21483d.book

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21483d-html.html
background image

© 2007 Microchip Technology Inc.

DS21483D-page 1

TC9400/9401/9402

Features:

VOLTAGE-TO-FREQUENCY

• Choice of Linearity:

- TC9401: 0.01% 
- TC9400: 0.05% 
- TC9402: 0.25% 

• DC to 100 kHz (F/V) or 1 Hz to 100 kHz (V/F)
• Low Power Dissipation: 27 mW (Typ.)
• Single/Dual Supply Operation:

- +8V to +15V or ±4V to ±7.5V

• Gain Temperature Stability: ±25 ppm/°C (Typ.)
• Programmable Scale Factor

FREQUENCY-TO-VOLTAGE

• Operation: DC to 100 kHz
• Choice of Linearity:

- TC9401: 0.02%
- TC9400: 0.05%
- TC9402: 0.25%

• Programmable Scale Factor

Applications:

• Microprocessor Data Acquisition
• 13-bit Analog-to-Digital Converters (ADC)
• Analog Data Transmission and Recording
• Phase Locked Loops
• Frequency Meters/Tachometer
• Motor Control
• FM Demodulation

General Description:

The TC9400/9401/9402 are low-cost Voltage-to-Fre-
quency (V/F) converters, utilizing low-power CMOS
technology. The converters accept a variable analog
input signal and generate an output pulse train, whose
frequency is linearly proportional to the input voltage.
The devices can also be used as highly accurate
Frequency-to-Voltage (F/V) converters, accepting
virtually any input frequency waveform and providing a
linearly proportional voltage output.
A complete V/F or F/V system only requires the
addition of two capacitors, three resistors, and refer-
ence voltage.

Package Type

1

2

3

4

5

6

7

14

13

12

11

10

9

8

V

DD

NC

AMPLIFIER OUT
THRESHOLD

DETECTOR

FREQ/2 OUT

OUTPUT COMMON

PULSE FREQ OUT

I

BIAS

ZERO ADJ

I

IN

V

SS

V

REF

OUT

GND

V

REF

1

2

3

4

5

6

7

14

13

12

11

10

9

8

TC9400
TC9401
TC9402

14-Pin Plastic DIP/CERDIP

14-Pin SOIC

TC9400
TC9401
TC9402

NC = No Internal Connection

V

DD

NC

AMPLIFIER OUT
THRESHOLD

DETECTOR

FREQ/2 OUT

OUTPUT COMMON

PULSE FREQ OUT

I

BIAS

ZERO ADJ

I

IN

V

SS

V

REF

OUT

GND

V

REF

Voltage-to-Frequency / Frequency-to-Voltage Converters

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21483d-html.html
background image

TC9400/9401/9402

DS21483D-page 2

© 2007 Microchip Technology Inc.

Functional Block Diagram

IIN

IREF

TC9400

RIN

Integrator
Op Amp

Integrator
Capacitor

Threshold
Detector

One 
Shot

Pulse Output

Pulse/2 Output

÷

2

Input

Voltage

Reference
Capacitor

Reference
Voltage

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21483d-html.html
background image

© 2007 Microchip Technology Inc.

DS21483D-page 3

TC9400/9401/9402

1.0

ELECTRICAL 
CHARACTERISTICS

Absolute Maximum Ratings †

V

DD

 – V

SS

 ......................................................................+18V

I

IN

..................................................................................10 mA

V

OUT

MAX

 – V

OUT

 Common.................................................23V

V

REF 

– V

SS

 .....................................................................-1.5V

Storage Temperature Range.........................-65°C to +150°C
Operating Temperature Range:
      C Device ...................................................... 0°C to +70°C
      E Device....................................................-40°C to +85°C
Package Dissipation (T

A

 

≤ 70°C):

      8-Pin CerDIP........................................................800 mW
      8-Pin Plastic DIP ..................................................730 mW
      8-Pin SOIC...........................................................470 mW

† 

Stresses above those listed under “Absolute Maximum

Ratings” may cause permanent damage to the device. These
are stress ratings only and functional operation of the device
at these or any other conditions above those indicated in the
operation sections of the specifications is not implied.
Exposure to Absolute Maximum Rating conditions for
extended periods may affect device reliability.

TC940X ELECTRICAL SPECIFICATIONS

Electrical Characteristics: unless otherwise specified, V

DD

 = +5V, V

SS

 = -5V, V

GND

 = 0V, V

REF

 = -5V, R

BIAS

 = 100 k

Ω, Full Scale = 

10 kHz. T

A

 = +25°C, unless temperature range is specified (-40°C to +85°C for E device, 0°C to +70°C for C device).

Parameter

Min

Typ

Max

Min

Typ

Max

Min

Typ

Max

Units

Test Conditions

Voltage-to-Frequency

Accuracy

TC9400

TC9401

TC9402

Linearity 10 kHz

0.01

 0.05

0.004

0.01

0.05

 0.25

Full Scale

Output Deviation from 
Straight Line Between 
Normalized Zero and 
Full Scale Input

Linearity 100 kHz

0.1

 0.25

0.04

0.08

0.25

 0.5

Full Scale

Output Deviation from 
Straight Line Between 
Normalized Zero Read-
ing and Full Scale Input

Gain Temperature
Drift (Note 1)

±25

 ±40

±25

±40

 ±50

 ± 100                                ppm/°C

Full Scale

Variation in Gain A due 
to Temperature Change

Gain Variance

±10

±10

 ±10

% of

Nominal

Variation from Ideal 
Accuracy

Zero Offset 
(Note 2)

±10

 ±50

±10

±50

 ±20

±100

mV

Correction at Zero 
Adjust for Zero Output 
when Input is Zero

Zero Temperature
Drift (Note 1)

±25

±50

±25

±50

 ±50

±100

µV/°C

Variation in Zero Offset 
Due to Temperature 
Change 

Note 1: Full temperature range; not tested.

2:  I

IN

 = 0.

3: Full temperature range, I

OUT

 = 10 mA.

4: I

OUT

 = 10 µA.

5: Threshold Detect = 5V, Amp Out = 0V, full temperature range.
6: 10 Hz to 100 kHz; not tested.
7: 5 µs minimum positive pulse width and 0.5 µs minimum negative pulse width.
8: t

R

 = t

F

 = 20 ns.

9: R

L

 

≥ 2 kΩ, tested @ 10 kΩ.

10: Full temperature range, V

IN

 = -0.1V.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21483d-html.html
background image

TC9400/9401/9402

DS21483D-page 4

© 2007 Microchip Technology Inc.

Analog Input

I

IN

 Full Scale

10

10

 10

µA

Full Scale Analog Input 
Current to achieve 
Specified Accuracy

I

IN

 Over Range

50

50

 —

50

µA

Over Range Current

Response Time

2

2

 2

Cycle

Settling Time to 0.1% 
Full Scale

Digital Section

TC9400

TC9401

TC9402

V

SAT

 @ I

OL

 = 10mA

0.2

0.4

0.2

0.4

0.2

0.4

V

Logic “0” Output 
Voltage (Note 3)

V

OUT

MAX

 – V

OUT

Common (Note 4)

18

18

18

V

Voltage Range Between 
Output and Common

Pulse Frequency
Output Width

3

3

3

µs

Frequency-to-Voltage

Supply Current

I

DD

 Quiescent

(Note 5)

1.5

6

1.5

6

3

10

mA

Current Required from 
Positive Supply during 
Operation

I

SS

 Quiescent

(Note 5)

 —

-1.5

-6

-1.5

-6

-3

-10

mA

Current Required from 
Negative Supply during 
Operation

V

DD

 Supply

4

7.5

4

7.5

4

7.5

V

Operating Range of 
Positive Supply

V

SS

 Supply

-4

-7.5

-4

-7.5

-4

-7.5

V

Operating Range of 
Negative Supply

Reference Voltage

V

REF

 – V

SS

-2.5

-2.5

-2.5

V

Range of Voltage 
Reference Input

Accuracy

Non-Linearity 
(Note 10)

0.02

0.05

0.01

0.02

0.05

0.25

%

Full Scale

Deviation from ideal 
Transfer Function as a 
Percentage Full Scale 
Voltage

Input Frequency
Range 
(Notes 7 and 8)

10

100k

10

100k

10

100k

Hz

Frequency Range for 
Specified Non-Linearity

TC940X ELECTRICAL SPECIFICATIONS (CONTINUED)

Electrical Characteristics: unless otherwise specified, V

DD

 = +5V, V

SS

 = -5V, V

GND

 = 0V, V

REF

 = -5V, R

BIAS

 = 100 k

Ω, Full Scale = 

10 kHz. T

A

 = +25°C, unless temperature range is specified (-40°C to +85°C for E device, 0°C to +70°C for C device).

Parameter

Min

Typ

Max

Min

Typ

Max

Min

Typ

Max

Units

Test Conditions

Note 1: Full temperature range; not tested.

2:  I

IN

 = 0.

3: Full temperature range, I

OUT

 = 10 mA.

4: I

OUT

 = 10 µA.

5: Threshold Detect = 5V, Amp Out = 0V, full temperature range.
6: 10 Hz to 100 kHz; not tested.
7: 5 µs minimum positive pulse width and 0.5 µs minimum negative pulse width.
8: t

R

 = t

F

 = 20 ns.

9: R

L

 

≥ 2 kΩ, tested @ 10 kΩ.

10: Full temperature range, V

IN

 = -0.1V.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21483d-html.html
background image

© 2007 Microchip Technology Inc.

DS21483D-page 5

TC9400/9401/9402

Frequency Input

Positive Excursion

0.4

V

DD

0.4

V

DD

0.4

V

DD

V

Voltage Required to 
Turn Threshold 
Detector On

Negative Excursion

-0.4

-2

-0.4

-2

-0.4

-2

V

Voltage Required to 
Turn Threshold 
Detector Off

Minimum Positive
Pulse Width
(Note 8)

5

5

5

μs

Time between 
Threshold Crossings

Minimum Negative
Pulse Width 
(Note 8)

0.5

0.5

0.5

μs

Time Between 
Threshold Crossings

Input Impedance

10

10

10

M

Ω

Analog Outputs

TC9400

TC9401

TC9402

Output Voltage
(Note 9)

V

DD 

– 1

V

DD 

– 1

 —

V

DD 

– 1

 —

V

Voltage Range of Op 
Amp Output for 
Specified Non-Linearity

Output Loading

2

2

2

k

Ω

Resistive Loading at 
Output of Op Amp

Supply Current

TC9400

TC9401

TC9402

I

DD

 Quiescent

(Note 10)

1.5

6

1.5

6

3

10

mA

Current Required from 
Positive Supply During 
Operation

I

SS

 Quiescent

(Note 10)

-1.5

-6

-1.5

-6

-3

-10

mA

Current Required from 
Negative Supply During 
Operation

V

DD

 Supply

4

7.5

4

7.5

4

7.5

V

Operating Range of 
Positive Supply

V

SS

 Supply

-4

-7.5

-4

-7.5

-4

-7.5

V

Operating Range of 
Negative Supply

Reference Voltage

V

REF 

– V

SS

-2.5

-2.5

-2.5

V

Range of Voltage 
Reference Input

TC940X ELECTRICAL SPECIFICATIONS (CONTINUED)

Electrical Characteristics: unless otherwise specified, V

DD

 = +5V, V

SS

 = -5V, V

GND

 = 0V, V

REF

 = -5V, R

BIAS

 = 100 k

Ω, Full Scale = 

10 kHz. T

A

 = +25°C, unless temperature range is specified (-40°C to +85°C for E device, 0°C to +70°C for C device).

Parameter

Min

Typ

Max

Min

Typ

Max

Min

Typ

Max

Units

Test Conditions

Note 1: Full temperature range; not tested.

2:  I

IN

 = 0.

3: Full temperature range, I

OUT

 = 10 mA.

4: I

OUT

 = 10 µA.

5: Threshold Detect = 5V, Amp Out = 0V, full temperature range.
6: 10 Hz to 100 kHz; not tested.
7: 5 µs minimum positive pulse width and 0.5 µs minimum negative pulse width.
8: t

R

 = t

F

 = 20 ns.

9: R

L

 

≥ 2 kΩ, tested @ 10 kΩ.

10: Full temperature range, V

IN

 = -0.1V.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21483d-html.html
background image

TC9400/9401/9402

DS21483D-page 6

© 2007 Microchip Technology Inc.

2.0

PIN DESCRIPTIONS

The descriptions of the pins are listed in 

Table 2-1

.

TABLE 2-1:

PIN FUNCTION TABLE

2.1

Bias Current (I

BIAS

)

An external resistor, connected to V

SS

, sets the bias

point for the TC9400. Specifications for the TC9400 are
based on R

BIAS

 = 100 k

Ω ±10%, unless otherwise

noted. 
Increasing the maximum frequency of the TC9400
beyond 100 kHz is limited by the pulse width of the
pulse output (typically 3 µs). Reducing R

BIAS

 will

decrease the pulse width and increase the maximum
operating frequency, but linearity errors will also
increase. R

BIAS 

can be reduced to 20 k

Ω, which will

typically produce a maximum full scale frequency of
500 kHz. 

2.2

Zero Adjust

This pin is the non-inverting input of the operational
amplifier. The low frequency set point is determined by
adjusting the voltage at this pin.

2.3

Input Current (I

IN

)

The inverting input of the operational amplifier and the
summing junction when connected in the V/F mode. An
input current of 10 

μA is specified, but an over range

current up to 50 

μA can be used without detrimental

effect to the circuit operation. I

IN

 connects the summing

junction of an operational amplifier. Voltage sources
cannot be attached directly, but must be buffered by
external resistors.

2.4

Voltage Capacitor (V

REF

 Out)

The charging current for C

REF

 is supplied through this

pin. When the op amp output reaches the threshold
level, this pin is internally connected to the reference
voltage and a charge, equal to V

REF

 x C

REF

, is removed

from the integrator capacitor. After about 3

μsec, this pin

is internally connected to the summing junction of the
op amp to discharge C

REF

. Break-before-make switch-

ing ensures that the reference voltage is not directly
applied to the summing junction.

2.5

Voltage Reference (V

REF

)

A reference voltage from either a precision source, or
the V

SS

 supply is applied to this pin. Accuracy of the

TC9400 is dependent on the voltage regulation and
temperature characteristics of the reference circuitry.
Since the TC9400 is a charge balancing V/F converter,
the reference current will be equal to the input current.
For this reason, the DC impedance of the reference
voltage source must be kept low enough to prevent
linearity errors. For linearity of 0.01%, a reference
impedance of 200

Ω or less is recommended. A 0.1 µF

bypass capacitor should be connected from V

REF 

to

ground.

Pin No.

Symbol

Description

1

I

BIAS

This pin sets bias current in the TC9400. Connect to V

SS

 through a 100 k

Ω resistor. 

ZERO ADJ

Low frequency adjustment input. 

3

I

IN

Input current connection for the V/F converter.

4

V

SS

Negative power supply voltage connection, typically -5V.

5

V

REF 

OUT

Reference capacitor connection.

6

GND

Analog ground.

7

V

REF

Voltage reference input, typically -5V.

8

PULSE FREQ 

OUT

Frequency output. This open drain output will pulse LOW each time the Freq. 
Threshold Detector limit is reached. The pulse rate is proportional to input voltage.

9

OUTPUT 

COMMON

Source connection for the open drain output FETs. 

10

FREQ/2 OUT

This open drain output is a square wave at one-half the frequency of the pulse output 
(Pin 8). Output transitions of this pin occur on the rising edge of Pin 8.

11

THRESHOLD 

DETECTOR

Input to the Threshold Detector. This pin is the frequency input during F/V operation.

12

AMPLIFIER OUT Output of the integrator amplifier.

13

NC

No internal connection.

14

V

DD

Positive power supply connection, typically +5V.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21483d-html.html
background image

© 2007 Microchip Technology Inc.

DS21483D-page 7

TC9400/9401/9402

2.6

Pulse Freq Out

This output is an open-drain N-channel FET, which
provides a pulse waveform whose frequency is propor-
tional to the input voltage. This output requires a pull-
up resistor and interfaces directly with MOS, CMOS,
and TTL logic (see 

Figure 2-1

).

2.7

Output Common

The sources of both the FREQ/2 OUT and the PULSE
FREQ OUT are connected to this pin. An output level
swing from the drain voltage to ground, or to the V

SS

supply, may be obtained by connecting this pin to the
appropriate point.

2.8

Freq/2 Out

This output is an open-drain N-channel FET, which
provides a square-wave one-half the frequency of the
pulse frequency output. The FREQ/2 OUT output will
change state on the rising edge of PULSE FREQ OUT.
This output requires a pull-up resistor and interfaces
directly with MOS, CMOS, and TTL logic.

2.9

Threshold Detector Input

In the V/F mode, this input is connected to the AMPLI-
FIER OUT output (Pin 12) and triggers a 3 µs pulse
when the input voltage passes through its threshold. In
the F/V mode, the input frequency is applied to this
input.
The nominal threshold of the detector is half way
between the power supplies, or (V

DD

 + V

SS

)/2 ±400

mV. The TC9400’s charge balancing V/F technique is
not dependent on a precision comparator threshold,
because the threshold only sets the lower limit of the op
amp output. The op amp’s peak-to-peak output swing,
which determines the frequency, is only influenced by
external capacitors and by V

REF

.

2.10

Amplifier Out

This pin is the output stage of the operational amplifier.
During V/F operation, a negative going ramp signal is
available at this pin. In the F/V mode, a voltage
proportional to the frequency input is generated.

FIGURE 2-1:

Output Waveforms.

3 ms 
Typ.

1/f

F

OUT

F

OUT

/2

Amp Out

VREF

0V

CREF

CINT 

Note 1: To adjust F

MIN

, set V

IN

 = 10 mV and adjust the 50 k

Ω offset for 10 Hz output.

2: To adjust F

MAX

, set V

IN

 = 10V and adjust R

IN

 or V

REF

 for 10 kHz output.

3: To increase F

OUTMAX

 to 100 kHz, change C

REF

 to 2 pF and C

INT

 to 75 pF.

4: For high performance applications, use high stability components for R

IN

, C

REF

. V

REF

 (metal film

resistors and glass capacitors). Also, separate output ground (Pin 9) from input ground (Pin 6).

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21483d-html.html
background image

TC9400/9401/9402

DS21483D-page 8

© 2007 Microchip Technology Inc.

3.0

DETAILED DESCRIPTION

3.1

Voltage-to-Frequency (V/F) Circuit 
Description

The TC9400 V/F converter operates on the principal of
charge balancing. The operation of the TC9400 is
easily understood by referring to 

Figure 3-1

. The input

voltage (V

IN

) is converted to a current (I

IN

) by the input

resistor. This current is then converted to a charge on
the integrating capacitor and shows up as a linearly
decreasing voltage at the output of the op amp. The
lower limit of the output swing is set by the threshold
detector, which causes the reference voltage to be
applied to the reference capacitor for a time period long
enough to charge the capacitor to the reference volt-
age. This action reduces the charge on the integrating
capacitor by a fixed amount (q = C

REF

 x V

REF

), causing

the op amp output to step up a finite amount.
At the end of the charging period, C

REF

 is shorted out.

This dissipates the charge stored on the reference
capacitor, so that when the output again crosses zero,
the system is ready to recycle. In this manner, the con-
tinued discharging of the integrating capacitor by the
input is balanced out by fixed charges from the refer-

ence voltage. As the input voltage is increased, the
number of reference pulses required to maintain
balance increases, which causes the output frequency
to also increase. Since each charge increment is fixed,
the increase in frequency with voltage is linear. In
addition, the accuracy of the output pulse width does
not directly affect the linearity of the V/F. The pulse
must simply be long enough for full charge transfer to
take place.
The TC9400 contains a “self-start” circuit to ensure the
V/F converter always operates properly when power is
first applied. In the event that, during power-on, the op
amp output is below the threshold and C

REF

 is already

charged, a positive voltage step will not occur. The op
amp output will continue to decrease until it crosses the
-3.0V threshold of the “self-start” comparator. When
this happens, an internal resistor is connected to the op
amp input, which forces the output to go positive until
the TC9400 is in its normal Operating mode.
The TC9400 utilizes low-power CMOS processing for
low input bias and offset currents, with very low power
dissipation. The open drain N-channel output FETs
provide high voltage and high current sink capability.

FIGURE 3-1:

10 Hz to 10 kHz V/F Converter.

+

+5V

+5V

14

V

DD

+5V

RL

10 k

Ω

RL

10 k

Ω

8

10

9

F

OUT

F

OUT

/2

11

3 ms

Delay

Self-

Start

12

5

20 k

Ω

60 pF

Op Amp

C

INT

820 pF

C

REF

180 pF

12 pF

R

IN

1 M

Ω

V

IN

+5V

-5V

50 k

Ω

510 k

Ω

10 k

Ω

3

1

Offset

Adjust

IIN

Zero Adjust

0V –10V

I

BIAS

V

SS

4

-5V

2

Output

Common

V

REF

OUT

 

R

BIAS

100 k

Ω

AMP OUT

TC9400
TC9401
TC9402

GND

6

Threshold

Detector

Threshold

Detect

Reference Voltage

(Typically -5V)

÷

2

V

REF

7

-3V

INPUT

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21483d-html.html
background image

© 2007 Microchip Technology Inc.

DS21483D-page 9

TC9400/9401/9402

3.2

Voltage-to-Time Measurements

The TC9400 output can be measured in the time
domain as well as the frequency domain. Some micro-
computers, for example, have extensive timing capabil-
ity, but limited counter capability. Also, the response
time of a time domain measurement is only the period
between two output pulses, while the frequency
measurement must accumulate pulses during the
entire counter time-base period.
Time measurements can be made from either the
TC9400’s PULSE FREQ OUT output, or from the
FREQ/2 OUT output. The FREQ/2 OUT output
changes state on the rising edge of PULSE FREQ
OUT, so FREQ/2 OUT is a symmetrical square wave at
one-half the pulse output frequency. Timing measure-
ments can, therefore, be made between successive
PULSE FREQ OUT pulses, or while FREQ/2 OUT is
high (or low).

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21483d-html.html
background image

TC9400/9401/9402

DS21483D-page 10

© 2007 Microchip Technology Inc.

4.0

VOLTAGE-TO-FREQUENCY
(V/F) CONVERTER DESIGN 
INFORMATION

4.1

Input/Output Relationships

The output frequency (F

OUT

) is related to the analog

input voltage (V

IN

) by the transfer equation:

EQUATION 4-1:

4.2

External Component Selection

4.2.1

R

IN

The value of this component is chosen to give a full
scale input current of approximately 10 µA:

EQUATION 4-2:

EQUATION 4-3:

 

Note that the value is an approximation and the exact
relationship is defined by the transfer equation. In
practice, the value of R

IN

 typically would be trimmed to

obtain full scale frequency at V

IN

 full scale (see

Section 4.3 “Adjustment Procedure”, Adjustment
Procedure). Metal film resistors with 1% tolerance or
better are recommended for high accuracy applications
because of their thermal stability and low noise
generation.

4.2.2

C

INT

The exact value is not critical but is related to C

REF

 by

the relationship:

3C

REF 

 C

INT

 

 10C

REF

Improved stability and linearity are obtained when
C

INT

≤ 4C

REF

. Low leakage types are recommended,

although mica and ceramic devices can be used in
applications where their temperature limits are not
exceeded. Locate as close as possible to Pins 12
and 13.

4.2.3

C

REF

The exact value is not critical and may be used to trim
the full scale frequency (see Section 6.1 “Input/Out-
put Relationships”
, Input/Output Relationships).
Glass film or air trimmer capacitors are recommended
because of their stability and low leakage. Locate as
close as possible to Pins 5 and 3 (see 

Figure 4-1

).

FIGURE 4-1:

Recommended C

REF

 vs. 

V

REF

.

4.2.4

V

DD

, V

SS

Power supplies of ±5V are recommended. For high
accuracy requirements, 0.05% line and load regulation
and 0.1 µF disc decoupling capacitors, located near the
pins, are recommended.

4.3

Adjustment Procedure

Figure 3-1

 shows a circuit for trimming the zero

location. Full scale may be trimmed by adjusting R

IN

,

V

REF

, or C

REF

. Recommended procedure for a 10 kHz

full scale frequency is as follows:
1.

Set V

IN

 to 10 mV and trim the zero adjust circuit

to obtain a 10 Hz output frequency.

2.

Set V

IN

 to 10V and trim either R

IN

, V

REF

, or C

REF

to obtain a 10 kHz output frequency.

If adjustments are performed in this order, there should
be no interaction and they should not have to be
repeated.

4.4

Improved Single Supply V/F 
Converter Operation

A TC9400, which operates from a single 12 to 15V
variable power source, is shown in 

Figure 4-2

. This

circuit uses two Zener diodes to set stable biasing
levels for the TC9400. The Zener diodes also provide
the reference voltage, so the output impedance and
temperature coefficient of the Zeners will directly affect
power supply rejection and temperature performance.
Full scale adjustment is accomplished by trimming the
input current.

Frequency Out

V

IN

R

IN

--------

1

V

REF

(

C

REF

(

)

------------------------------------

=

V

IN

 

FULL SCALE

10 

μ

A

R

IN

 

 

10V

10 

μ

A

R

IN

 

 

= 1 M

Ω

500 

400 

300 

200 

100 

-1 

-2

-3

-4

-5

-6

-7

V

REF

 (V)

C

REF

 (pF) +12pF

10 kHz

100 kHz

V

DD

 = +5V

V

SS

 = -5V

R

IN

 = 1MW

V

IN

 = +10V

T

A

 = +25°C

Maker
Microchip Technology Inc.
Datasheet PDF Download