21655C.book

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21655C-html.html
background image

 2001-2012 Microchip Technology Inc.

Preliminary

DS21655C-page 1

MCP2150

Features

• Implements the IrDA

®

 standard including:

- IrLAP

- IrLMP

- IAS

- TinyTP

- IrCOMM (9-wire “cooked” service class)

• Provides IrDA standard physical signal layer 

support including:

- Bidirectional communication

- CRC implementation

- Data communication rates up to 115.2 kbaud

• Includes UART to IrDA standard encoder/decoder 

functionality:

- Easily interfaces with industry standard 

UARTs and infrared transceivers

• UART interface for connecting to Data Terminal 

Equipment (DTE) systems

• Transmit/Receive formats (bit width) supported:

- 1.63 µs

• Hardware baud rate selection for UART:

- 9.6 kbaud

- 19.2 kbaud

- 57.6 kbaud

- 115.2 kbaud

• Infrared baud rates supported:

- 9.6 kbaud

- 19.2 kbaud

- 38.4 kbaud

- 57.6 kbaud

- 115.2 kbaud

• 64 Byte Data Packet Size

• Programmable Device ID String

• Operates as Secondary Device

CMOS Technology

• Low power, high-speed CMOS technology

• Fully static design

• Low voltage operation

• Industrial temperature range 

• Low power consumption

- < 1 mA @ 3.3 V, 11.0592 MHz (typical)

- 3 µA typical @ 5.0 V when disabled

Package Types

Block Diagram

2
3
4
5
6
7
8
9

10

1

2
3
4
5
6

7

8
9

1

19
18

16
15
14
13
12

11

17

18
17

15
14
13
12

11

10

16

20

OSC2

OSC1/CLKI

V

SS

V

SS

V

DD

V

DD

BAUD1
CD

CTS

RTS

TX

RX

RI

DSR

DTR

TXIR

RXIR

RESET

EN

BAUD0

V

SS

TX

RX

RI

TXIR

RXIR

RESET

EN

BAUD0

OSC2

OSC1/CLKI

V

DD

BAUD1
CD

CTS

RTS

DSR

DTR

MC

P2
150

M

C

P

215

0

PDIP, SOIC

SSOP

Encode and 

Protocol Handler

TX

TXIR

RX

RXIR

EN

MCP2150

Logic 

Baud Rate

RTS

Generator

BAUD1
BAUD0

CD

UART

Control

CTS

DSR
DTR

RI

OSC1

OSC2

Protocol Handler

and Decode

IrDA

®

 Standard Protocol Stack Controller

Supporting DTE Applications

21655C.book  Page 1  Thursday, January 10, 2013  12:57 PM

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21655C-html.html
background image

MCP2150

DS21655C-page 2

Preliminary

 2001-2012 Microchip Technology Inc.

NOTES:

21655C.book  Page 2  Thursday, January 10, 2013  12:57 PM

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21655C-html.html
background image

 2001-2012 Microchip Technology Inc.

Preliminary

DS21655C-page 3

MCP2150

1.0

DEVICE OVERVIEW

This document contains device specific information for
the following device:

• MCP2150

The MCP2150 is a cost effective, low pin count (18-pin),
easy to use device for implementing IrDA standard wire-
less connectivity. The MCP2150 provides support for
the IrDA standard protocol “stack” plus bit encoding/
decoding.

The serial interface baud rates are user selectable to
one of four IrDA standard baud rates between 9600
baud and 115.2 kbaud (9600, 19200, 57600, 115200).
The IR baud rates are user selectable to one of five
IrDA standard baud rates between 9600 baud and
115.2 kbaud (9600, 19200, 37400, 57600, 115200).
The serial interface baud rate will be specified by the
BAUD1:BAUD0 pins, while the IR baud rate is specified
by the Primary Device (during Discover phase). This
means that the baud rates do not need to be the same.
The MCP2150 operates in Data Terminal Equipment
(DTE) applications and sits between a UART and an
infrared optical transceiver.

The MCP2150 encodes an asynchronous serial data
stream, converting each data bit to the corresponding
infrared (IR) formatted pulse. IR pulses received are
decoded and then handled by the protocol handler
state machine. The protocol handler sends the appro-
priate data bytes to the Host Controller in UART
formatted serial data.

The MCP2150 supports “point-to-point” applications.
That is, one Primary device and one Secondary device.
The MCP2150 operates as a Secondary device. It does
not support “multi-point” applications.

Sending data using IR light requires some hardware
and the use of specialized communication protocols.
These protocol and hardware requirements are
described, in detail, by the IrDA standard specifica-
tions. The encoding/decoding functionality of the
MCP2150 is designed to be compatible with the physi-
cal layer component of the IrDA standard. This part of
the standard is often referred to as “IrPHY”.

The complete IrDA standard specifications are avail-
able for download from the IrDA website
(www.IrDA.org).

21655C.book  Page 3  Thursday, January 10, 2013  12:57 PM

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21655C-html.html
background image

MCP2150

DS21655C-page 4

Preliminary

 2001-2012 Microchip Technology Inc.

1.1

Applications

The MCP2150 Infrared Communications Controller
supporting the IrDA standard provides embedded sys-
tem designers the easiest way to implement IrDA stan-
dard wireless connectivity. 

Figure 1-1

 

shows a typical

application block diagram. 

Table 1-2

 shows the pin

definitions.

TABLE 1-1:

OVERVIEW OF FEATURES

Infrared communication is a wireless two-way data
connection, using infrared light generated by low-cost
transceiver signaling technology. This provides reliable
communication between two devices.

Infrared technology offers:

• Universal standard for connecting portable 

computing devices

• Easy, effortless implementation

• Economical alternative to other connectivity 

solutions

• Reliable, high-speed connection

• Safe to use in any environment (can even be 

used during air travel)

• Eliminates the hassle of cables

• Allows PCs and other electronic devices (such as 

PDAs, cell phones, etc.) to communicate with 
each other

• Enhances mobility by allowing users to easily 

connect

The MCP2150 allows the easy addition of IrDA stan-
dard wireless connectivity to any embedded applica-
tion that uses serial data. 

Figure 1-1

 shows typical

implementation of the MCP2150 in an embedded
system.

The IrDA protocols for printer support are not included
in the IrCOMM 9-wire “cooked” service class.

FIGURE 1-1:

SYSTEM BLOCK DIAGRAM

Features

MCP2150

Serial Communications

UART, IR

Baud Rate Selection

Hardware

Low Power Mode

Yes

Resets (and Delays)

RESET, POR 
(PWRT and OST)

Packages

18-pin DIP, SOIC, 
20-pin SSOP

Encode

Decode

TX

TXIR

RX

RXIR

EN

MCP2150

Host Controller

TX

RX

Optical

UA

R

T

TXD

RXD

Power Down

Logic

Baud Rate

Generator

BAUD1
BAUD0

RTS

CD

UART

Control

CTS

DSR
DTR

RI

Transceiver

(Microcontroller)

21655C.book  Page 4  Thursday, January 10, 2013  12:57 PM

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21655C-html.html
background image

 2001-2012 Microchip Technology Inc.

Preliminary

DS21655C-page 5

MCP2150

TABLE 1-2:

PIN DESCRIPTIONS

Pin Name

Pin Number

Pin

Type

Buffer

Type

Description

PDIP SOIC SSOP

BAUD0

1

1

1

I

ST

BAUD1:BAUD0 specify the baud rate of the device.

TXIR

2

2

2

O

Asynchronous transmit to Infrared transceiver.

RXIR

3

3

3

I

ST

Asynchronous receive from Infrared transceiver.

RESET 

4

4

4

I

ST

Resets the device.

V

SS

 

5

5

5, 6

P

Ground reference for logic and I/O pins.

EN

6

6

7

I

TTL

Device enable. 
1

 = Device is enabled.

0

 = Device is disabled (low power). MCP2150 only monitors

this pin when in the NDM state.

TX

7

7

8

I

TTL

Asynchronous receive; from Host Controller UART.

RX

8

8

9

O

Asynchronous transmit; to Host Controller UART.

RI

9

9

10

Ring Indicator. The value on this pin is driven high.

DSR

10

10

11

O

Data Set Ready. Indicates that the MCP2150 has completed 
reset.
1

 = MCP2150 is initialized.

0

 = MCP2150 is not initialized.

DTR

11

11

12

I

TTL

Data Terminal Ready. The value of this pin is ignored once 
the MCP2150 is initialized. It is recommended that this pin be 
connected so that the voltage level is either V

SS

 or V

CC

. At 

device power up, this signal is used with the RTS signal to 
enter device ID programming.
1

 = Enter Device ID programming mode (if RTS is cleared).

0

 = Do not enter Device ID programming mode.

CTS

12

12

13

O

Clear to Send. Indicates that the MCP2150 is ready to 
receive data from the Host Controller.
1

 = Host Controller should not send data.

0

 = Host Controller may send data.

RTS

13

13

14

I

TTL

Request to Send. Indicates that a Host Controller is ready to 
receive data from the MCP2150. The MCP2150 prepares to 
send data, if available.
1

 = Host Controller not ready to receive data.

0

 = Host Controller ready to receive data.

At device power up, this signal is used with the DTR signal to 
enter device ID programming.
1

 = Do not enter Device ID programming mode.

0

 = Enter Device ID programming mode (if DTR is set).

V

DD

 

14

14

15, 16

P

Positive supply for logic and I/O pins.

OSC2

15

15

17

O

Oscillator crystal output.

OSC1/CLKIN

16

16

18

I

CMOS

Oscillator crystal input/external clock source input.

CD

17

17

19

O

Carrier Detect. Indicates that the MCP2150 has established a 
valid link with a Primary Device.
1

 = An IR link has not been established (No IR Link).

0

 = An IR link has been established (IR Link).

BAUD1

18

18

20

I

ST

BAUD1:BAUD0 specify the baud rate of the device.

Legend:

TTL = TTL compatible input
I = Input
P = Power

ST = Schmitt Trigger input with CMOS levels
O = Output
CMOS = CMOS compatible input

21655C.book  Page 5  Thursday, January 10, 2013  12:57 PM

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21655C-html.html
background image

MCP2150

DS21655C-page 6

Preliminary

 2001-2012 Microchip Technology Inc.

1.1.1

SIGNAL DIRECTIONS

Table 1-3

 shows the direction of the MCP2150 signals.

The MCP2150 is designed for use in Data Terminal
Equipment (DTE) applications.

TABLE  1-3:

MCP2150 SIGNAL DIRECTION    

DB-9 

Pin No.

Signal

Direction

Comment

1

CD

MCP2150 

 HC

Carrier Detect

2

RX

MCP2150 

 HC

Received Data

3

TX

HC 

 MCP2150

Transmit Data

4

DTR 

(1)

Data Terminal 
Ready

5

GND

Ground

6

DSR

MCP2150 

 HC

Data Set Ready

7

RTS

HC 

 MCP2150

Request to Send

8

CTS

MCP2150 

 HC

Clear to Send

9

RI 

(1)

 —

Ring 

Indicator

Legend: HC = Host Controller

Note

1:

This signal is not implemented in the MCP2150.

21655C.book  Page 6  Thursday, January 10, 2013  12:57 PM

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21655C-html.html
background image

 2001-2012 Microchip Technology Inc.

Preliminary

DS21655C-page 7

MCP2150

2.0

DEVICE OPERATION

The MCP2150 is a cost effective, low pin count (18-
pin), easy to use device for implementing IrDA stan-
dard wireless connectivity. The MCP2150 provides
support for the IrDA standard protocol “stack” plus bit
encoding/decoding. The Serial interface and IR baud
rates are independantly selectable.

2.1

Power Up

Any time the device is powered up (

parameter D003

),

the Power Up Timer delay (

parameter 33

) occurs, fol-

lowed by an Oscillator Start-up Timer (OST) delay
(

parameter 32

). Once these delays complete, commu-

nication with the device may be initiated. This commu-
nication is from both the infrared transceiver’s side as
well as the controller’s UART interface.

2.2

Device Reset

The MCP2150 is forced into the reset state when the
RESET pin is in the low state. Once the RESET pin is
brought to a high state, the Device Reset sequence
occurs. Once the sequence completes, functional
operation begins. 

2.3

Clock Source

The MCP2150 requires a clock source to operate. The
frequency of this clock is 11.0592 MHz (electrical spec-
ification 

parameter 1A

). This clock can be supplied by

either a crystal/resonator or as an external clock input.

2.3.1

CRYSTAL OSCILLATOR / CERAMIC 
RESONATORS

A crystal or ceramic resonator can be connected to the
OSC1 and OSC2 pins to establish oscillation 
(

Figure 2-1

). The MCP2150 oscillator design requires

the use of a parallel cut crystal. Use of a series cut crys-
tal may give a frequency outside of the crystal
manufacturers specifications. 

FIGURE 2-1:

CRYSTAL OPERATION 
(OR CERAMIC 
RESONATOR)     

TABLE 2-1:

CAPACITOR SELECTION FOR 
CERAMIC RESONATORS    

TABLE 2-2:

CAPACITOR SELECTION FOR 
CRYSTAL OSCILLATOR  

  

2.3.2

EXTERNAL CLOCK IN

For applications where a clock is already available
elsewhere, users may directly drive the MCP2150 pro-
vided that this external clock source meets the AC/DC
timing requirements listed in 

Section 4.3

Figure 2-2

shows how an external clock circuit should be
configured.

FIGURE 2-2:

EXTERNAL CLOCK INPUT 
OPERATION

See 

Table 2-1

 and 

Table 2-2

 for recommended values of

C1 and C2.

Note:

A series resistor may be required for AT
strip cut crystals.

C1

C2

XTAL

OSC2

RS

 

OSC1

RF

To internal

MCP2150

Note

logic

Freq

OSC1 (C1)

OSC2 (C2)

11.0592 MHz

10 - 22 pF

10 - 22 pF

Higher capacitance increases the stability of the oscil-
lator but also increases the start-up time. These val-
ues are for design guidance only. Since each
resonator has its own characteristics, the user should
consult the resonator manufacturer for appropriate
values of external components. 

 Freq

OSC1 (C1) 

OSC2 (C2)

11.0592 MHz

15 - 30 pF

15 - 30 pF

Higher capacitance increases the stability of the oscil-
lator but also increases the start-up time. These val-
ues are for design guidance only. R

S

 may be required

to avoid overdriving crystals with low drive level spec-
ification. Since each crystal has its own
characteristics, the user should consult the crystal
manufacturer for appropriate values of external
components.

Clock From
external

MCP2150

OSC1

OSC2

Open

system

21655C.book  Page 7  Thursday, January 10, 2013  12:57 PM

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21655C-html.html
background image

MCP2150

DS21655C-page 8

Preliminary

 2001-2012 Microchip Technology Inc.

2.4

Bit Clock

The device crystal is used to derive the communication
bit clock (BITCLK). There are 16 BITCLKs for each bit
time. The BITCLKs are used for the generation of the
start bit and the eight data bits. The stop bit uses the
BITCLK when the data is transmitted (not for
reception).

This clock is a fixed frequency and has minimal
variation in frequency (specified by crystal
manufacturer).

2.5

UART Interface

The UART interface communicates with the "control-
ler". This interface is a half duplex interface, meaning
that the system is either transmitting or receiving, but
not both simultaneously. 

2.5.1

BAUD RATE

The baud rate for the MCP2150 serial port (the TX and
RX pins) is configured by the state of the BAUD1 and
BAUD0 pins. These two device pins are used to select
the baud rate at which the MCP2150 will transmit and
receive serial data (not IR data). 

Table 2-3

 shows the

baud rate configurations.

TABLE 2-3:

SERIAL BAUD RATE 
SELECTION VS. FREQUENCY 

2.5.2

TRANSMITTING

When the controller sends serial data to the MCP2150,
the controller’s baud rate is required to match the baud
rate of the MCP2150’s serial port. 

2.5.3

RECEIVING

When the controller receives serial data from the
MCP2150, the controller’s baud rate is required to
match the baud rate of the MCP2150’s serial port.

BAUD1:BAUD0

Baud Rate @ 

11.0592 MHz

Bit Rate

00

9600

F

OSC

 / 1152

01

19200

F

OSC

 / 576

10

57600

F

OSC

 / 192

11

115200

F

OSC

 / 96

21655C.book  Page 8  Thursday, January 10, 2013  12:57 PM

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21655C-html.html
background image

 2001-2012 Microchip Technology Inc.

Preliminary

DS21655C-page 9

MCP2150

2.6

Modulation

The data that the MCP2150 UART received (on the TX
pin) that needs to be transmitted (on the TXIR pin) will
need to be modulated. This modulated signal drives the
IR transceiver module. 

Figure 2-3

 shows the encoding

of the modulated signal.

Each bit time is comprised of 16-bit clocks. If the value
to be transmitted (as determined by the TX pin) is a
logic low, then the TXIR pin will output a low level for
7-bit clock cycles, a logic high level for 3-bit clock
cycles or a minimum of 1.6 µsec. (see 

parameter

IR121

). The remaining 6-bit clock cycles will be low. If

the value to transmit is a logic high, then the TXIR pin
will output a low level for the entire 16-bit clock cycles.

2.7

Demodulation

The modulated signal (data) from the IR transceiver
module (on RXIR pin) needs to be demodulated to form
the received data (on RX pin). Once demodulation of
the data byte occurs, the data that is received is trans-
mitted by the MCP2150 UART (on the RX pin).

Figure 2-4

 shows the decoding of the modulated

signal.

Each bit time is comprised of 16-bit clocks. If the value
to be received is a logic low, then the RXIR pin will be
a low level for the first 3-bit clock cycles or a minimum
of 1.6 µs. The remaining 13-bit clock cycles (or differ-
ence up to the 16-bit clock time) will be high. If the value
to be received is a logic high, then the RXIR pin will be
a high level for the entire 16-bit clock cycles. The level
on the RX pin will be in the appropriate state for the
entire 16 clock cycles.

FIGURE 2-3:

ENCODING

 

FIGURE 2-4:

DECODING

Note:

The signal on the TXIR pin does not actu-
ally line up in time with the bit value that
was transmitted on the TX pin, as shown in

Figure 2-3

. The TX bit value is shown to

represent the value to be transmitted on
the TXIR pin. 

Note:

The signal on the RX pin does not actually
line up in time with the bit value that was
received on the RXIR pin, as shown in

Figure 2-4

. The RXIR bit value is shown to

represent the value to be transmitted on
the RX pin. 

BITCLK

TX Bit

TXIR

0

1

0

0

0

1

16 CLK

7 CLK

Start Bit

Data bit 0

Data bit 1

Data bit 2

Data bit ...

24 Tosc

Value

BITCLK

RX

RXIR Bit

0

1

0

0

0

1

 1.6 µs (up to 3 CLK)

 13 CLK 

16 CLK

16 CLK

16 CLK

16 CLK

16 CLK

16 CLK

16 CLK

Start Bit

Data bit 0

Data bit 1

Data bit 2

Data bit ...

(CLK)

Value

21655C.book  Page 9  Thursday, January 10, 2013  12:57 PM

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21655C-html.html
background image

MCP2150

DS21655C-page 10

Preliminary

 2001-2012 Microchip Technology Inc.

2.8

Minimizing Power

The device can be placed in a low power mode by dis-
abling the device (holding the EN pin at the low state).
The internal state machine is monitoring this pin for a
low level and, once this is detected, the device is
disabled and enters into a low power state.

2.8.1

RETURNING TO DEVICE 
OPERATION

When disabled, the device is in a low power state.
When the EN pin is brought to a high level, the device
will return to the operating mode. The device requires
a delay of 1024 T

OSC

 before data may be transmitted

or received.

2.9

Network Layering Reference 
Model

Figure 2-5

 shows the ISO Network Layering Reference

Model. The shaded areas are implemented by the
MCP2150, the cross-hatched area is implemented by
an infrared transceiver. The unshaded areas should be
implemented by the Host Controller.

FIGURE 2-5:

ISO REFERENCE LAYER MODEL

OSI REFERENCE LAYERS

Application

Presentation

Session

Transport

Network

Data Link Layer

LLC (Logical Link Control)
Acceptance Filtering
Overload Notification
Recovery Management

MAC (Medium Access Control)
Data Encapsulation/Decapsulation
Frame Coding (stuffing, destuffing)
Medium Access Management
Error Detection
Error Signalling
Acknowledgment
Serialization/Deserialization

Physical Layer

PLS (Physical Signalling)
Bit Encoding/Decoding
Bit Timing
Synchronization

PMA (Physical Medium Attachment)
Driver/Receiver Characteristics

MDI (Medium Dependent Interface)
Connectors

Fault
confinement
(MAC-LME)

Bus Failure
management
(PLS-LME)

Supervisor

Regions implemented
by the MCP2150

Has to be implemented in Host
Controller firmware 

Regions implemented
by the Optical Transceiver logic 

(such as a PIC

®

microcontroller)

21655C.book  Page 10  Thursday, January 10, 2013  12:57 PM

Maker
Microchip Technology Inc.
Datasheet PDF Download