24AA08H/24LC08BH Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002084B-html.html
background image

 2008-2013 Microchip Technology Inc.

DS20002084B-page 1

24AA08H/24LC08BH

Device Selection Table

Features:

• Single Supply with Operation Down to 1.7V for 

24AA08H Devices, 2.5V for 24LC08BH Devices

• Low-Power CMOS Technology:

- Read current 1 mA, max.
- Standby current 1

A, max.

• 2-Wire Serial Interface, I

2

C™ Compatible

• Schmitt Trigger Inputs for Noise Suppression
• Output Slope Control to eliminate Ground Bounce
• 100 kHz and 400 kHz Clock Compatibility
• Page Write Time 3 ms, typical
• Self-Timed Erase/Write Cycle
• 16-Byte Page Write Buffer
• Hardware Write-Protect for Half-Array (200h-3FFh)
• ESD Protection >4,000V
• More than 1 Million Erase/Write Cycles
• Data Retention >200 years
• Factory Programming available
• Packages include 8-lead PDIP, SOIC, TSSOP, 

TDFN, MSOP and 5-lead SOT-23

• RoHS Compliant
• Temperature Ranges:

- Industrial (I): -40°C to +85°C
- Automotive (E): -40°C to +125°C

Description:

The Microchip Technology Inc. 24AA08H/24LC08BH 
(24XX08H*) is an 8 Kbit Electrically Erasable PROM. 
The device is organized as four blocks of 256 x 8-bit 
memory with a 2-wire serial interface. Low-voltage 
design permits operation down to 1.7V, with standby 
and active currents of only 1

A and 1 mA, 

respectively. The 24XX08H also has a page write 
capability for up to 16 bytes of data. The 24XX08H is 
available in the standard 8-pin PDIP, surface mount 
SOIC, TSSOP, 2x3 TDFN and MSOP packages, and 
is also available in the 5-lead SOT-23 package. All 
packages are RoHS compliant.

Block Diagram

Package Types

Part 

Number

V

CC

 

Range

Max. Clock 

Frequency

Temp. 

Ranges

24AA08H

1.7-5.5

400 kHz

(1)

I

24LC08BH

2.5-5.5

400 kHz

I, E

Note 1:

100 kHz for V

CC

 <2.5V

HV

 

EEPROM

 

Array

Page

 

YDEC

XDEC

Sense Amp.

Memory

Control

Logic

I/O

Control

Logic

I/O

WP

SDA

SCL

V

CC

V

SS

R/W Control

Latches

Generator

A0

A1

A2

V

SS

V

CC

WP

SCL

SDA

1

2

3

4

8

7

6

5

PDIP, MSOP

SOIC, TSSOP

A0

A1

A2

V

SS

1

2

3

4

8

7

6

5

V

CC

WP

SCL

SDA

TDFN

A0

A1

A2

V

SS

WP

SCL
SDA

V

CC

SOT-23-5

1

5

4

3

SCL

Vss

SDA

WP

Vcc

2

Note:

Pins A0, A1 and A2 are not used by the 24XX08. (No
internal connections).

8
7
6
5

1

2
3

4

8K I

2

C

 Serial EEPROM with Half-Array Write-Protect

*24XX08H is used in this document as a generic part
number for the 24AA08H/24LC08BH devices.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002084B-html.html
background image

24AA08H/24LC08BH

DS20002084B-page 2

 2008-2013 Microchip Technology Inc.

1.0

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings 

(†)

V

CC

.............................................................................................................................................................................6.5V

All inputs and outputs w.r.t. V

SS

......................................................................................................... -0.3V to V

CC

 +1.0V

Storage temperature ...............................................................................................................................-65°C to +150°C
Ambient temperature with power applied................................................................................................-40°C to +125°C
ESD protection on all pins

  4 kV

TABLE 1-1:

DC CHARACTERISTICS

† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to
the device. This is a stress rating only and functional operation of the device at those or any other conditions
above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating
conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

V

CC

 = +1.7V to +5.5V

Industrial (I): 

T

A

 = -40°C to +85°C

Automotive (E):  T

A

 = -40°C to +125°C

Param.

No.

Symbol

Characteristic

Min.

Typ.

Max.

Units

Conditions

WP, SCL and SDA pins

D1

V

IH

High-level input voltage

0.7 V

CC

V

D2

V

IL

Low-level input voltage

0.3 V

CC

V

D3

V

HYS

Hysteresis of Schmitt
Trigger inputs

0.05 V

CC

V

(

Note

)

D4

V

OL

Low-level output voltage

0.40

V

I

OL

 = 3.0 mA, V

CC

 = 2.5V

D5

I

LI

Input leakage current

±1

A

V

IN

 = V

SS

 or V

CC

D6

I

LO

Output leakage current

±1

A

V

OUT

 = V

SS

 or V

CC

D7

C

IN

C

OUT

Pin capacitance
(all inputs/outputs)

10

pF

V

CC

 = 5.0V (

Note

)

T

A

 = 25°C, F

CLK

 = 1 MHz

D8

I

CC

 write Operating current

0.1

3

mA

V

CC

 = 5.5V, SCL = 400 kHz

D9

I

CC

 read

0.05

1

mA

D10

I

CCS

Standby current


0.01

1
5

A

A

Industrial
Automotive
SDA = SCL = V

CC

WP = V

SS

Note:

This parameter is periodically sampled and not 100% tested.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002084B-html.html
background image

 2008-2013 Microchip Technology Inc.

DS20002084B-page 3

24AA08H/24LC08BH

TABLE 1-2:

AC CHARACTERISTICS

AC CHARACTERISTICS

Industrial (I):

T

A

 = -40°C to +85°C, V

CC

 = +1.7V to +5.5V

Automotive (E):

T

A

 = -40°C to +125°C, V

CC

 = +2.5V to +5.5V

Param.

No.

Symbol

Characteristic

Min.

Max.

Units

Conditions

1

F

CLK

Clock Frequency


400
100

kHz

2.5V 

 V

CC

 

 5.5V

1.7V 

 V

CC

 

 2.5V (24AA08H)

2

T

HIGH

Clock High Time

600

4000


ns

2.5V 

 V

CC

 

 5.5V

1.7V 

 V

CC

 

 2.5V (24AA08H)

3

T

LOW

Clock Low Time

1300
4700


ns

2.5V 

 V

CC

 

 5.5V

1.7V 

 V

CC

 

 2.5V (24AA08H)

4

T

R

SDA and SCL Rise Time 
(

Note 1

)


300

1000

ns

2.5V 

 V

CC

 

 5.5V 

1.7V 

 V

CC

 

 2.5V (24AA08H) 

5

T

F

SDA and SCL Fall Time

300

ns

(

Note 1

)

6

T

HD

:

STA

Start Condition Hold Time

600

4000


ns

2.5V 

 V

CC

 

 5.5V

1.7V 

 V

CC

 

 2.5V (24AA08H)

7

T

SU

:

STA

Start Condition Setup Time

600

4700


ns

2.5V 

 V

CC

 

 5.5V

1.7V 

 V

CC

 

 2.5V (24AA08H)

8

T

HD

:

DAT

Data Input Hold Time

0

ns

(

Note 2

)

9

T

SU

:

DAT

Data Input Setup Time

100
250


ns

2.5V 

 V

CC

 

 5.5V

1.7V 

 V

CC

 

 2.5V (24AA08H)

10

T

SU

:

STO

Stop Condition Setup Time

600

4000


ns

2.5V 

 V

CC

 

 5.5V

1.7V 

 V

CC

 

 2.5V (24AA08H)

11

T

SU

:

WP

WP Setup Time

600

4000


ns

2.5V 

V

CC

 

 5.5V

1.7V 

V

CC

 < 2.5V (24AA08H)

12

T

HD

:

WP

WP Hold Time

1300
4700


ns

2.5V 

V

CC

 

 5.5V

1.7V 

V

CC

 < 2.5V (24AA08H)

13

T

AA

Output Valid from Clock 
(

Note 2

)


900

3500

ns

2.5V 

 V

CC

 

 5.5V

1.7V 

 V

CC

 

 2.5V (24AA08H)

14

T

BUF

Bus free time: Time the bus 
must be free before a new 
transmission can start

1300
4700


ns

2.5V 

 V

CC

 

 5.5V

1.7V 

 V

CC

 

 2.5V (24AA08H)

15

T

OF

Output Fall Time from V

IH

 

Minimum to V

IL

 Maximum


250
250

ns

2.5V 

 V

CC

 

 5.5V

1.7V 

 V

CC

 

 2.5V (24AA08H)

16

T

SP

Input Filter Spike Suppression
(SDA and SCL pins)

50

ns

(

Notes 1

 and

3

)

17

T

WC

Write Cycle Time (byte or 
page)

5

ms

18

Endurance

1M

cycles 25°C, (

Note 4

)

Note 1:

Not 100% tested. C

B

 = total capacitance of one bus line in pF.

2:

As a transmitter the device must provide an internal minimum delay time to bridge the undefined region 
(minimum 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

3:

The combined T

SP

 and V

HYS

 specifications are due to new Schmitt Trigger inputs which provide improved 

noise spike suppression. This eliminates the need for a 

T

I

 specification for standard operation.

4:

This parameter is not tested but ensured by characterization. For endurance estimates in a specific 
application, please consult the Total Endurance™ Model which can be obtained on Microchip’s web site at 
www.microchip.com.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002084B-html.html
background image

24AA08H/24LC08BH

DS20002084B-page 4

 2008-2013 Microchip Technology Inc.

FIGURE 1-1:

BUS TIMING DATA

(unprotected)

(protected)

SCL

SDA
IN

SDA
OUT

WP

5

7

6

16

3

2

8

9

13

D3

4

10

11

12

14

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002084B-html.html
background image

 2008-2013 Microchip Technology Inc.

DS20002084B-page 5

24AA08H/24LC08BH

2.0

FUNCTIONAL DESCRIPTION

The 24XX08H supports a bidirectional, 2-wire bus and
data transmission protocol. A device that sends data
onto the bus is defined as a transmitter, while a device
receiving data is defined as a receiver. The bus has to
be controlled by a master device which generates the
Serial Clock (SCL), controls the bus access and
generates the Start and Stop conditions, while the
24XX08H works as slave. Both master and slave can
operate as transmitter or receiver, but the master
device determines which mode is activated.

3.0

BUS CHARACTERISTICS

The following bus protocol has been defined:
• Data transfer may be initiated only when the bus 

is not busy.

• During data transfer, the data line must remain 

stable whenever the clock line is high. Changes in 
the data line while the clock line is high will be 
interpreted as a Start or Stop condition.

Accordingly, the following bus conditions have been
defined (

Figure 3-1

).

3.1

Bus Not Busy (A)

Both data and clock lines remain high.

3.2

Start Data Transfer (B)

A high-to-low transition of the SDA line while the clock
(SCL) is high determines a Start condition. All
commands must be preceded by a Start condition.

3.3

Stop Data Transfer (C)

A low-to-high transition of the SDA line while the clock
(SCL) is high determines a Stop condition. All
operations must be ended with a Stop condition.

3.4

Data Valid (D)

The state of the data line represents valid data when,
after a Start condition, the data line is stable for the
duration of the high period of the clock signal.
The data on the line must be changed during the low
period of the clock signal. There is one clock pulse per
bit of data.
Each data transfer is initiated with a Start condition and
terminated with a Stop condition. The number of the
data bytes transferred between the Start and Stop
conditions is determined by the master device and is
theoretically unlimited, although only the last sixteen
will be stored when doing a write operation. When an
overwrite does occur it will replace data in a first-in first-
out (FIFO) fashion.

3.5

Acknowledge

Each receiving device, when addressed, is obliged to
generate an acknowledge after the reception of each
byte. The master device must generate an extra clock
pulse which is associated with this Acknowledge bit.

The device that acknowledges, has to pull down the
SDA line during the acknowledge clock pulse in such a
way that the SDA line is stable low during the high
period of the acknowledge related clock pulse. Of
course, setup and hold times must be taken into
account. During reads, a master must signal an end of
data to the slave by not generating an Acknowledge bit
on the last byte that has been clocked out of the slave.
In this case, the slave (24XX08H) will leave the data
line high to enable the master to generate the Stop
condition.

FIGURE 3-1:

DATA TRANSFER SEQUENCE ON THE SERIAL BUS

Note:

The 24XX08H does not generate any
Acknowledge bits if an internal program-
ming cycle is in progress.

SCL

SDA

(A)

(B)

(D)

(D)

(A)

(C)

Start

Condition

Address or

Acknowledge

Valid

Data

Allowed

to Change

Stop

Condition

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002084B-html.html
background image

24AA08H/24LC08BH

DS20002084B-page 6

 2008-2013 Microchip Technology Inc.

3.6

Device Addressing

A control byte is the first byte received following the
Start condition from the master device (

Figure 3-2

).

The control byte consists of a four-bit control code. For
the 24XX08H, this is set as ‘

1010’

 binary for read and

write operations. The next three bits of the control byte
are the block-select bits (B2, B1, B0). B2 is a “don’t
care” for the 24XX08H. They are used by the master
device to select which of the four 256 word-blocks of
memory are to be accessed. These bits are in effect the
three Most Significant bits of the word address.
The last bit of the control byte defines the operation to
be performed. When set to ‘

1

’ a read operation is

selected. When set to ‘

0

’ a write operation is selected.

Following the Start condition, the 24XX08H monitors
the SDA bus, checking the device type identifier being
transmitted and, upon receiving a ‘

1010’

 code, the

slave device outputs an Acknowledge signal on the
SDA line. Depending on the state of the R/W bit, the
24XX08H will select a read or write operation.

FIGURE 3-2:

CONTROL BYTE 
ALLOCATION  

Operation

Control 

Code

Block Select

R/W

Read

1010

Block Address

1

Write

1010

Block Address

0

1

0

1

0

x

B1 B0 R/W ACK

Start Bit

Read/Write Bit

x = “don’t care”

S

Slave Address

Acknowledge Bit

Control Code

Block

Select 

Bits

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002084B-html.html
background image

 2008-2013 Microchip Technology Inc.

DS20002084B-page 7

24AA08H/24LC08BH

4.0

WRITE OPERATION

4.1

Byte Write

Following the Start condition from the master, the
device code (4 bits), the block address (3 bits) and the
R/W bit, which is a logic-low, is placed onto the bus by
the master transmitter. This indicates to the addressed
slave receiver that a byte with a word address will
follow once it has generated an Acknowledge bit during
the ninth clock cycle. Therefore, the next byte transmit-
ted by the master is the word address and will be
written into the Address Pointer of the 24XX08H. After
receiving another Acknowledge signal from the
24XX08H, the master device will transmit the data word
to be written into the addressed memory location. The
24XX08H acknowledges again and the master
generates a Stop condition. This initiates the internal
write cycle and, during this time, the 24XX08H will not
generate Acknowledge signals (

Figure 4-1

).

4.2

Page Write 

The write control byte, word address and the first data
byte are transmitted to the 24XX08H in the same way
as in a byte write. However, instead of generating a
Stop condition, the master transmits up to 16 data bytes
to the 24XX08H, which are temporarily stored in the on-
chip page buffer and will be written into memory once
the master has transmitted a Stop condition. Upon
receipt of each word, the four lower-order Address
Pointer bits are internally incremented by ‘

1

’. The

higher-order 7 bits of the word address remain
constant. If the master should transmit more than 16
words prior to generating the Stop condition, the
address counter will roll over and the previously
received data will be overwritten. As with the byte write
operation, once the Stop condition is received an
internal write cycle will begin (

Figure 4-2

).

FIGURE 4-1:

BYTE WRITE

FIGURE 4-2:

PAGE WRITE

Note:

Page write operations are limited to writ-
ing bytes within a single physical page,
regardless of the number of bytes
actually being written. Physical page
boundaries start at addresses that are
integer multiples of the page buffer size
(or ‘page-size’) and end at addresses that
are integer multiples of [page size – 1]. If
a Page Write command attempts to write
across a physical page boundary, the
result is that the data wraps around to the
beginning of the current page (overwriting
data previously stored there), instead of
being written to the next page, as might be
expected. It is therefore necessary for the
application software to prevent page write
operations that would attempt to cross a
page boundary.

S

P

Bus Activity

Master

SDA Line

Bus Activity

S

T

A

R

T

S

T

O

P

Control

Byte

Word

Address

Data

A

C

K

A

C

K

A

C

K

x = “don’t care”

1 0 1 0 X B1 B0 0

Block

Select

Bits

S

P

Bus Activity

Master

SDA Line

Bus Activity

S

T

A

R

T

Control

Byte

Word

Address (n)

Data (n)

Data (n + 15)

S

T

O

P

A

C

K

A

C

K

A

C

K

A

C

K

A

C

K

Data (n + 1)

x = “don’t care”

Block

Select

Bits

1

1

0

0 X

B1B0

0

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002084B-html.html
background image

24AA08H/24LC08BH

DS20002084B-page 8

 2008-2013 Microchip Technology Inc.

5.0

ACKNOWLEDGE POLLING

Since the device will not acknowledge during a write
cycle, this can be used to determine when the cycle is
complete (this feature can be used to maximize bus
throughput). Once the Stop condition for a Write
command has been issued from the master, the device
initiates the internally-timed write cycle and ACK polling
can then be initiated immediately. This involves the
master sending a Start condition followed by the control
byte for a Write command (R/W = 

0

). If the device is still

busy with the write cycle, no ACK will be returned. If the
cycle is complete, the device will return the ACK and
the master can then proceed with the next Read or
Write command. See 

Figure 5-1

 for a flow diagram of

this operation.

FIGURE 5-1:

ACKNOWLEDGE 
POLLING FLOW

6.0

WRITE PROTECTION

The WP pin allows the user to write-protect half of the
array (200h-3FFh) when the pin is tied to V

CC

. If the pin

is tied to V

SS

 the write protection is disabled.

Send

Write Command

Send Stop

Condition to

Initiate Write Cycle

Send Start

Send Control Byte

with R/W = 0

Did Device

Acknowledge

(ACK = 0)?

Next

Operation

No

Yes

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002084B-html.html
background image

 2008-2013 Microchip Technology Inc.

DS20002084B-page 9

24AA08H/24LC08BH

7.0

READ OPERATION

Read operations are initiated in the same way as write
operations, with the exception that the R/W bit of the
slave address is set to ‘

1

’. There are three basic types

of read operations: current address read, random read
and sequential read.

7.1

Current Address Read

The 24XX08H contains an address counter that main-
tains the address of the last word accessed, internally
incremented by ‘

1

’. Therefore, if the previous access

(either a read or write operation) was to address 

n

, the

next current address read operation would access data
from address 

n + 1

. Upon receipt of the slave address

with R/W bit set to ‘

1

’, the 24XX08H issues an acknowl-

edge and transmits the 8-bit data word. The master will
not acknowledge the transfer, but does generate a Stop
condition and the 24XX08H discontinues transmission
(

Figure 7-1

).

7.2

Random Read

Random read operations allow the master to access
any memory location in a random manner. To perform
this type of read operation, the word address must first
be set. This is accomplished by sending the word
address to the 24XX08H as part of a write operation.
Once the word address is sent, the master generates a
Start condition following the acknowledge. This
terminates the write operation, but not before the
internal Address Pointer is set. The master then issues
the control byte again, but with the R/W bit set to a ‘

1

’.

The 24XX08H will then issue an acknowledge and
transmit the 8-bit data word. The master will not
acknowledge the transfer, but does generate a Stop
condition and the 24XX08H will discontinue transmis-
sion (

Figure 7-2

).

7.3

Sequential Read

Sequential reads are initiated in the same way as a
random read, except that once the 24XX08H transmits
the first data byte, the master issues an acknowledge
as opposed to a Stop condition in a random read. This
directs the 24XX08H to transmit the next sequentially-
addressed 8-bit word (

Figure 7-3

).

To provide sequential reads, the 24XX08H contains an
internal Address Pointer that is incremented by one
upon completion of each operation. This Address
Pointer allows the entire memory contents to be serially
read during one operation.

7.4

Noise Protection

The 24XX08H employs a V

CC

 threshold detector circuit

which disables the internal erase/write logic if the V

CC

is below 1.5V at nominal conditions.
The SCL and SDA inputs have Schmitt Trigger and
filter circuits which suppress noise spikes to assure
proper device operation, even on a noisy bus.

FIGURE 7-1:

CURRENT ADDRESS READ  

S

P

Bus Activity

Master

SDA Line

Bus Activity

S

T

O

P

Control

Byte

Data (n)

A

C

K

N

o

 

A

C

K

S

T

A

R

T

x = “don’t care”

1 0 1 0 x B1 B0 1

Block

Select

Bits

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20002084B-html.html
background image

24AA08H/24LC08BH

DS20002084B-page 10

 2008-2013 Microchip Technology Inc.

FIGURE 7-2:

RANDOM READ   

FIGURE 7-3:

SEQUENTIAL READ  

S

P

S

Bus Activity

Master

SDA Line

Bus Activity

S

T

A

R

T

S

T

O

P

Control

Byte

A

C

K

Word

Address (n)

Control

Byte

S

T

A

R

T

Data (n)

A

C

K

A

C

K

N

o

A

C

K

x = “don’t care”

1 0 1 0

B1B0

0

1 1

0 0

B1B0

1

X

X

Block

Select

Bits

Block

Select

Bits

P

Bus Activity

Master

SDA Line

Bus Activity

S

T

O

P

Control

Byte

A

C

K

N

o

 

A

C

K

Data (n)

Data (n + 1)

Data (n + 2)

Data (n + X)

A

C

K

A

C

K

A

C

K

1

Maker
Microchip Technology Inc.
Datasheet PDF Download