22119A.book

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22119A-html.html
background image

© 2008 Microchip Technology Inc.

DS22119A-page 1

24AA04H/24LC04BH

Device Selection Table 

Features:

• Single Supply with Operation Down to 1.7V for 

24AA04H Devices, 2.5V for 24LC04BH Devices

• Low-Power CMOS Technology:

- Read current 1 mA, max.

- Standby current 1 

μA, max.

• 2-Wire Serial Interface, I

2

C™ Compatible

• Schmitt Trigger Inputs for Noise Suppression

• Output Slope Control to eliminate Ground Bounce

• 100 kHz and 400 kHz Clock Compatibility

• Page Write Time 3 ms, typical

• Self-Timed Erase/Write Cycle

• 16-Byte Page Write Buffer

• Hardware Write-Protect for Half-Array (100h-1FFh)

• ESD Protection >4,000V

• More than 1 Million Erase/Write Cycles

• Data Retention >200 years

• Factory Programming available

• Packages include 8-lead PDIP, SOIC, TSSOP, 

TDFN, MSOP and 5-lead SOT-23

• Pb-Free and RoHS Compliant

• Temperature Ranges:

- Industrial (I): 

-40°C to +85°C

- Automotive (E): -40°C to +125°C

Description:

The Microchip Technology Inc. 24AA04H/24LC04BH 
(24XX04H*) is an 4 Kbit Electrically Erasable PROM. 
The device is organized as two blocks of 256 x 8-bit 
memory with a 2-wire serial interface. Low-voltage 
design permits operation down to 1.7V, with standby 
and active currents of only 1 

μA and 1 mA, 

respectively. The 24XX04H also has a page write 
capability for up to 16 bytes of data. The 24XX04H is 
available in the standard 8-pin PDIP, surface mount 
SOIC, TSSOP, 2x3 TDFN and MSOP packages, and 
is also available in the 5-lead SOT-23 package. All 
packages are Pb-free and RoHS compliant.

Block Diagram 

Package Types

Part 

Number

V

CC

 

Range

Max. Clock 

Frequency

Temp. 

Ranges

24AA04H

1.7-5.5

400 kHz

(1)

I

24LC04BH

2.5-5.5

400 kHz

I, E

Note 1:

100 kHz for V

CC

 <2.5V

HV

 

EEPROM

 

Array

Page

 

YDEC

XDEC

Sense Amp.

Memory

Control

Logic

I/O

Control

Logic

I/O

WP

SDA

SCL

V

CC

V

SS

R/W Control

Latches

Generator

A0

A1

A2

V

SS

V

CC

WP

SCL

SDA

1

2

3

4

8

7

6

5

PDIP, MSOP

SOIC, TSSOP

A0

A1

A2

V

SS

1

2

3

4

8

7

6

5

V

CC

WP

SCL

SDA

TDFN

A0

A1

A2

V

SS

WP

SCL

SDA

V

CC

SOT-23-5

1

5

4

3

SCL

Vss

SDA

WP

Vcc

2

Note:

Pins A0, A1 and A2 are not used by the 24XX04. (No 
internal connections).

8

7

6

5

1

2

3

4

4K I

2

C

 Serial EEPROM with Half-Array Write-Protect

*24XX04H is used in this document as a generic part 
number for the 24AA04H/24LC04BH devices.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22119A-html.html
background image

24AA04H/24LC04BH

DS22119A-page 2

© 2008 Microchip Technology Inc.

1.0

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings 

(†)

V

CC

.............................................................................................................................................................................6.5V

All inputs and outputs w.r.t. V

SS

......................................................................................................... -0.3V to V

CC

 +1.0V

Storage temperature ...............................................................................................................................-65°C to +150°C

Ambient temperature with power applied ................................................................................................-40°C to +125°C

ESD protection on all pins

......................................................................................................................................................≥ 4 kV

TABLE 1-1:

DC CHARACTERISTICS 

 

† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to 
the device. This is a stress rating only and functional operation of the device at those or any other conditions 
above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating 
conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

V

CC

 = +1.7V to +5.5V

Industrial (I): 

T

A

 = -40°C to +85°C

Automotive (E):  T

A

 = -40°C to +125°C

Param.

No.

Symbol

Characteristic

Min.

Typ.

Max.

Units

Conditions

D1

V

IH

WP, SCL and SDA pins

D2

High-level input voltage

0.7 V

CC

V

D3

V

IL

Low-level input voltage

0.3 V

CC

V

D4

V

HYS

Hysteresis of Schmitt

 

Trigger inputs

0.05 V

CC

V

(Note)

D5

V

OL

Low-level output voltage

0.40

V

I

OL

 = 3.0 mA, V

CC

 = 2.5V

D6

I

LI

Input leakage current

±1

μA

V

IN

 = V

SS

 or V

CC

D7

I

LO

Output leakage current

±1

μA

V

OUT

 = V

SS

 or V

CC

D8

C

IN

C

OUT

Pin capacitance

 

(all inputs/outputs)

10

pF

V

CC

 = 5.0V (Note)

T

A

 = 25°C, F

CLK

 = 1 MHz

D9

I

CC

 write

Operating current

0.1

3

mA

V

CC

 = 5.5V, SCL = 400 kHz

D10

I

CC

 read

0.05

1

mA

D11

I

CCS

Standby current


0.01

1
5

μ

A

μA

Industrial
Automotive
SDA = SCL = V

CC

WP = V

SS

Note:

This parameter is periodically sampled and not 100% tested.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22119A-html.html
background image

© 2008 Microchip Technology Inc.

DS22119A-page  3

24AA04H/24LC04BH

TABLE 1-2:

AC CHARACTERISTICS 

 

AC CHARACTERISTICS

Industrial (I):

T

A

 = -40°C to +85°C, V

CC

 = +1.7V to +5.5V

Automotive (E):

T

A

 = -40°C to +125°C, V

CC

 = +2.5V to +5.5V

Param.

No.

Symbol

Characteristic

Min.

Max.

Units

Conditions

1

F

CLK

Clock Frequency


400
100

kHz
kHz

2.5V 

≤ V

CC

 

≤ 5.5V

1.7V 

≤ V

CC

 

< 2.5V (24AA04H)

2

T

HIGH

Clock High Time

600

4000


ns
ns

2.5V 

≤ V

CC

 

≤ 5.5V

1.7V 

≤ V

CC

 

< 2.5V (24AA04H)

3

T

LOW

Clock Low Time

1300
4700


ns
ns

2.5V 

≤ V

CC

 

≤ 5.5V

1.7V 

≤ V

CC

 

< 2.5V (24AA04H)

4

T

R

SDA and SCL Rise Time 
(Note 1)


300

1000

ns
ns

2.5V 

≤ V

CC

 

≤ 5.5V 

1.7V 

≤ V

CC

 

< 2.5V (24AA04H) 

5

T

F

SDA and SCL Fall Time

300

ns

(Note 1)

6

T

HD

:

STA

Start Condition Hold Time

600

4000


ns
ns

2.5V 

≤ V

CC

 

≤ 5.5V

1.7V 

≤ V

CC

 

< 2.5V (24AA04H)

7

T

SU

:

STA

Start Condition Setup Time

600

4700


ns
ns

2.5V 

≤ V

CC

 

≤ 5.5V

1.7V 

≤ V

CC

 

< 2.5V (24AA04H)

8

T

HD

:

DAT

Data Input Hold Time

0

ns

(Note 2)

9

T

SU

:

DAT

Data Input Setup Time

100
250


ns
ns

2.5V 

≤ V

CC

 

≤ 5.5V

1.7V 

≤ V

CC

 

< 2.5V (24AA04H)

10

T

SU

:

STO

Stop Condition Setup Time

600

4000


ns
ns

2.5V 

≤ V

CC

 

≤ 5.5V

1.7V 

≤ V

CC

 

< 2.5V (24AA04H)

11

T

SU

:

WP

WP Setup Time

600

4000


ns
ns

2.5V 

≤ V

CC

 

≤ 5.5V

1.7V 

≤ V

CC

 < 2.5V (24AA04H)

12

T

HD

:

WP

WP Hold Time

1300
4700


ns
ns

2.5V 

≤ V

CC

 

≤ 5.5V

1.7V 

≤ V

CC

 < 2.5V (24AA04H)

13

T

AA

Output Valid from Clock 
(Note 2)


900

3500

ns
ns

2.5V 

≤ V

CC

 

≤ 5.5V

1.7V 

≤ V

CC

 

< 2.5V (24AA04H)

14

T

BUF

Bus free time: Time the bus 
must be free before a new 
transmission can start

1300
4700


ns
ns

2.5V 

≤ V

CC

 

≤ 5.5V

1.7V 

≤ V

CC

 

< 2.5V (24AA04H)

15

T

OF

Output Fall Time from V

IH

 

Minimum to V

IL

 Maximum


250
250

ns
ns

2.5V 

≤ V

CC

 

≤ 5.5V

1.7V 

≤ V

CC

 

< 2.5V (24AA04H)

16

T

SP

Input Filter Spike Suppression

 

(SDA and SCL pins)

50

ns

(Notes 1 and 3)

17

T

WC

Write Cycle Time (byte or 
page)

5

ms

18

Endurance

1M

cycles

25°C, (Note 4)

Note 1:

Not 100% tested. C

B

 = total capacitance of one bus line in pF.

2:

As a transmitter the device must provide an internal minimum delay time to bridge the undefined region 
(minimum 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

3:

The combined T

SP

 and V

HYS

 specifications are due to new Schmitt Trigger inputs which provide improved 

noise spike suppression. This eliminates the need for a 

T

I

 specification for standard operation.

4:

This parameter is not tested but ensured by characterization. For endurance estimates in a specific 
application, please consult the Total Endurance™ Model which can be obtained on Microchip’s web site at 
www.microchip.com.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22119A-html.html
background image

24AA04H/24LC04BH

DS22119A-page 4

© 2008 Microchip Technology Inc.

FIGURE 1-1:

BUS TIMING DATA 

(unprotected)

(protected)

SCL

SDA
IN

SDA
OUT

WP

5

7

6

16

3

2

8

9

13

D4

4

10

11

12

14

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22119A-html.html
background image

© 2008 Microchip Technology Inc.

DS22119A-page  5

24AA04H/24LC04BH

2.0

FUNCTIONAL DESCRIPTION

The 24XX04H supports a bidirectional, 2-wire bus and 
data transmission protocol. A device that sends data 
onto the bus is defined as a transmitter, while a device 
receiving data is defined as a receiver. The bus has to 
be controlled by a master device which generates the 
Serial Clock (SCL), controls the bus access and 
generates the Start and Stop conditions, while the 
24XX04H works as slave. Both master and slave can 
operate as transmitter or receiver, but the master 
device determines which mode is activated.

3.0

BUS CHARACTERISTICS

The following bus protocol has been defined:

• Data transfer may be initiated only when the bus 

is not busy.

• During data transfer, the data line must remain 

stable whenever the clock line is high. Changes in 
the data line while the clock line is high will be 
interpreted as a Start or Stop condition.

Accordingly, the following bus conditions have been 
defined (Figure 3-1).

3.1

Bus Not Busy (A)

Both data and clock lines remain high.

3.2

Start Data Transfer (B)

A high-to-low transition of the SDA line while the clock 
(SCL) is high determines a Start condition. All 
commands must be preceded by a Start condition.

3.3

Stop Data Transfer (C)

A low-to-high transition of the SDA line while the clock 
(SCL) is high determines a Stop condition. All 
operations must be ended with a Stop condition.

3.4

Data Valid (D)

The state of the data line represents valid data when, 
after a Start condition, the data line is stable for the 
duration of the high period of the clock signal.

The data on the line must be changed during the low 
period of the clock signal. There is one clock pulse per 
bit of data.

Each data transfer is initiated with a Start condition and 
terminated with a Stop condition. The number of the 
data bytes transferred between the Start and Stop 
conditions is determined by the master device and is 
theoretically unlimited, although only the last sixteen 
will be stored when doing a write operation. When an 
overwrite does occur it will replace data in a first-in first-
out (FIFO) fashion.

3.5

Acknowledge

Each receiving device, when addressed, is obliged to 
generate an acknowledge after the reception of each 
byte. The master device must generate an extra clock 
pulse which is associated with this Acknowledge bit. 

The device that acknowledges, has to pull down the 
SDA line during the acknowledge clock pulse in such a 
way that the SDA line is stable low during the high 
period of the acknowledge related clock pulse. Of 
course, setup and hold times must be taken into 
account. During reads, a master must signal an end of 
data to the slave by not generating an Acknowledge bit 
on the last byte that has been clocked out of the slave. 
In this case, the slave (24XX04H) will leave the data 
line high to enable the master to generate the Stop 
condition.

FIGURE 3-1:

DATA TRANSFER SEQUENCE ON THE SERIAL BUS 

Note:

The 24XX04H does not generate any 
Acknowledge bits if an internal program-
ming cycle is in progress.

SCL

SDA

(A)

(B)

(D)

(D)

(A)

(C)

Start

Condition

Address or

Acknowledge

Valid

Data

Allowed

to Change

Stop

Condition

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22119A-html.html
background image

24AA04H/24LC04BH

DS22119A-page 6

© 2008 Microchip Technology Inc.

3.6

Device Addressing

A control byte is the first byte received following the 
Start condition from the master device (Figure 3-2). 
The control byte consists of a four-bit control code. For 
the 24XX04H, this is set as ‘

1010

 binary for read and 

write operations. The next three bits of the control byte 
are the block-select bits (B2, B1, B0). B2 and B1 are a 
“don’t care” for the 24XX04H. B0 is used by the master 
device to select which of the two 256 word-blocks of 
memory are to be accessed. These bits are in effect the 
three Most Significant bits of the word address.

The last bit of the control byte defines the operation to 
be performed. When set to ‘

1

’ a read operation is 

selected. When set to ‘

0

’ a write operation is selected. 

Following the Start condition, the 24XX04H monitors 
the SDA bus, checking the device type identifier being 
transmitted and, upon receiving a ‘

1010

 code, the 

slave device outputs an Acknowledge signal on the 
SDA line. Depending on the state of the R/W bit, the 
24XX04H will select a read or write operation.

FIGURE 3-2:

CONTROL BYTE 
ALLOCATION  

Operation

Control 

Code

Block Select

R/W

Read

1010

Block Address

1

Write

1010

Block Address

0

1

0

1

0

x

x

B0 R/W ACK

Start Bit

Read/Write Bit

x = “don’t care”

S

Slave Address

Acknowledge Bit

Control Code

Block

Select 

Bits

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22119A-html.html
background image

© 2008 Microchip Technology Inc.

DS22119A-page  7

24AA04H/24LC04BH

4.0

WRITE OPERATION

4.1

Byte Write

Following the Start condition from the master, the 
device code (4 bits), the block address (3 bits) and the 
R/W bit, which is a logic-low, is placed onto the bus by 
the master transmitter. This indicates to the addressed 
slave receiver that a byte with a word address will 
follow once it has generated an Acknowledge bit during 
the ninth clock cycle. Therefore, the next byte transmit-
ted by the master is the word address and will be 
written into the Address Pointer of the 24XX04H. After 
receiving another Acknowledge signal from the 
24XX04H, the master device will transmit the data word 
to be written into the addressed memory location. The 
24XX04H acknowledges again and the master 
generates a Stop condition. This initiates the internal 
write cycle and, during this time, the 24XX04H will not 
generate Acknowledge signals (Figure 4-1).

4.2

Page Write 

The write control byte, word address and the first data 
byte are transmitted to the 24XX04H in the same way 
as in a byte write. However, instead of generating a 
Stop condition, the master transmits up to 16 data bytes 
to the 24XX04H, which are temporarily stored in the on-
chip page buffer and will be written into memory once 
the master has transmitted a Stop condition. Upon 
receipt of each word, the four lower-order Address 
Pointer bits are internally incremented by ‘

1

’. The 

higher-order 5 bits of the word address remain 
constant. If the master should transmit more than 16 
words prior to generating the Stop condition, the 
address counter will roll over and the previously 
received data will be overwritten. As with the byte write 
operation, once the Stop condition is received an 
internal write cycle will begin (Figure 4-2).

FIGURE 4-1:

BYTE WRITE 

FIGURE 4-2:

PAGE WRITE 

Note:

Page write operations are limited to writing 
bytes within a single physical page, 
regardless of the number of bytes 
actually being written. Physical page 
boundaries start at addresses that are 
integer multiples of the page buffer size (or 
‘page-size’) and end at addresses that are 
integer multiples of [page size – 1]. If a 
Page Write command attempts to write 
across a physical page boundary, the 
result is that the data wraps around to the 
beginning of the current page (overwriting 
data previously stored there), instead of 
being written to the next page, as might be 
expected. It is therefore necessary for the 
application software to prevent page write 
operations that would attempt to cross a 
page boundary.

S

P

Bus Activity
Master

SDA Line

Bus Activity

S

T

A

R

T

S

T

O

P

Control

Byte

Word

Address

Data

A

C

K

A

C

K

A

C

K

x

 = “don’t care”

1

0

1 0

X X B0 0

Block

Select

Bits

S

P

Bus Activity
Master

SDA Line

Bus Activity

S

T

A

R

T

Control

Byte

Word

Address (n)

Data (n)

Data (n + 15)

S

T

O

P

A

C

K

A

C

K

A

C

K

A

C

K

A

C

K

Data (n + 1)

x

 = “don’t care”

Block

Select

Bits

1

1

0

0

X X

B0

0

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22119A-html.html
background image

24AA04H/24LC04BH

DS22119A-page 8

© 2008 Microchip Technology Inc.

5.0

ACKNOWLEDGE POLLING

Since the device will not acknowledge during a write 
cycle, this can be used to determine when the cycle is 
complete (this feature can be used to maximize bus 
throughput). Once the Stop condition for a Write 
command has been issued from the master, the device 
initiates the internally-timed write cycle and ACK polling 
can then be initiated immediately. This involves the 
master sending a Start condition followed by the control 
byte for a Write command (R/W = 

0

). If the device is still 

busy with the write cycle, no ACK will be returned. If the 
cycle is complete, the device will return the ACK and 
the master can then proceed with the next Read or 
Write command. See Figure 5-1 for a flow diagram of 
this operation.

FIGURE 5-1:

ACKNOWLEDGE POLLING 
FLOW 

6.0

WRITE PROTECTION

The WP pin allows the user to write-protect half of the 
array (100h-1FFh) when the pin is tied to V

CC

. If the pin 

is tied to V

SS

 the write protection is disabled.

Send

Write Command

Send Stop

Condition to

Initiate Write Cycle

Send Start

Send Control Byte

with R/W = 0

Did Device

Acknowledge

(ACK = 0)?

Next

Operation

No

Yes

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22119A-html.html
background image

© 2008 Microchip Technology Inc.

DS22119A-page  9

24AA04H/24LC04BH

7.0

READ OPERATION

Read operations are initiated in the same way as write 
operations, with the exception that the R/W bit of the 
slave address is set to ‘

1

’. There are three basic types 

of read operations: current address read, random read 
and sequential read.

7.1

Current Address Read

The 24XX04H contains an address counter that main-
tains the address of the last word accessed, internally 
incremented by ‘

1

’. Therefore, if the previous access 

(either a read or write operation) was to address 

n

, the 

next current address read operation would access data 
from address 

n + 1

. Upon receipt of the slave address 

with R/W bit set to ‘

1

’, the 24XX04H issues an acknowl-

edge and transmits the 8-bit data word. The master will 
not acknowledge the transfer, but does generate a Stop 
condition and the 24XX04H discontinues transmission 
(Figure 7-1).

7.2

Random Read

Random read operations allow the master to access 
any memory location in a random manner. To perform 
this type of read operation, the word address must first 
be set. This is accomplished by sending the word 
address to the 24XX04H as part of a write operation. 
Once the word address is sent, the master generates a 
Start condition following the acknowledge. This 
terminates the write operation, but not before the 
internal Address Pointer is set. The master then issues 
the control byte again, but with the R/W bit set to a ‘

1

’. 

The 24XX04H will then issue an acknowledge and 
transmit the 8-bit data word. The master will not 
acknowledge the transfer, but does generate a Stop 
condition and the 24XX04H will discontinue transmis-
sion (Figure 7-2).

7.3

Sequential Read

Sequential reads are initiated in the same way as a 
random read, except that once the 24XX04H transmits 
the first data byte, the master issues an acknowledge 
as opposed to a Stop condition in a random read. This 
directs the 24XX04H to transmit the next sequentially-
addressed 8-bit word (Figure 7-3).

To provide sequential reads, the 24XX04H contains an 
internal Address Pointer that is incremented by one 
upon completion of each operation. This Address 
Pointer allows the entire memory contents to be serially 
read during one operation.

7.4

Noise Protection

The 24XX04H employs a V

CC

 threshold detector circuit 

which disables the internal erase/write logic if the V

CC 

is below 1.5V at nominal conditions.

The SCL and SDA inputs have Schmitt Trigger and 
filter circuits which suppress noise spikes to assure 
proper device operation, even on a noisy bus.

FIGURE 7-1:

CURRENT ADDRESS READ   

S

P

Bus Activity
Master

SDA Line

Bus Activity

S

T

O

P

Control

Byte

Data (n)

A

C

K

N

o

 

A

C

K

S

T

A

R
T

x

 = “don’t care”

1

0

1

0 x

x B0 1

Block

Select

Bits

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/22119A-html.html
background image

24AA04H/24LC04BH

DS22119A-page 10

© 2008 Microchip Technology Inc.

FIGURE 7-2:

RANDOM READ    

FIGURE 7-3:

SEQUENTIAL READ   

S

P

S

Bus Activity
Master

SDA Line

Bus Activity

S

T

A

R

T

S

T

O

P

Control

Byte

A

C

K

Word

Address (n)

Control

Byte

S

T

A

R

T

Data (n)

A

C

K

A

C

K

N

o

A

C

K

x

 = “don’t care”

1 0 1 0

x

B0

0

1

1

0

0

x

B0

1

x

x

Block

Select

Bits

Block

Select

Bits

P

Bus Activity
Master

SDA Line

Bus Activity

S

T

O

P

Control

Byte

A

C

K

N

o

 

A

C

K

Data (n)

Data (n + 1)

Data (n + 2)

Data (n + X)

A

C

K

A

C

K

A

C

K

1

Maker
Microchip Technology Inc.
Datasheet PDF Download