24AA014/24LC014 Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21809G-html.html
background image

 2010 Microchip Technology Inc.

DS21809G-page 1

24AA014/24LC014

Device Selection Table

Features:

• Single-Supply with Operation down to 1.7V
• Low-Power CMOS Technology:

- 1 mA active current, typical
- 1 

A standby current, typical at 5.5V

• Organized as a Single Block of 128 Bytes 

(128 x 8)

• Hardware Write Protection for Entire Array
• 2-Wire Serial Interface Bus, I

2

C™ Compatible

• 100 kHz and 400 kHz Clock Compatibility
• Page Write Buffer for up to 16 Bytes
• Self-Timed Write Cycle (including auto-erase)
• 5 ms max. Write Cycle Time
• Address Lines allow up to Eight Devices on Bus
• 1,000,000 Erase/Write Cycles
• ESD Protection > 4,000V
• Data Retention > 200 Years
• 8-Lead PDIP, SOIC, TSSOP, DFN, TDFN and 

MSOP Packages

• 6-Lead SOT-23 Package
• Pb-Free and RoHS Compliant
• Available for Extended Temperature Ranges:

Description:

The Microchip Technology Inc. 24AA014/24LC014 is a
1 Kbit Serial Electrically Erasable PROM with opera-
tion down to 1.7V. The device is organized as a single
block of 128 x 8-bit memory with a 2-wire serial inter-
face. Low-current design permits operation with typical
standby and active currents of only 1 

A and 1 mA,

respectively. The device has a page write capability for
up to 16 bytes of data. Functional address lines allow
the connection of up to eight 24AA014/24LC014
devices on the same bus for up to 8 Kbits of contiguous
EEPROM memory. The device is available in the
standard 8-pin PDIP, 8-pin SOIC (150 mil), TSSOP, 2x3
DFN and TDFN

 

and MSOP packages. The 24AA014/

24LC014 is also available in the 6-lead SOT-23
package.

Package Types

Block Diagram

Part 

Number

V

CC

 

Range

Max 

Clock

Temp. 

Range

24AA014

1.7V - 5.5V 400 kHz

(1)

I

24LC014

2.5V - 5.5V

400 kHz

I, E

Note 1: 100 kHz for V

CC

 < 2.5V

- Industrial (I):

-40°C to +85°C

- Automotive (E)

-40°C to +125°C

A0

A1

A2

V

SS

V

CC

WP

SCL

SDA

1

2

3

4

8

7

6

5

PDIP/SOIC/TSSOP/MSOP

A0

A1

A2

V

SS

WP

SCL
SDA

V

CC

8
7
6
5

1

2
3

4

SOT-23

V

CC

SCL

SDA

V

SS

A0

A1

DFN/TDFN

1

2

3

4

5

6

   I/O

Control

 

Logic

Memory

Control  

Logic

XDEC

HV Generator

EEPROM

 

   

Array

Write-Protect

    

Circuitry

YDEC

V

CC

V

SS

Sense Amp.

R/W Control

SDA SCL

A0 A1 A2

WP

1K I

2

C

 Serial EEPROM

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21809G-html.html
background image

24AA014/24LC014

DS21809G-page 2

 2010 Microchip Technology Inc.

1.0

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings 

(†)

V

CC

.............................................................................................................................................................................6.5V

All inputs and outputs w.r.t. V

SS

......................................................................................................... -0.6V to V

CC

 +1.0V

Storage temperature ...............................................................................................................................-65°C to +150°C
Ambient temperature with power applied................................................................................................-40°C to +125°C
ESD protection on all pins

 4 kV

TABLE 1-1:

DC SPECIFICATIONS

 

NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the

device. This is a stress rating only and functional operation of the device at those or any other conditions above those
indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.

DC CHARACTERISTICS

Industrial (I): 

T

A

  = -40°C to +85°C, V

CC

 = +1.7V to +5.5V

Automotive (E): T

A

  = -40°C to +125°C, V

CC

 = +2.5V to +5.5V

Param.

No.

Symbol

Characteristic

Min.

Typ.

Max.

Units

Conditions

A0, A1, A2, SCL, SDA 
and WP pins

D1

V

IH

High-level input voltage

0.7 V

CC

V

D2

V

IL

Low-level input voltage

0.3 V

CC

V

0.2  V

CC

 for V

CC

 < 2.5V

D3

V

HYS

Hysteresis of Schmitt
Trigger inputs

0.05 V

CC

V

(

Note

)

D4

V

OL

Low-level output voltage

0.40

V

I

OL

 = 3.0 mA, V

CC

 = 2.5V

D5

I

LI

Input leakage current

±1

A

V

IN

 = V

SS

 or V

CC

D6

I

LO

Output leakage current

±1

A

V

OUT

 = V

SS

 or V

CC

D7

C

IN

C

OUT

Pin capacitance
(all inputs/outputs)

10

pF

V

CC

 = 5.5V (

Note

)

T

A

 = 25°C, F

CLK

 = 1 MHz

D8

I

CC

 write Operating current

0.1

3

mA

V

CC

 = 5.5V, SCL = 400 kHz

D9

I

CC

 read

0.05

1

mA

D10

I

CCS

Standby current


0.01

1
5

A
A

Industrial
Automotive
SDA = SCL = V

CC

A0, A1, A2, WP = V

SS

Note:

This parameter is periodically sampled and not 100% tested.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21809G-html.html
background image

 2010 Microchip Technology Inc.

DS21809G-page 3

24AA014/24LC014

TABLE 1-2:

AC CHARACTERISTICS

AC CHARACTERISTICS

Industrial (I): 

T

A

  = -40°C to +85°C, V

CC

 = +1.7V to +5.5V

Automotive (E): T

A

  = -40°C to +125°C, V

CC

 = +2.5V to +5.5V

Param.

No.

Symbol

Characteristic

Min.

Max.

Units

Conditions

1

F

CLK

Clock frequency


100
400

kHz

1.7V 

 V

CC

 < 1.8V

1.8V 

 V

CC

 

 5.5V

2

T

HIGH

Clock high time

4000

600


ns

1.7V 

 V

CC

 < 1.8V

1.8V 

 V

CC

 

 5.5V

3

T

LOW

Clock low time

4700
1300


ns

1.7V 

 V

CC

 < 1.8V

1.8V 

 V

CC

 

 5.5V

4

T

R

SDA and SCL rise time (

Note 1

)


1000

300

ns

1.7V 

 V

CC

 < 1.8V

1.8V 

 V

CC

 

 5.5V

5

T

F

SDA and SCL fall time (

Note 1

)


1000

300

ns

1.7V 

 V

CC

 < 1.8V

1.8V 

 V

CC

 

 5.5V

6

T

HD

:

STA

Start condition hold time

4000

600


ns

1.7V 

 V

CC

 < 1.8V

1.8V 

 V

CC

 

 5.5V

7

T

SU

:

STA

Start condition setup time

4700

600


ns

1.7V 

 V

CC

 < 1.8V

1.8V 

 V

CC

 

 5.5V

8

T

HD

:

DAT

Data input hold time

0

ns

(

Note 2

)

9

T

SU

:

DAT

Data input setup time

250
100


ns

1.7V 

 V

CC

 < 1.8V

1.8V 

 V

CC

 

 5.5V

10

T

SU

:

STO

Stop condition setup time

4000

600


ns

1.7V 

 V

CC

 < 1.8V

1.8V 

 V

CC

 

 5.5V

11

T

SU

:

WP

WP setup time

4000

600


ns

1.7V 

 V

CC

 < 1.8V

1.8V 

 V

CC

 

 5.5V

12

T

HD

:

WP

WP hold time

4700

600


ns

1.7V 

 V

CC

 < 1.8V

1.8V 

 V

CC

 

 5.5V

13

T

AA

Output valid from clock (

Note 2

)


3500

900

ns

1.7V 

 V

CC

 < 1.8V

1.8V 

 V

CC

 

 5.5V

14

T

BUF

Bus free time: Time the bus must 
be free before a new transmission 
can start

4700
1300


ns

1.7V 

 V

CC

 < 1.8V

1.8V 

 V

CC

 

 5.5V

16

T

SP

Input filter spike suppression
(SDA and SCL pins)

50

ns

(

Note 1

 an

Note 3

)

17

T

WC

Write cycle time (byte or page)

5

ms

18

Endurance

1M

cycles

25°C, V

CC

 = 5.5V, Block mode 

(

Note 4

)

Note 1: Not 100% tested. C

B

 = total capacitance of one bus line in pF.

2: As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region (minimum 

300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

3: The combined T

SP

 and V

HYS

 specifications are due to new Schmitt Trigger inputs, which provide improved noise spike 

suppression. This eliminates the need for a T

I

 specification for standard operation.

4: This parameter is not tested but ensured by characterization. For endurance estimates in a specific application, please 

consult the Total Endurance™ Model which can be obtained from Microchip’s web site at www.microchip.com.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21809G-html.html
background image

24AA014/24LC014

DS21809G-page 4

 2010 Microchip Technology Inc.

FIGURE 1-1:

BUS TIMING DATA

(unprotected)

(protected)

SCL

SDA
In

SDA
Out

WP

5

7

6

16

3

2

8

9

13

D4

4

10

11

12

14

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21809G-html.html
background image

 2010 Microchip Technology Inc.

DS21809G-page 5

24AA014/24LC014

2.0

PIN DESCRIPTIONS

The descriptions of the pins are listed in 

Table 2-1

.

TABLE 2-1:

PIN FUNCTION TABLE

2.1

A0, A1, A2 Chip Address Inputs

The A0, A1 and A2 inputs are used by the 24AA014/
24LC014 for multiple device operation. The levels on
these inputs are compared with the corresponding bits
in the slave address. The chip is selected if the com-
pare is true.
Up to eight devices may be connected to the same bus
by using different Chip Select bit combinations. These
inputs must be connected to either V

CC

 or V

SS

For the SOT-23 devices up to four devices may be con-
nected to the same bus using different Chip Select bit
combinations.
In most applications, the chip address inputs A0, A1
and A2 are hard-wired to logic ‘0’ or logic ‘1’. For
applications in which these pins are controlled by a
microcontroller or other programmable device, the chip
address pins must be driven to logic ‘0’ or logic ‘1’
before normal device operation can proceed.

2.2

Serial Data (SDA)

SDA is a bidirectional pin used to transfer addresses
and data into and out of the device. Since it is an open-
drain terminal, the SDA bus requires a pull-up resistor
to V

CC

 (typical 10 k

 for 100 kHz, 2 kfor 400 kHz).

For normal data transfer, SDA is allowed to change
only during SCL low. Changes during SCL high are
reserved for indicating the Start and Stop conditions.

2.3

Serial Clock (SCL)

The SCL input is used to synchronize the data transfer
from and to the device.

2.4

Write-Protect (WP)

This pin must be connected to either V

SS

 or V

CC

. If tied

to V

SS

, write operations are enabled. If tied to V

CC

,

write operations are inhibited but read operations are
not affected.

3.0

FUNCTIONAL DESCRIPTION

The 24AA014/24LC014 supports a bidirectional, 2-wire
bus and data transmission protocol. A device that
sends data onto the bus is defined as transmitter, while
a device receiving data is defined as a receiver. The
bus has to be controlled by a master device which gen-
erates the Serial Clock (SCL), controls the bus access
and generates the Start and Stop conditions, while the
24AA014/24LC014 works as slave. Both master and
slave can operate as transmitter or receiver, but the
master device determines which mode is activated.

Name

PDIP

SOIC

TSSOP

DFN

(1)

TDFN

(1)

MSOP

SOT-23

Description

A0

1

1

1

1

1

1

5

Chip Address Input

A1

2

2

2

2

2

2

4

Chip Address Input

A2

3

3

3

3

3

3

Chip Address Input

V

SS

4

4

4

4

4

4

2

Ground

SDA

5

5

5

5

5

5

3

Serial Address/Data I/O

SCL

6

6

6

6

6

6

1

Serial Clock

WP

7

7

7

7

7

7

Write-Protect Input

V

CC

8

8

8

8

8

8

6

+1.7V to 5.5V Power Supply

Note 1: The exposed pad on the DFN/TDFN packages can be connected to V

SS

 or left floating.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21809G-html.html
background image

24AA014/24LC014

DS21809G-page 6

 2010 Microchip Technology Inc.

4.0

BUS CHARACTERISTICS

The following bus protocol has been defined:
• Data transfer may be initiated only when the bus 

is not busy.

• During data transfer, the data line must remain 

stable whenever the clock line is high. Changes in 
the data line while the clock line is high will be 
interpreted as a Start or Stop condition.

Accordingly, the following bus conditions have been
defined (

Figure 4-1

).

4.1

Bus Not Busy (A)

Both data and clock lines remain high.

4.2

Start Data Transfer (B)

A high-to-low transition of the SDA line while the clock
(SCL) is high determines a Start condition. All
commands must be preceded by a Start condition.

4.3

Stop Data Transfer (C)

A low-to-high transition of the SDA line while the clock
(SCL) is high determines a Stop condition. All
operations must be ended with a Stop condition.

4.4

Data Valid (D)

The state of the data line represents valid data when,
after a Start condition, the data line is stable for the
duration of the high period of the clock signal.

The data on the line must be changed during the low
period of the clock signal. There is one bit of data per
clock pulse.
Each data transfer is initiated with a Start condition and
terminated with a Stop condition. The number of the
data bytes transferred between the Start and Stop
conditions is determined by the master device and is,
theoretically, unlimited, though only the last sixteen will
be stored when doing a write operation. When an over-
write does occur, it will replace data in a first-in first-out
fashion.

4.5

Acknowledge

Each receiving device, when addressed, is required to
generate an acknowledge after the reception of each
byte. The master device must generate an extra clock
pulse, which is associated with this Acknowledge bit.

The device that acknowledges has to pull down the
SDA line during the Acknowledge clock pulse in such a
way that the SDA line is stable low during the high
period of the acknowledge-related clock pulse. Of
course, setup and hold times must be taken into
account. A master must signal an end of data to the
slave by not generating an Acknowledge bit on the last
byte that has been clocked out of the slave. In this case,
the slave must leave the data line high to enable the
master to generate the Stop condition (

Figure 4-2

).

FIGURE 4-1:

DATA TRANSFER SEQUENCE ON THE SERIAL BUS CHARACTERISTICS

FIGURE 4-2:

ACKNOWLEDGE TIMING

Note:

The 24AA014/24LC014 does not generate
any Acknowledge bits if an internal
programming cycle is in progress.

(A)

(B)

(C)

(D)

(A)

(C)

SCL

SDA

Start

Condition

Address or

Acknowledge

Valid

Data

Allowed

to Change

Stop

Condition

SCL

9

8

7

6

5

4

3

2

1

1

2

3

Transmitter must release the SDA line at this point allowing
the Receiver to pull the SDA line low to acknowledge the
previous eight bits of data.

Receiver must release the SDA line at this
point so the Transmitter can continue
sending data.

SDA

Acknowledge

Bit

Data from transmitter

Data from transmitter

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21809G-html.html
background image

 2010 Microchip Technology Inc.

DS21809G-page 7

24AA014/24LC014

5.0

DEVICE ADDRESSING

A control byte is the first byte received following the
Start condition from the master device (

Figure 5-1

).

The control byte consists of a four-bit control code; for
the 24AA014/24LC014 this is set as ‘1010’ binary for
read and write operations. The next three bits of the
control byte are the Chip Select bits (A2, A1, A0). The
Chip Select bits allow the use of up to eight 24AA014/
24LC014 devices on the same bus and are used to
select which device is accessed. The Chip Select bits
in the control byte must correspond to the logic levels
on the corresponding A2, A1 and A0 pins for the device
to respond. These bits are in effect the three Most
Significant bits of the word address. 
For the SOT-23 package, the A2 address pin is not
available. During device addressing, the A2 Chip
Select bit should be set to ‘0’.
The last bit of the control byte defines the operation to
be performed. When set to a ‘1’, a read operation is
selected. When set to a ‘0’, a write operation is
selected. Following the Start condition, the 24AA014/
24LC014 monitors the SDA bus, checking the control
byte being transmitted. Upon receiving a ‘1010’ code
and appropriate Chip Select bits, the slave device out-
puts an Acknowledge signal on the SDA line. Depend-
ing on the state of the R/W bit, the 24AA014/24LC014
will select a read or write operation.

FIGURE 5-1:

CONTROL BYTE FORMAT 

5.1

Contiguous Addressing Across 
Multiple Devices

The Chip Select bits A2, A1 and A0 can be used to
expand the contiguous address space for up to 8K bits
by adding up to eight 24AA014/24LC014 devices on
the same bus. In this case, software can use A0 of the
control byte as address bit A8, A1 as address bit A9,
and A2 as address bit A10. It is not possible to
sequentially read across device boundaries.
For the SOT-23 package, up to four 24AA014/24LC014
devices can be added for up to 4K bits of address
space. In this case, software can use A0 of the control
byte as address bit A8, and A1 as address bit A9. It is
not possible to sequentially read across device bound-
aries.

1

0

1

0

A2

A1

A0

S

ACK

R/W

Control Code

Chip Select

Bits

Slave Address

Acknowledge Bit

Start Bit

Read/Write Bit

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21809G-html.html
background image

24AA014/24LC014

DS21809G-page 8

 2010 Microchip Technology Inc.

6.0

WRITE OPERATIONS

6.1

Byte Write

Following the Start signal from the master, the device
code(4 bits), the Chip Select bits (3 bits) and the R/W
bit (which is a logic low) are placed onto the bus by the
master transmitter. The device will acknowledge this
control byte during the ninth clock pulse. The next byte
transmitted by the master is the word address and will
be written into the Address Pointer of the 24AA014/
24LC014. After receiving another Acknowledge signal
from the 24AA014/24LC014, the master device will
transmit the data word to be written into the addressed
memory location. The 24AA014/24LC014 acknowl-
edges again and the master generates a Stop
condition. This initiates the internal write cycle and the
24AA014/24LC014 will not generate Acknowledge
signals during this time (

Figure 6-1

). If an attempt is

made to write to the protected portion of the array when
the hardware write protection has been enabled, the
device will acknowledge the command, but no data will
be written. The write cycle time must be observed even
if write protection is enabled.

6.2

Page Write

The write-control byte, word address and the first data
byte are transmitted to the 24AA014/24LC014 in the
same way as in a byte write. But instead of generating
a Stop condition, the master transmits up to 15 addi-
tional data bytes to the 24AA014/24LC014 that are
temporarily stored in the on-chip page buffer and will be
written into the memory once the master has transmit-
ted a Stop condition. Upon receipt of each word, the
four lower order Address Pointer bits are internally
incremented by one.

The higher order four bits of the word address remain
constant. If the master should transmit more than 16
bytes prior to generating the Stop condition, the
address counter will roll over and the previously
received data will be overwritten. As with the byte write
operation, once the Stop condition is received, an inter-
nal write cycle will begin (

Figure 6-2

). If an attempt is

made to write to the protected portion of the array when
the hardware write protection has been enabled, the
device will acknowledge the command, but no data will
be written. The write cycle time must be observed even
if write protection is enabled.

6.3

Write Protection

The WP pin must be tied to V

CC

 or V

SS

. If tied to V

CC

,

the entire array will be write-protected. If the WP pin is
tied to V

SS

, write operations to all address locations are

allowed. 
The WP pin is not available on the SOT-23 package.

FIGURE 6-1:

BYTE WRITE

Note:

Page write operations are limited to writ-
ing bytes within a single physical page,
regardless of the number of bytes
actually being written. Physical page
boundaries start at addresses that are
integer multiples of the page buffer size
(or ‘page size’) and end at addresses that
are integer multiples of [page size – 1]. If
a Page Write command attempts to write
across a physical page boundary, the
result is that the data wraps around to the
beginning of the current page (overwriting
data previously stored there), instead of
being written to the next page, as might be
expected. It is therefore necessary that
the application software prevent page
write operations that would attempt to
cross a page boundary.

S

P

Bus Activity
Master

SDA Line

Bus Activity

S

T

A

R

T

S

T

O

P

Control

Byte

Word

Address

Data

A

C

K

A

C

K

A

C

K

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21809G-html.html
background image

 2010 Microchip Technology Inc.

DS21809G-page 9

24AA014/24LC014

FIGURE 6-2:

PAGE WRITE

S

P

Bus Activity
Master

SDA Line

Bus Activity

S

T

A

R

T

Control

Byte

Word

Address (n)

Data (n)

Data (n + 15)

S

T

O

P

A

C

K

A

C

K

A

C

K

A

C

K

A

C

K

Data (n +1)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21809G-html.html
background image

24AA014/24LC014

DS21809G-page 10

 2010 Microchip Technology Inc.

7.0

ACKNOWLEDGE POLLING

Since the device will not acknowledge during a write
cycle, this can be used to determine when the cycle is
complete (this feature can be used to maximize bus
throughput). Once the Stop condition for a write
command has been issued from the master, the device
initiates the internally-timed write cycle and ACK polling
can be initiated immediately. This involves the master
sending a Start condition followed by the control byte
for a Write command (R/W = 0). If the device is still
busy with the write cycle, no ACK will be returned. If no
ACK is returned, the Start bit and control byte must be
re-sent. If the cycle is complete, the device will return
the ACK and the master can then proceed with the next
Read or Write command. See 

Figure 7-1

 for a flow

diagram of this operation.

FIGURE 7-1:

ACKNOWLEDGE POLLING 
FLOW

Send

Write Command

Send Stop

Condition to

Initiate Write Cycle

Send Start

Send Control Byte

with R/W = 0

Did Device

Acknowledge

(ACK = 0)?

Next

Operation

No

Yes

Maker
Microchip Technology Inc.
Datasheet PDF Download