21921C.book

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21921C-html.html
background image

 2004-2013 Microchip Technology Inc.

DS21921C-page 1

MCP1612

Features

• Fixed Switching Frequency: 1.4 MHz

• Input Operating Voltage Range: 2.7V to 5.5V

• Integrated Buck and Synchronous Switches

• Adjustable-Output Voltage Range: 0.8V to 5.0V

• 100% Duty Cycle Capable for Low Input Voltage

• Continuous Output Current Capability: 1A

• Shutdown Control with I

Q

 < 0.01

µ

A (Typ.)

• Integrated Soft-Start Feature

• Integrated Undervoltage Lockout (UVLO) 

Protection

• Integrated Overtemperature Protection

• Fast Dynamic Response to Line and Load Steps

• Small, 8-Pin DFN and MSOP Packages

• Operating Temperature Range: -40°C to +85°C

Applications

• Network Interface Cards

• Portable Computers

• Set-Top Boxes

• DSL Modems and Routers

• USB-Powered Devices

• GBIC  Modules

• High-Speed Data System Bus Termination

• Medical Instruments

• Cellular/GSM/PHS Phones

• +5V or +3.3V Distributed Voltages

Description

The MCP1612 is a 1A, 1.4 MHz, fully-integrated,
current mode-controlled, synchronous buck regulator.
The MCP1612 is packaged in the 8-pin MSOP and
space-saving, 3x3 DFN packages. The DFN package
also provides a lower thermal resistance package
option for high-power, high ambient temperature
applications. With an input operating range from 2.7V
to 5.5V, the MCP1612 is ideal for applications that are
powered by one single-cell Li-Ion, 2- to 3-cell NiMH,
NiCd or alkaline sources.

The output voltage of the MCP1612 is easily set over
the range of 0.8V to 5.0V by using an external resistor
divider. The external inductor and output capacitor size
are minimized due to an internally-fixed, 1.4 MHz clock
being used to set the switching frequency. The fixed
clock allows for continuous, fixed-frequency PWM
operation over the full load range. 

The MCP1612 is designed to provide fast dynamic
response to sudden changes in input voltage and load
current to minimize the necessary amount of external
output capacitance.

The MCP1612 can be used with ceramic, tantalum or
aluminum electrolytic output capacitors. Ceramic
capacitors with values as low as 4.7 µF can be used to
keep the output ripple voltage low. For applications that
require better load step performance, the value of the
output capacitor can be increased to 47 µF.

Additional features integrated into the MCP1612
include shutdown capability, soft-start, UVLO,
overcurrent and overtemperature protection.

Package Types

8-Lead DFN

1

2

3

4

8

7

6

5

V

CC

SHDN

COMP

V

IN

P

GND

L

X

A

GND

FB

1

2

3

4

8

7

6

5

V

CC

SHDN

COMP

V

IN

P

GND

L

X

A

GND

FB

8-Lead MSOP

Single 1A, 1.4 MHz Synchronous Buck Regulator

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21921C-html.html
background image

MCP1612

DS21921C-page 2

 2004-2013 Microchip Technology Inc.

Functional Block Diagram

NDRV

PDRV

INSET

Circuit

IN

gm

I

SENSE 

P-Channel

+

+

Slope Comp.

V

CC

P

GND

V

CC

A

GND

A

GND

A

1.2V

0.8V

+

FB

Comp

Leading-

Edge 

Blank

Soft-

Disable

Thermal 

Shutdown

SHDN

Disable

Undervoltage 

Lockout

V

CC

V

IN

L

X

A

GND

P

GND

1.4 MHz Clock

UVLO

UVLO

Disable

Peak Current 

Limit

V

REF

Peak Current 

Limit

Disable

V

REF

Start

V

BG

(UVLO)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21921C-html.html
background image

 2004-2013 Microchip Technology Inc.

DS21921C-page 3

MCP1612

Typical Application Circuit

MCP1612 3.3V to 1.2V Synchronous Buck Converter

C

IN

10 µF

Ceramic

V

IN

FB

A

GND

P

GND

L

x

1

10

2

C

BYP

0.1 µF

Ceramic

V

CC

SHDN

3

3.3 V

IN

 ±10%

4

OFF

ON

1000 pF

25 k

Comp

L = 3.3 µH

100 k

200 k

1.2V V

OUT

 @ 1A

5

6

7

8

MCP1612

C

OUT

10 µF
Ceramic

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21921C-html.html
background image

MCP1612

DS21921C-page 4

 2004-2013 Microchip Technology Inc.

1.0

ELECTRICAL 
CHARACTERISTICS

Absolute Maximum Ratings †

V

IN

 – A

GND

.......................................................................6.0V

(SHDN, FB, V

CC

, Comp ........... (A

GND

 – 0.3V) to (V

IN 

+ 0.3V)

L

to P

GND

.............................................. -0.3V to (V

IN

 + 0.3V)

P

GND

 to A

GND

................................................... -0.3V to +0.3V

Output Short Circuit Current ................................. Continuous

Storage temperature .....................................-65°C to +150°C

Ambient Temp. with Power Applied.................-40°C to +85°C

Operating Junction Temperature...................-40°C to +125°C

ESD protection on all pins (HBM)

 4 kV

ESD protection on all pins (MM)

300V

† Notice: Stresses above those listed under “Maximum
Ratings” may cause permanent damage to the device. This is
a stress rating only and functional operation of the device at
those or any other conditions above those indicated in the
operational listings of this specification is not implied.
Exposure to maximum rating conditions for extended periods
may affect device reliability.

DC CHARACTERISTICS

Electrical Specifications: Unless otherwise noted, V

IN

 = V

CC

 = V

SHDN

 = 3.3V, V

OUT

 = 1.8V, C

IN

 = C

OUT

 = 10 µF, L = 3.3 µH, 

I

LOAD

= 100 mA, T

A

 = +25°C. Boldface specifications apply over the T

A

 range of -40°C to +85°C.

Parameters

Sym

Min

Typ

Max

Units

Conditions

Input Voltage

Input Operating Voltage

V

IN

2.7

5.5

V

Input Shutdown Current

I(V

IN

)

0.01

1

µA

Shutdown mode (SHDN = GND)

Input Quiescent Current

I(V

IN

)

5

7

mA

I

LOAD

 = 0 mA

Oscillator Characteristics

Internal Oscillator Frequency

F

OSC

1.2

1.4

1.6

MHz

Internal Power Swicthes

R

DSon 

P-Channel

R

DSon-P

300

m

I

P

 = 250 mA

R

DSon 

N-Channel

R

DSon-N

300

m

I

N

 = 250 mA

L

X

 Pin Leakage Current 

I

LX

-1

1

µA

SHDN = 0V, V

IN

 = 5.5V, L

X

 = 0V,

L

X

 = 5.5V

Positive Current Limit Threshold

+I

LX(MAX)

2.3

A

Negative Current Limit Threshold

-I

LX(MAX)

-1.4

A

Feedback Characteristics

Transconductance from FB to 
COMP

g

m

35

62

90

µA/V

Output Voltage

Output Voltage Range

V

OUT

0.8

V

IN

V

Reference Feedback Voltage

V

FB

0.78

0.8

0.82

V

Feedback Input Bias Current

I

VFB

1

nA

Line Regulation

V

LINE-REG

0.15

0.5

%/V

V

IN

 = 2.7V to 5.5V, I

LOAD

 = 100 mA

Load Regulation

V

LOAD-REG

0.25

%

V

IN

 = 4.2V, I

LOAD

 = 100 mA to 1A

Note

1:

The integrated MOSFET switches have an integral diode from the L

X

 pin to V

IN 

and from L

X

 to P

GND

. In cases where 

these diodes are forward-biased, the package power dissipation limits must be adhered to. Thermal protection is not 
able to regulate the junction temperature for these cases.

2:

UVLO is specified for a falling V

IN

. Once the UVLO is activated, the UVLO-

HYS

 must be overcome before the device will 

return to operation.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21921C-html.html
background image

 2004-2013 Microchip Technology Inc.

DS21921C-page 5

MCP1612

TEMPERATURE SPECIFICATIONS

Protection Features

Undervoltage Lockout

UVLO

2.4

2.55

2.7

V

Note 2

Undervoltage Lockout Hysteresis

UVLO-

HYS

200

mV

Thermal Shutdown

T

SHD

160

°C

Note 1

Thermal Shutdown Hysteresis

T

SHD-HYS

9

°C

Interface Signal (SHDN)

Logic-High Input

V

IN-HIGH

45

%  of  V

IN

Logic-Low Input

V

IN-LOW

15

% of V

IN

Electrical Specifications: V

IN

 = 3.0V to 5.5V, F

OSC

 = 1 MHz with 10% Duty Cycle, C

IN

 = 0.1 µF. T

A

= -40°C to +125°C.

Parameters

Sym

Min

Typ

Max

Units

Conditions

Temperature Ranges

Storage Temperature Range

T

A

-65

+150

°C

Continuous

Maximum Junction Temperature 

T

J

+150

°C

Transient Only

Operating Junction Temperature Range 

T

A

- 40

+ 125

°C

Continuous Operation

Thermal Package Resistances

Thermal Resistance, 8L-MSOP

JA

208

°C/W

Typical 4-layer board interconnecting 
vias

Thermal Resistance, 8L-DFN

JA

41

°C/W

Typical 4-layer board interconnecting 
vias

DC CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise noted, V

IN

 = V

CC

 = V

SHDN

 = 3.3V, V

OUT

 = 1.8V, C

IN

 = C

OUT

 = 10 µF, L = 3.3 µH, 

I

LOAD

= 100 mA, T

A

 = +25°C. Boldface specifications apply over the T

A

 range of -40°C to +85°C.

Parameters

Sym

Min

Typ

Max

Units

Conditions

Note

1:

The integrated MOSFET switches have an integral diode from the L

X

 pin to V

IN 

and from L

X

 to P

GND

. In cases where 

these diodes are forward-biased, the package power dissipation limits must be adhered to. Thermal protection is not 
able to regulate the junction temperature for these cases.

2:

UVLO is specified for a falling V

IN

. Once the UVLO is activated, the UVLO-

HYS

 must be overcome before the device will 

return to operation.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21921C-html.html
background image

MCP1612

DS21921C-page 6

 2004-2013 Microchip Technology Inc.

2.0

TYPICAL PERFORMANCE CURVES

Note: Unless otherwise indicated, V

IN

 = V

CC

 = V

SHDN 

= 3.3V, C

OUT

 = C

IN

 = 10 µF, L = 3.3 µH, I

LOAD

 = 100 mA,

T

A

= +25°C. Boldface specifications apply over the T

A

 range of -40°C to +85°C.

FIGURE 2-1:

Efficiency vs. Load Current, 

V

IN

 = 3.3V.

FIGURE 2-2:

Efficiency vs. Load Current, 

V

IN

 = 5.0V.

FIGURE 2-3:

Output Voltage vs.

Load Current.

FIGURE 2-4:

Dropout Voltage vs.

Load Current.

FIGURE 2-5:

Input Quiescent Current vs. 

Input Voltage.

FIGURE 2-6:

Oscillator Frequency vs. 

Input Voltage.

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

0

10

20

30

40

50

60

70

80

90

100

10

100

1000

Load Current (mA)

E

ffi

cien

cy (

%

)

V

IN

 = 3.3V

V

OUT

 = 1.2V

V

OUT

 = 2.5V

V

OUT

 = 1.8V

0

10

20

30

40

50

60

70

80

90

100

10

100

1000

Load Current (mA)

E

ff

icie

n

cy (%

)

V

IN

 = 5.0V

V

OUT

 = 3.3V

V

OUT

 = 2.5V

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0

200

400

600

800

1000

Load Current (mA)

C

h

an

ge I

n

 O

u

tp

ut

 Vo

lt

ag

e (

m

V)

V

OUT

 = 3.3V, V

IN

 = 5.0V

V

OUT

 = 1.8V, V

IN

 = 3.3V

V

OUT

 = 1.2V V

IN

 = 3.3V

0.00

0.10

0.20

0.30

0.40

0.50

0

200

400

600

800

1000

Load Current (mA)

D

rop

ou

t V

o

lt

a

g

e

 (V

)

V

OUT

 = 2.7V

V

OUT

 = 3.3V

3.5

4.0

4.5

5.0

5.5

6.0

6.5

2.5

3

3.5

4

4.5

5

5.5

Input Voltage (V)

Inpu

t Qu

iescen

t C

u

rr

en

t (

m

A

)

V

OUT

 = 1.8V

T

A

 = -40

o

C

T

A

 = +25

o

C

T

A

 = +85

o

C

1.36

1.37

1.38

1.39

1.40

1.41

1.42

2.5

3

3.5

4

4.5

5

5.5

Input Voltage (V)

Os

cillat

o

r Fr

equen

cy (M

H

z

)

T

A

 = -40

o

C

T

A

 = +25

o

C

T

A

 = +85

o

C

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21921C-html.html
background image

 2004-2013 Microchip Technology Inc.

DS21921C-page 7

MCP1612

TYPICAL PERFORMANCE CURVES

 

(Continued)

Note: Unless otherwise indicated, V

IN

 = V

CC

 = V

SHDN 

= 3.3V, C

OUT

 = C

IN

 = 10 µF, L = 3.3 µH, I

LOAD

 = 100 mA,

T

A

= +25°C. Boldface specifications apply over the T

A

 range of -40°C to +85°C.

FIGURE 2-7:

Power-Up from V

IN

.

FIGURE 2-8:

Power-Up from Shutdown.

FIGURE 2-9:

Load Transient Response.

FIGURE 2-10:

Load Transient Response.

FIGURE 2-11:

Line Transient Response.

FIGURE 2-12:

Line Transient Response.

V

IN

2.0V/DIV

V

OUT

1.0V/DIV

Start-up from V

IN

 = 0V to 3.3V

1.0 ms/DIV

V

OUT

 = 1.8V

SHDN

2.0V/DIV

V

OUT

1.0V/DIV

Start-up from SHDN

1.0 ms/DIV

V

OUT

 = 1.8V

V

OUT

200 mV/DIV

I

OUT

500 mA/DIV

I

OUT

 = 100 mA to 800 mA

50 µs/DIV

V

OUT

 = 1.8V

V

OUT

100 mV/DIV

I

OUT

500 mA/DIV

I

OUT

 = 100 mA to 800 mA

500 µs/DIV

V

IN

 = 5.0V

V

OUT

 = 3.3V

V

IN

2.0V/DIV

V

OUT

50 mV/DIV

Line Step Response, V

IN

 = 3.0V to 4.0V

200 µs/DIV

V

OUT

 = 1.8V

I

OUT

 = 800 mA

V

IN

2.0V/DIV

V

OUT

50 mV/DIV

Line Step Response, V

IN

 = 4.5V to 5.5V

200 µs/DIV

V

OUT

 = 3.3V

I

OUT

 = 800 mA

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21921C-html.html
background image

MCP1612

DS21921C-page 8

 2004-2013 Microchip Technology Inc.

TYPICAL PERFORMANCE CURVES

 

(Continued)

Note: Unless otherwise indicated, V

IN

 = V

CC

 = V

SHDN 

= 3.3V, C

OUT

 = C

IN

 = 10 µF, L = 3.3 µH, I

LOAD

 = 100 mA,

T

A

 = +25°C. Boldface specifications apply over the T

A

 range of -40°C to +85°C.

FIGURE 2-13:

Low Load Current Switching 

Waveform.

FIGURE 2-14:

High Load Current Switching 

Waveform.

L

X

2.0V/DIV

I

IND

100 mA/DIV

500 ns/DIV

V

IN

 = 3.3V

V

OUT

10 mV/DIV

I

OUT

 = 10 mA, V

OUT

 = 1.8V

L

X

5.0V/DIV

I

IND

500 mA/DIV

500 ns/DIV

V

IN

 = 3.3V

V

OUT

10 mV/DIV

I

OUT

 = 1A, V

OUT

 = 1.8V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21921C-html.html
background image

 2004-2013 Microchip Technology Inc.

DS21921C-page 9

MCP1612

3.0

MCP1612 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1:

PIN FUNCTION TABLE

3.1

Input Voltage Pin (V

IN

)

Connect the input voltage source to V

IN

. For normal

operation, the voltage on V

IN 

should be between +2.7V

and +5.5V. A 10 µF bypass capacitor should be
connected between V

IN

 and P

GND

.

3.2

Analog Input Voltage Pin (V

CC

)

V

CC

 provides bias for internal analog functions. This

voltage is derived by filtering the V

IN

 supply.

3.3

Shutdown Input Pin (SHDN)

Connect SHDN to a logic-level input in order to turn the
regulator on or off. A logic-high (>45% of V

IN

) will

enable the regulator. A logic-low (<15% of V

IN

) will

force the regulator into Shutdown mode. When in
shutdown, both the P-channel and N-channel switches
are turned off.

3.4

Compensation Pin (COMP)

COMP is the internal transconductance amplifier
output pin. External compensation is connected to
COMP for control-loop stabilization.

3.5

Feedback Pin (FB)

Connect the output voltage of the buck converter
through an external resistor divider to FB to regulate
the output voltage. The nominal voltage compared to
this input for pulse termination is 0.8V.

3.6

Analog Ground Pin (A

GND

)

Tie all small-signal ground returns to A

GND

. Noise on

A

GND

 can effect the sensitive internal analog

measurements.

3.7

Power Ground Pin (P

GND

)

Connect all large-signal ground returns to P

GND

. These

large-signal traces should have a small loop area and
length to prevent coupling of switching noise to
sensitive traces.

3.8

Buck Inductor Output Pin (L

X

)

Connect L

X

 directly to the buck inductor. This pin

carries large signal-level currents; all connections
should be made as short as possible.

Pin No.

Name

Function

1

V

IN

Input Voltage Pin

2

V

CC

Analog Input Voltage Pin

3

SHDN

Shutdown Control Input Pin

4

COMP

Transconductance Amplifier Output Pin

5

FB

Feedback Input Pin

6

A

GND

Analog Ground Pin

7

P

GND

Power Ground Pin

8

L

X

Buck Inductor Output Pin

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21921C-html.html
background image

MCP1612

DS21921C-page 10

 2004-2013 Microchip Technology Inc.

4.0

DETAILED DESCRIPTION

4.1

Device Overview

The MCP1612 is a 1A synchronous buck converter
switching at 1.4 MHz to minimize external component
size and cost. While utilizing a fixed-frequency Current
mode architecture, the MCP1612 provides fast
response to sudden load changes, as well as
overcurrent protection in the event of a shorted load.
The input voltage range is 2.7V to 5.5V, while the
output voltage is adjustable by properly setting an
external resistor divider and can range from 0.8V to
V

IN

. Integrated soft-start, UVLO and overtemperature

protection minimize external circuitry and component
count.

4.2

Current Mode Control Scheme

The MCP1612 incorporates a Peak Current mode
control scheme. Peak Current mode is used to obtain
high gain in the PWM control loop for very fast
response to dynamic line and load conditions. With
both the P-channel and N-channel MOSFETs turned
off, the beginning of a cycle occurs on the negative
edge of the internal 1.4 MHz oscillator, the P-channel
MOSFET turns on and current ramps up into the buck
inductor. The inductor current is sensed and tied to one
input of a high-speed comparator. The other input of
the high-speed comparator is the error amplifier output.
This is the amplified difference between the internal
0.8V reference and the divided-down V

OUT

 signal at

the FB pin of the MCP1612. When the sensed inductor
current ramps up to the point that is equal to the
amplified error signal, the high-speed comparator
output switches states and the P-channel MOSFET is
turned off until the beginning of the next clock cycle and
the N-channel is turned on. The width of the pulse (or
duty cycle) is ideally determined by the V

OUT

/V

IN

 ratio

of the DC/DC converter. The actual duty cycle is slightly
larger to account for the non-ideal losses of the
integrated MOSFET switches and the losses in the
external inductor.

4.3

Low-Dropout Operation

The MCP1612 is capable of operating over a wide
range of input voltages. The PWM architecture allows
for the P-channel MOSFET to achieve 100% duty cycle
operation for applications that have minimal input volt-
age headroom. During 100% Duty Cycle mode, the
output voltage (V

OUT

) is equal to the Output Current

(I

OUT

) x Resistance (P-channel R

DSON

 + R

INDUCTOR

).

4.4

Current Limit

Cycle-by-cycle current limit is used to protect the
MCP1612 from being damaged when an external short
circuit is applied. The typical peak current limit is 2.3A.
If the sensed inductor current reaches the 2.3A limit,
the P-channel MOSFET is turned off, even if the output
voltage is not in regulation.

4.5

Soft-Start

During normal power-up, as V

IN

 rises above the UVLO

protection setting (or, in the case of a logic-low to logic-
high transition on the shutdown pin), the rise time of the
MCP1612 output voltage is controlled by the soft-start
feature. This is accomplished by allowing the output of
the error amplifier to slowly rise. This feature prevents
the output voltage from overshooting the desired value
and the sudden inrush of current, depleting the input
capacitors and causing a large dip in input voltage. This
large dip in the input voltage can trip the UVLO thresh-
old, causing the converter to shut down prior to reach-
ing steady-state operation.

4.6

Undervoltage Lockout (UVLO)

The UVLO feature uses a comparator to sense the
input voltage level (V

IN

). If the input voltage is lower

than the voltage necessary to properly operate the
MCP1612, the UVLO feature will hold the converter off.
When V

IN

 rises above the necessary input voltage, the

UVLO is released and soft-start begins. For the
MCP1612, the UVLO protection threshold is at a
maximum of 2.7V. Hysteresis is built into the UVLO
circuit to compensate for input impedance. For
example, if there is any resistance between the input
voltage source and the converter (once it starts), there
will be a voltage drop at the converter input equal to
I

IN

x R

IN

. The typical hysteresis for the MCP1612 is

200 mV.

4.7

Overtemperature Protection

The MCP1612 has an integrated overtemperature
protection circuit that monitors the device junction
temperature and shuts the device off if the junction
temperature exceeds the typical 160°C threshold. If the
overtemperature threshold is reached, the soft-start is
reset so that, when the junction temperature cools to
approximately 151°C, the device will automatically
restart and the output voltage will not overshoot.

4.8

Shutdown Input Operation

The SHDN pin is used to turn the MCP1612 on and off.
When the SHDN pin is tied low, the MCP1612 is off.
When tied high, the MCP1612 will be enabled and
begin operation as long as the input voltage is not
below the UVLO threshold.

Maker
Microchip Technology Inc.
Datasheet PDF Download