22129A.book

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22129A-html.html
background image

© 2009 Microchip Technology Inc.

DS22129A-page 1

24VL014

Device Selection Table

Features:

• Single-Supply with Operation down to 1.5V

• Low-Power CMOS Technology:

- 400 

μA active current, maximum

- 1 

μA standby current, maximum

• 2-Wire Serial Interface Bus, I

2

C™ Compatible

• Schmitt Trigger Inputs for Noise Suppression

• Output Slope Control to Eliminate Ground Bounce

• 100 kHz and 400 kHz Compatibility

• Page Write Buffer for up to 16 Bytes

• Self-Timed Write Cycle (including Auto-Erase)

• Hardware Write Protection for the Entire Array 

(00h-7Fh)

• Cascadable up to Eight Devices

• More than 1 Million Erase/Write Cycles

• ESD Protection > 4,000V

• Data Retention > 200 Years

• Factory Programming (QTP) Available

• 8-pin PDIP, SOIC, TSSOP, TDFN and MSOP 

Packages

• 6-lead SOT-23 package

• Temperature Range:

• Pb-Free and RoHS Compliant

Description:

The Microchip Technology Inc. 24VL014 is a 1 Kbit
Serial Electrically Erasable PROM with operation
down to 1.5V. The device is organized as a single block
of 128 x 8-bit memory with a 2-wire serial interface.
Low-current design permits operation with maximum
standby and active currents of only 1 

μA and 400 μA,

respectively. The device has a page write capability for
up to 16 bytes of data. Functional address lines allow
the connection of up to eight 24VL014 devices on the
same bus for up to 8 Kbits of contiguous  EEPROM
memory. The device is available in the standard 8-pin
PDIP, 8-pin SOIC (150 mil), TSSOP, 2x3 TDFN and
MSOP packages. The 24VL014 is also available in the
6-lead SOT-23 package.

Block Diagram

Package Types

Part Number

V

CC

 Range

Max Clock

24VL014

1.5 to 3.6V

400 kHz

(1)

Note 1: 100 kHz for V

CC

 < 1.8V

- -20°C to +85°C

   I/O

Control

 

Logic

Memory

Control  

Logic

XDEC

HV Generator

EEPROM

 

   

Array

Write-Protect

    

Circuitry

YDEC

V

CC

V

SS

Sense Amp.
R/W Control

SDA SCL

A0 A1 A2

WP

A0

A1

A2

V

SS

V

CC

WP

SCL

SDA

1

2

3

4

8

7

6

5

PDIP, MSOP

SOIC, TSSOP

A0

A1

A2

V

SS

1

2

3

4

8

7

6

5

V

CC

WP

SCL

SDA

TDFN

A0

A1

A2

V

SS

WP

SCL

SDA

V

CC

8

7

6

5

1

2

3

4

SCL

V

SS

SDA

V

CC

A0

A1

SOT-23

1

2

3

4

5

6

1K I

2

C

 Serial EEPROM

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22129A-html.html
background image

24VL014

DS22129A-page 2

© 2009 Microchip Technology Inc.

1.0

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings 

(†)

V

CC

.............................................................................................................................................................................6.5V

All inputs and outputs w.r.t. V

SS

......................................................................................................... -0.6V to V

CC

 +1.0V

Storage temperature ...............................................................................................................................-65°C to +150°C

Ambient temperature with power applied ..................................................................................................-20°C to +85°C

ESD protection on all pins

......................................................................................................................................................≥ 4 kV

TABLE 1-1:

DC CHARACTERISTICS

 

NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the

device. This is a stress rating only and functional operation of the device at those or any other conditions above those
indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.

DC CHARACTERISTICS

Electrical Characteristics:

V

CC

 = +1.5V to 3.6V

T

A

 = -20°C to +85°C

Param.

No.

Sym.

Characteristic

Min.

Max.

Units

Conditions

D1

A0, A1, A2, SCL, SDA 
and WP pins:

D2

V

IH

High-level input voltage

0.7 V

CC

V

D3

V

IL

Low-level input voltage

0.3 V

CC

V

D4

V

HYS

Hysteresis of Schmitt 
Trigger inputs
(SDA, SCL pins)

0.05 V

CC

V

(Note)

D5

V

OL

Low-level output voltage

0.40

V

I

OL

 = 3.0 mA @ V

CC

 = 3.6V

I

OL

 = 2.1 mA @ V

CC

 = 2.5V

D6

I

LI

Input leakage current

±1

μA

V

IN

 = V

SS

 or V

CC

, WP = V

SS

D7

I

LO

Output leakage current

±1

μA

V

OUT

 = V

SS

 or V

CC

D8

C

IN

C

OUT

Pin capacitance 
(all inputs/outputs)

10

pF

V

CC

 = 3.6V (Note)

T

A

 = 25°C, f = 1 MHz

D9

I

CC

 Read Operating current

400

μA

V

CC

 = 3.6V, SCL = 400 kHz

I

CC

 Write

3

mA

V

CC

 = 3.6V

D10

I

CCS

Standby current

1

μA

V

CC

 = 3.6V, SCL = SDA = V

CC

WP = V

SS

, A0, A1, A2 = V

SS

Note:

This parameter is periodically sampled and not 100% tested.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22129A-html.html
background image

© 2009 Microchip Technology Inc.

DS22129A-page 3

24VL014

TABLE 1-2:

AC CHARACTERISTICS

AC CHARACTERISTICS

Electrical Characteristics:

V

CC

 = +1.5V to 3.6V T

A

 = -20°C to +85°C

Param.

No.

Symbol

Characteristic

Min.

Max.

Units

Conditions

1

F

CLK

Clock frequency


100
400

kHz

1.5V 

≤  V

CC

 < 1.8V

1.8V 

≤  V

CC

 

≤  3.6V

2

T

HIGH

Clock high time

4000

600


ns

1.5V 

≤  V

CC

 < 1.8V

1.8V 

≤  V

CC

 

≤  3.6V

3

T

LOW

Clock low time

4700
1300


ns

1.5V 

≤  V

CC

 < 1.8V

1.8V 

≤  V

CC

 

≤  3.6V

4

T

R

SDA and SCL rise time 
(Note 1)


1000

300

ns

1.5V 

≤  V

CC

 < 1.8V

1.8V 

≤  V

CC

 

≤  3.6V

5

T

F

SDA and SCL fall time 
(Note 1)


1000

300

ns

1.5V 

≤  V

CC

 < 1.8V

1.8V 

≤  V

CC

 

≤  3.6V

6

T

HD

:

STA

Start condition hold time

4000

600


ns

1.5V 

≤  V

CC

 < 1.8V

1.8V 

≤  V

CC

 

≤  3.6V

7

T

SU

:

STA

Start condition setup time

4700

600


ns

1.5V 

≤  V

CC

 < 1.8V

1.8V 

≤  V

CC

 

≤  3.6V

8

T

HD

:

DAT

Data input hold time

0

ns

(Note 2)

9

T

SU

:

DAT

Data input setup time

250
100


ns

1.5V 

≤  V

CC

 < 1.8V

1.8V 

≤  V

CC

 

≤  3.6V

10

T

SU

:

STO

Stop condition setup time

4000

600


ns

1.5V 

≤  V

CC

 < 1.8V

1.8V 

≤  V

CC

 

≤  3.6V

11

T

SU

:

WP

WP setup time

4000

600


ns

1.5V 

≤  V

CC

 < 1.8V

1.8V 

≤  V

CC

 

≤  3.6V

12

T

HD

:

WP

WP hold time

4700

600


ns

1.5V 

≤  V

CC

 < 1.8V

1.8V 

≤  V

CC

 

≤  3.6V

13

T

AA

Output valid from clock 
(Note 2)


3500

900

ns

1.5V 

≤  V

CC

 < 1.8V

1.8V 

≤  V

CC

 

≤  3.6V

14

T

BUF

Bus free time: Time the bus must 
be free before a new transmis-
sion can start

4700
1300


ns

1.5V 

≤  V

CC

 < 1.8V

1.8V 

≤  V

CC

 

≤  3.6V

15

T

SP

Input filter spike suppression
(SDA and SCL pins)

50

ns

(Note 1 and Note 3)

16

T

WC

Write cycle time (byte or page)

5

ms

17

Endurance

1M

cycles

25°C, V

CC

 = 3.6V, per page

 (Note 4)

Note 1: Not 100% tested. C

B

 = total capacitance of one bus line in pF.

2: As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region 

(minimum 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

3: The combined T

SP

 and V

HYS

 specifications are due to new Schmitt Trigger inputs, which provide improved 

noise spike suppression. This eliminates the need for a T

I

 specification for standard operation.

4: This parameter is not tested but ensured by characterization. For endurance estimates in a specific appli-

cation, please consult the Total Endurance™ Model which can be obtained from Microchip’s web site at 
www.microchip.com.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22129A-html.html
background image

24VL014

DS22129A-page 4

© 2009 Microchip Technology Inc.

FIGURE 1-1:

BUS TIMING DATA

(unprotected)

(protected)

SCL

SDA
In

SDA
Out

WP

5

7

6

15

3

2

8

9

13

D4

4

10

11

12

14

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22129A-html.html
background image

© 2009 Microchip Technology Inc.

DS22129A-page 5

24VL014

2.0

PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

TABLE 2-1:

PIN FUNCTION TABLE

2.1

SDA Serial Data

This is a bidirectional pin used to transfer addresses
and data into and out of the device. It is an open drain
terminal. Therefore, the SDA bus requires a pull-up
resistor to V

CC

 (typical 10 k

Ω for 100 kHz, 2 kΩ for

400 kHz).

For normal data transfer, SDA is allowed to change
only during SCL low. Changes during SCL high are
reserved for indicating the Start and Stop conditions.

2.2

SCL Serial Clock 

The SCL input is used to synchronize the data transfer
to and from the device.

2.3

A0, A1, A2

The A0, A1 and A2 inputs are used by the 24VL014 for
multiple device operations. The levels on these inputs
are compared with the corresponding bits in the slave
address. The chip is selected if the compare is true.

Up to eight 24VL014 devices (four for the SOT-23
package) may be connected to the same bus by using
different Chip Select bit combinations. These inputs
must be connected to either V

CC

 or V

SS

.

In most applications, the chip address inputs A0, A1
and A2 are hard-wired to logic ‘0’ or logic ‘1’. For
applications  in which these pins are controlled by a
microcontroller or other programmable device, the chip
address pins must be driven to logic ‘0’ or logic ‘1’
before normal device operation can proceed.

2.4

WP

WP is the hardware write-protect pin. It must be tied to
V

CC

 or V

SS

. If tied to V

CC

, the hardware write protection

is enabled and will protect the entire array (00h-7Fh). If
the WP pin is tied to V

SS

 the hardware write protection

is disabled. Write Protection is not available on the
SOT-23 package; for this package, write operations are
always enabled.

2.5

Noise Protection

The 24VL014 employs a V

CC

 threshold detector circuit

that disables the internal erase/write logic if the V

CC

 is

below 1.0 volts at nominal conditions.

The SCL and SDA inputs have Schmitt Trigger and
filter circuits that suppress noise spikes to assure
proper device operation even on a noisy bus.

Name

8-pin

PDIP

8-pin

SOIC

8-pin 

TSSOP

8-pin 

MSOP

8-pin

TDFN

6-pin

SOT-23

Function

A0

1

1

1

1

1

5

User  Configurable  Chip  Select

A1

2

2

2

2

2

4

User  Configurable  Chip  Select

A2

3

3

3

3

3

User Configurable Chip Select

V

SS

4

4

4

4

4

2

Ground

SDA

5

5

5

5

5

3

Serial  Data

SCL

6

6

6

6

6

1

Serial  Clock

WP

7

7

7

7

7

Write-Protect Input

V

CC

8

8

8

8

8

6

+1.5V  to  3.6V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22129A-html.html
background image

24VL014

DS22129A-page 6

© 2009 Microchip Technology Inc.

3.0

FUNCTIONAL DESCRIPTION

The 24VL014 supports a bidirectional, 2-wire bus and
data transmission protocol. A device that sends data
onto the bus is defined as transmitter, and a device
receiving data as receiver. The bus has to be controlled
by a master device that generates the Serial Clock
(SCL), controls the bus access and generates the Start
and Stop conditions, while the 24VL014 works as
slave. Both master and slave can operate as
transmitter or receiver, but the master device
determines which mode is activated.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22129A-html.html
background image

© 2009 Microchip Technology Inc.

DS22129A-page 7

24VL014

4.0

BUS CHARACTERISTICS

The following bus protocol has been defined:

• Data transfer may be initiated only when the bus 

is not busy.

• During data transfer, the data line must remain 

stable whenever the clock line is high. Changes in 
the data line while the clock line is high will be 
interpreted as a Start or Stop condition.

Accordingly, the following bus conditions have been
defined (Figure 4-1).

4.1

Bus Not Busy (A)

Both data and clock lines remain high.

4.2

Start Data Transfer (B)

A high-to-low transition of the SDA line while the clock
(SCL) is high determines a Start condition. All
commands must be preceded by a Start condition.

4.3

Stop Data Transfer (C)

A low-to-high transition of the SDA line while the clock
(SCL) is high determines a Stop condition. All
operations must be ended with a Stop condition.

4.4

Data Valid (D)

The state of the data line represents valid data when,
after a Start condition, the data line is stable for the
duration of the high period of the clock signal.

The data on the line must be changed during the low
period of the clock signal. There is one bit of data per
clock pulse.

Each data transfer is initiated with a Start condition and
terminated with a Stop condition. The number of the
data bytes transferred between the Start and Stop
conditions is determined by the master device and is,
theoretically, unlimited, though only the last sixteen will
be stored when doing a write operation. When an
overwrite does occur, it will replace data in a first-in
first-out fashion.

4.5

Acknowledge

Each receiving device, when addressed, is required to
generate an acknowledge after the reception of each
byte. The master device must generate an extra clock
pulse which is associated with this Acknowledge bit.

The device that acknowledges has to pull down the
SDA line during the Acknowledge clock pulse in such a
way that the SDA line is stable low during the high
period of the acknowledge-related clock pulse. Of
course, setup and hold times must be taken into
account. A master must signal an end of data to the
slave by not generating an Acknowledge bit on the last
byte that has been clocked out of the slave. In this case,
the slave must leave the data line high to enable the
master to generate the Stop condition (Figure 4-2).

FIGURE 4-1:

DATA TRANSFER SEQUENCE ON THE SERIAL BUS CHARACTERISTICS

FIGURE 4-2:

ACKNOWLEDGE TIMING

Note:

The 24VL014 does not generate any
Acknowledge bits if an internal
programming cycle is in progress.

(A)

(B)

(C)

(D)

(A)

(C)

SCL

SDA

Start

Condition

Address or

Acknowledge

Valid

Data

Allowed

to Change

Stop

Condition

SCL

9

8

7

6

5

4

3

2

1

1

2

3

Transmitter must release the SDA line at this point allowing
the Receiver to pull the SDA line low to acknowledge the
previous eight bits of data.

Receiver must release the SDA line at this
point so the Transmitter can continue
sending data.

SDA

Acknowledge

Bit

Data from transmitter

Data from transmitter

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22129A-html.html
background image

24VL014

DS22129A-page 8

© 2009 Microchip Technology Inc.

5.0

DEVICE ADDRESSING

A control byte is the first byte received following the
Start condition from the master device (Figure 5-1).
The control byte consists of a four-bit control code; for
the 24VL014 this is set as ‘1010’ binary for read and
write operations. The next three bits of the control byte
are the Chip Select bits (A2, A1, A0). The Chip Select
bits allow the use of up to eight 24VL014 devices on the
same bus and are used to select which device is
accessed. The Chip Select bits in the control byte must
correspond to the logic levels on the corresponding A2,
A1 and A0 pins for the device to respond. These bits
are in effect the three Most Significant bits of the word
address.

For the SOT-23 package, the A2 pin is not connected.
During device addressing, the A2 chip select bit should
be set to logic ‘0’. Only four 24VL014 SOT-23 devices
can be connected to the same bus.

The last bit of the control byte defines the operation to
be performed. When set to a ‘1’, a read operation is
selected. When set to a ‘0’, a write operation is
selected. Following the Start condition, the 24VL014
monitors the SDA bus, checking the control byte being
transmitted. Upon receiving a ‘1010’ code and appro-
priate Chip Select bits, the slave device outputs an
Acknowledge signal on the SDA line. Depending on the
state of the R/W bit, the 24VL014 will select a read or
write operation.

FIGURE 5-1:

CONTROL BYTE FORMAT 

5.1

Contiguous Addressing Across 
Multiple Devices

The Chip Select bits A2, A1 and A0 can be used to
expand the contiguous address space for up to 8K bits
by adding up to eight 24VL014 devices on the same
bus. In this case, software can use A0 of the control
byte as address bit A7, A1 as address bit A8, and A2
as address bit A9. It is not possible to sequentially read
across device boundaries.

For the SOT-23 package, up to four devices can be
added for up to 4 Kbit of address space. In this case,
software can use A0 of the control byte as address bit
A7, and A1 as address bit A8. Bit A2 of the control byte
must always be set to logic ‘0’ for the SOT-23 package.

1

0

1

0

A2

A1

A0

S

ACK

R/W

Control Code

Chip Select

Bits

Slave Address

Acknowledge Bit

Start Bit

Read/Write Bit

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22129A-html.html
background image

© 2009 Microchip Technology Inc.

DS22129A-page 9

24VL014

6.0

WRITE OPERATIONS

6.1

Byte Write

Following the Start signal from the master, the device
code (4 bits), the Chip Select bits (3 bits) and the R/W
bit (which is a logic low) are placed onto the bus by the
master transmitter. The device will acknowledge this
control byte during the ninth clock pulse. The next byte
transmitted by the master is the word address and will
be written into the Address Pointer of the 24VL014.
After receiving another Acknowledge signal from the
24VL014, the master device will transmit the data word
to be written into the addressed memory location. The
24VL014 acknowledges again and the master
generates a Stop condition. This initiates the internal
write cycle and the 24VL014 will not
generate Acknowledge signals during this time
(Figure 6-1). If an attempt is made to write to the
protected portion of the array when the hardware write
protection has been enabled, the device will
acknowledge the command, but no data will be written.
The write cycle time must be observed even if write
protection is enabled.

6.2

Page Write

The write-control byte, word address and the first data
byte are transmitted to the 24VL014 in the same way
as in a byte write. But instead of generating a Stop
condition, the master transmits up to 15 additional data
bytes to the 24VL014 that are temporarily stored in the
on-chip page buffer and will be written into the memory
once the master has transmitted a Stop condition.
Upon receipt of each word, the four lower order
Address Pointer bits are internally incremented by one.

The higher order four bits of the word address remain
constant. If the master should transmit more than 16
bytes prior to generating the Stop condition, the
address counter will roll over and the previously
received data will be overwritten. As with the byte write
operation, once the Stop condition is received, an
internal write cycle will begin (Figure 6-2). If an attempt
is made to write to the protected portion of the array
when the hardware write protection has been enabled,
the device will acknowledge the command, but no data
will be written. The write cycle time must be observed
even if write protection is enabled.

6.3

Write Protection

The WP pin must be tied to V

CC

 or V

SS

. If tied to V

CC

,

the entire array will be write-protected (00h-7Fh). If the
WP pin is tied to V

SS

, write operations to all address

locations are allowed. Write protection is not available
on the SOT-23 package; for this package, write
operations are always enabled.

FIGURE 6-1:

BYTE WRITE

FIGURE 6-2:

PAGE WRITE

Note:

Page write operations are limited to writing
bytes within a single physical page,
regardless of the number of bytes
actually being written. Physical page
boundaries start at addresses that are
integer multiples of the page buffer size (or
‘page size’) and end at addresses that are
integer multiples of [page size – 1]. If a
Page Write command attempts to write
across a physical page boundary, the
result is that the data wraps around to the
beginning of the current page (overwriting
data previously stored there), instead of
being written to the next page, as might be
expected. It is therefore necessary that the
application software prevent page write
operations that would attempt to cross a
page boundary.

S

P

Bus Activity
Master

SDA Line

Bus Activity

S
T
A
R
T

S
T
O
P

Control

Byte

Word

Address

Data

A
C
K

A
C
K

A
C
K

S

P

Bus Activity
Master

SDA Line

Bus Activity

S
T
A
R
T

Control

Byte

Word

Address (n)

Data (n)

Data (n + 15)

S
T
O
P

A
C
K

A
C
K

A
C
K

A
C
K

A
C
K

Data (n +1)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22129A-html.html
background image

24VL014

DS22129A-page 10

© 2009 Microchip Technology Inc.

7.0

ACKNOWLEDGE POLLING

Since the device will not acknowledge during a write
cycle, this can be used to determine when the cycle is
complete (this feature can be used to maximize bus
throughput). Once the Stop condition for a write
command has been issued from the master, the device
initiates the internally-timed write cycle and ACK polling
can be initiated immediately. This involves the master
sending a Start condition followed by the control byte
for a Write command (R/W = 0). If the device is still
busy with the write cycle, no ACK will be returned. If no
ACK is returned, the Start bit and control byte must be
re-sent. If the cycle is complete, the device will return
the ACK and the master can then proceed with the next
Read or Write command. See Figure 7-1 for a flow
diagram of this operation.

FIGURE 7-1:

ACKNOWLEDGE POLLING 
FLOW

Send

Write Command

Send Stop

Condition to

Initiate Write Cycle

Send Start

Send Control Byte

with R/W = 0

Did Device

Acknowledge

(ACK = 0)?

Next

Operation

No

Yes

Maker
Microchip Technology Inc.
Datasheet PDF Download