to the
master, the master will NOT generate an acknowledge
but will generate a Stop condition. To provide
sequential reads, the 24XX128 contains an internal
Address Pointer which is incremented by one at the
completion of each operation. This Address Pointer
allows the entire memory contents to be serially read
during one operation. The internal Address Pointer will
automatically roll over from address 3FFF to address

0000

 if the master acknowledges the byte received

from the array address 3FFF.

FIGURE 8-2:

RANDOM READ

FIGURE 8-3:

SEQUENTIAL READ

Bus

 

Activity

Master

SDA Line

Bus Activity

P

S

S

T

O

P

Control

Byte

S

T

A

R

T

Data

A

C

K

N

O

A

C

K

1

1

0

0 A A A 1

Byte

2 1 0

x x

Bus Activity
Master

SDA Line

Bus Activity

A

C

K

N

O

A

C

K

A

C

K

A

C

K

A

C

K

S

T

O

P

S

T

A

R

T

Control

Byte

Address

High Byte

Address

Low Byte

Control

Byte

Data

Byte

S

T

A

R

T

x = “don’t care” bit

S 1 0 1 0 A A A 0

2 1 0

S 1 0 1 0 A A A

1

2 1 0

P

Bus Activity
Master

SDA Line

Bus Activity

Control

Byte

Data (n)

Data (n + 1)

Data (n + 2)

Data (n + x)

N

O
A

C

K

A

C

K

A

C

K

A

C

K

A

C

K

S

T

O

P

P

Maker
Microchip Technology Inc.
Datasheet PDF Download