21435F.book

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21435F-html.html
background image

©

 2005 Microchip Technology Inc.

DS21435F-page 1

TC55

Features

• Low Dropout Voltage: 120 mV (typ) at 100 mA, 

380 mV (typ) at 200 mA

• High Output Current: 250 mA (V

OUT

 = 5.0V)

• High Accuracy Output Voltage: ±2% (max)

(±1% Semi-Custom Version)

• Low Power Consumption: 1.1 µA (typ)

• Low Temperature Drift: ±100 ppm/°C (typ)

• Excellent Line Regulation: 0.2%/V (typ)

• Package Options: 3-Pin SOT-23A, 3-Pin SOT-89 

and 3-Pin TO-92

• Short-Circuit Protection

• Standard Output Voltage Options: 1.2V, 1.8V, 

2.5V, 3.0V, 3.3V, 5.0V

Applications

• Battery-Powered Devices

• Cameras and Portable Video Equipment

• Pagers and Cellular Phones

• Solar Powered Instruments

• Consumer Products

Package Types

General Description

The TC55 Series is a collection of CMOS low dropout,
positive voltage regulators that can source up to
250 mA of current, with an extremely low input-output
voltage differential of 380 mV (typ) at 200 mA.

The TC55’s low dropout voltage, combined with the low
current consumption of only 1.1 µA (typ), makes it ideal
for battery operation. The low voltage differential (drop-
out voltage) extends the battery operating lifetime. It
also permits high currents in small packages when
operated with minimum V

IN

 – V

OUT

 differentials.

The circuit also incorporates short-circuit protection to
ensure maximum reliability.

Functional Block Diagram

V

IN

GND

V

OUT

3

1

2

TC55

GND V

IN

V

OUT

1

2

3

TC55

3-Pin SOT-23A

3-Pin SOT-89

3-Pin TO-92

1 2 3

V

OUT

V

IN

GND

Note: 3-Pin SOT-23A is equivalent to the

EIAJ SC-59.

V

IN

Bottom

View

V

IN

V

OUT

GND

Short-Circuit

Protection

Voltage

Reference

+

1 µA Low Dropout Positive Voltage Regulator

Obsolete Device

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21435F-html.html
background image

TC55

DS21435F-page 2

©

 2005 Microchip Technology Inc.

1.0

ELECTRICAL 
CHARACTERISTICS

Absolute Maximum Ratings†

Input Voltage ........................................................+12V

Output Current (Continuous) ......... P

D

/(V

IN

 – V

OUT

)mA

Output Current (peak) ..................................... 500 mA

Output Voltage.................. (V

SS

 – 0.3V) to (V

IN

 + 0.3V)

Continuous Power Dissipation:
      3-Pin SOT-23A ..........................................240 mW
      3-Pin SOT-89 ............................................500 mW
      3-Pin TO-92...............................................440 mW

† Stresses above those listed under "Absolute Maximum
Ratings" may cause permanent damage to the device. These
are stress ratings only and functional operation of the device
at these or any other conditions above those indicated in the
operation sections of the specifications is not implied.
Exposure to Absolute Maximum Rating conditions for
extended periods may affect device reliability.

PIN FUNCTION TABLE

TC55RP50: ELECTRICAL CHARACTERISTICS

TC55RP40: ELECTRICAL CHARACTERISTICS

Symbol

Description

GND

Ground Terminal

V

OUT

Regulated Voltage Output

V

IN

Unregulated Supply Input

Electrical Specifications: Unless otherwise specified, V

OUT

(S) = 5.0V, T

A

 = +25°C (see Note 1).

Parameters

Sym

Min

Typ

Max

Units

Conditions

Output Voltage

V

OUT

(A)

4.90

5.0

5.10

V

I

OUT

 = 40 mA

V

IN

 = 6.0V

Maximum Output Current

I

OUT

MAX

250

mA

V

IN

 = 6.0V, V

OUT

(A) 

 4.5V

Load Regulation

Δ

V

OUT

40

80

mV

V

IN

 = 6.0V, 1 mA 

 I

OUT

 ≤

 100 mA

I/O Voltage Difference

V

DIF


120
380

300
600

mV

I

OUT

 = 100 mA

I

OUT

 = 200 mA

Current Consumption

I

SS

1.1

3.0

µA

V

IN

 = 6.0V

Voltage Regulation

 V

OUT

(A)•100 

Δ

V

IN

•V

OUT

(S)

0.2

0.3

%/V

I

OUT

 = 40 mA, 6.0V 

 V

IN

 ≤

 10.0V

Input Voltage

V

IN

10

V

Temperature Coefficient of Output 
Voltage

Δ

V

OUT

(A)•10

6

V

OUT

(S)•

Δ

T

A

±100

ppm/°C I

OUT

 = 40 mA, -40°C 

≤ 

T

A

 ≤ +

85°C

Long-Term Stability

0.5

%

T

A

 = +125°C, 1000 Hours

Note

1:

V

OUT

(S): Preset value of output voltage; V

OUT

(A): Actual value of output voltage; V

DIF

: Definition of I/O voltage 

difference = {V

IN

1 – V

OUT

(A)}; V

OUT

(A): Output voltage when I

OUT

 is fixed and V

IN

 = V

OUT

(S) + 1.0V; V

IN

1: Input voltage 

when the output voltage is 98% V

OUT

(A).

Electrical Specifications: Unless otherwise specified, V

OUT

(S) = 4.0V, T

A

 = +25°C (see Note 1).

Parameters

Sym

Min

Typ

Max

Units

Conditions

Output Voltage

V

OUT

(A)

3.92

4.0

4.08

V

I

OUT

 = 40 mA

V

IN

 = 5.0V

Maximum Output Current

I

OUT

MAX

200

mA

V

IN

 = 5.0V, V

OUT

(A) 

 3.6V

Load Regulation

Δ

V

OUT

45

90

mV

V

IN

 = 5.0V, 1 mA 

 I

OUT

 ≤

 100 mA

I/O Voltage Difference

V

DIF


170
400

330
630

mV

I

OUT

 = 100 mA

I

OUT

 = 200 mA

Current Consumption

I

SS

1.0

2.9

µA

V

IN

 = 5.0V

Voltage Regulation

 V

OUT

(A)•100 

Δ

V

IN

•V

OUT

(S)

0.2

0.3

%/V

I

OUT

 = 40 mA, 5.0V 

 V

IN

 ≤

 10.0V

Input Voltage

V

IN

10

V

Temperature Coefficient of Output 
Voltage

Δ

V

OUT

(A)•10

6

V

OUT

(S)•

Δ

T

A

±100

ppm/°C I

OUT

 = 40 mA, -40°C 

≤ 

T

A

 ≤ +

85°C

Long-Term Stability

0.5

%

T

A

 = +125°C, 1000 Hours

Note

1:

V

OUT

(S): Preset value of output voltage; V

OUT

(A): Actual value of output voltage; V

DIF

: Definition of I/O voltage 

difference = {V

IN

1 – V

OUT

(A)}; V

OUT

(A): Output voltage when I

OUT

 is fixed and V

IN

 = V

OUT

(S) + 1.0V; V

IN

1: Input voltage 

when the output voltage is 98% V

OUT

(A).

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21435F-html.html
background image

©

 2005 Microchip Technology Inc.

DS21435F-page 3

TC55

TC55RP33: ELECTRICAL CHARACTERISTICS

TC55RP30: ELECTRICAL CHARACTERISTICS

Electrical Specifications: Unless otherwise specified, V

OUT

(S) = 3.3V, T

A

 = +25°C (see Note 1).

Parameters

Sym

Min

Typ

Max

Units

Conditions

Output Voltage

V

OUT

(A)

3.23

3.30

3.37

V

I

OUT

 = 40 mA

V

IN

 = 4.3V

Maximum Output Current

I

OUT

MAX

150

mA

V

IN

 = 4.3V, V

OUT

(A) 

 3.0V

Load Regulation

Δ

V

OUT

45

90

mV

V

IN

 = 4.3V, 

1 mA 

 I

OUT

 

 80 mA

I/O Voltage Difference

V

DIF


180
400

360
700

mV

I

OUT

 = 80 mA

I

OUT

 = 160 mA

Current Consumption

I

SS

1.0

2.9

µA

V

IN

 = 4.3V

Voltage Regulation

 V

OUT

(A)•100 

Δ

V

IN

•V

OUT

(S)

0.2

0.3

%/V

I

OUT

 = 40 mA,

4.3V 

≤ 

 I

OUT 

≤  

10.0V 

Input Voltage

V

IN

10

V

Temperature Coefficient of Output 
Voltage

Δ

V

OUT

(A)•10

6

V

OUT

(S)•

Δ

T

A

±100

ppm/°C I

OUT

 = 40 mA, -40°C 

≤ 

T

≤ +

85°C

Long-Term Stability

0.5

%

T

= +125°C, 1,000 Hours

Note

1:

V

OUT

(S): Preset value of output voltage; V

OUT

(A): Actual value of output voltage; V

DIF

: Definition of I/O voltage 

difference = {V

IN

1 – V

OUT

(A)}; V

OUT

(A): Output voltage when I

OUT

 is fixed and V

IN

 = V

OUT

(S) + 1.0V; V

IN

1: Input voltage 

when the output voltage is 98% V

OUT

(A).

Electrical Specifications: Unless otherwise specified, V

OUT

(S) = 3.0V, T

A

 = +25°C (see Note 1).

Parameters

Sym

Min

Typ

Max

Units

Conditions

Output Voltage

V

OUT

(A)

2.94

3.0

3.06

V

I

OUT

 = 40 mA

V

IN

 = 4.0V

Maximum Output Current

I

OUT

MAX

150

mA

V

IN

 = 4.0V, V

OUT

(A) 

 2.7V

Load Regulation

Δ

V

OUT

45

90

mV

V

IN

 = 4.0V, 1 mA 

 I

OUT

 ≤

 80 mA

I/O Voltage Difference

V

DIF


180
400

360
700

mV

I

OUT

 = 80 mA

I

OUT

 = 160 mA

Current Consumption

I

SS

0.9

2.8

µA

V

IN

 = 4.0V

Voltage Regulation

 V

OUT

(A)•100 

Δ

V

IN

•V

OUT

(S)

0.2

0.3

%/V

I

OUT

 = 40 mA, 4.0V 

 V

IN

 ≤

 10.0V

Input Voltage

V

IN

10

V

Temperature Coefficient of Output 
Voltage

Δ

V

OUT

(A)•10

6

V

OUT

(S)•

Δ

T

A

±100

ppm/°C I

OUT

 = 40 mA, -40°C 

≤ 

T

A

 ≤ +

85°C

Long-Term Stability

0.5

%

T

A

 = +125°C, 1000 Hours

Note

1:

V

OUT

(S): Preset value of output voltage; V

OUT

(A): Actual value of output voltage; V

DIF

: Definition of I/O voltage 

difference = {V

IN

1 – V

OUT

(A)}; V

OUT

(A): Output voltage when I

OUT

 is fixed and V

IN

 = V

OUT

(S) + 1.0V; V

IN

1: Input voltage 

when the output voltage is 98% V

OUT

(A).

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21435F-html.html
background image

TC55

DS21435F-page 4

©

 2005 Microchip Technology Inc.

TC55RP25: ELECTRICAL CHARACTERISTICS

TC55RP18: ELECTRICAL CHARACTERISTICS

Electrical Specifications: Unless otherwise specified, V

OUT

(S) = 2.5V, T

A

 = +25°C (see Note 1).

Parameters

Sym

Min

Typ

Max

Units

Conditions

Output Voltage

V

OUT

(A)

2.45

2.5

2.55

V

I

OUT

 = 40 mA

V

IN

 = 3.5V

Maximum Output Current

I

OUT

MAX

125

mA

V

IN

 = 3.5V, V

OUT

(A) 

 2.25V

Load Regulation

Δ

V

OUT

45

90

mV

V

IN

 = 3.5V, 

1 mA 

 I

OUT

 

 60 mA

I/O Voltage Difference

V

DIF

180
400

360
700

mV

I

OUT

 = 60 mA

I

OUT

 = 120 mA

Current Consumption

I

SS

1.0

2.8

µA

V

IN

 = 3.5V

Voltage Regulation

 V

OUT

(A)•100 

Δ

V

IN

•V

OUT

(S)

0.2

0.3

%/V

I

OUT

 = 40 mA,

3.5V 

≤ 

 I

OUT 

≤  

10.0V

Input Voltage

V

IN

10

V

Temperature Coefficient of Output 
Voltage

Δ

V

OUT

(A)•10

6

V

OUT

(S)•

Δ

T

A

±100

ppm/°C I

OUT

 = 40 mA, -30°C 

≤ 

T

≤ +

80°C

Long-Term Stability

0.5

%

T

A

 = +125°C, 1,000 Hours

Note

1:

V

OUT

(S): Preset value of output voltage; V

OUT

(A): Actual value of output voltage; V

DIF

: Definition of I/O voltage 

difference = {V

IN

1 – V

OUT

(A)}; V

OUT

(A): Output voltage when I

OUT

 is fixed and V

IN

 = V

OUT

(S) + 1.0V; V

IN

1: Input voltage 

when the output voltage is 98% V

OUT

(A).

Electrical Specifications: Unless otherwise specified, V

OUT

(S) = 1.8V, T

A

 = +25°C (see Note 1).

Parameters

Sym

Min

Typ

Max

Units

Conditions

Output Voltage

V

OUT

(A)

1.764

1.8

1.836

V

I

OUT

 = 0.5 mA

V

IN

 = 2.8V

Maximum Output Current

I

OUT

MAX

110

mA

V

IN

 = 2.8V, V

OUT

(A) 

 1.62V

Load Regulation

Δ

V

OUT

30

mV

V

IN

 = 2.8V, 

1 mA 

 I

OUT

 

 30 mA

I/O Voltage Difference

V

DIF

300

mV

I

OUT

 = 0.5 mA

Current Consumption

I

SS

3.0

µA

V

IN

 = 2.8V

Voltage Regulation

 V

OUT

(A)•100 

Δ

V

IN

•V

OUT

(S)

0.25

%/V

I

OUT

 = 0.5 mA,

2.8V 

≤ 

 I

OUT 

≤  

10.0V 

Input Voltage

V

IN

6.0

V

Temperature Coefficient of Output 
Voltage

Δ

V

OUT

(A)•10

6

V

OUT

(S)•

Δ

T

A

±100

ppm/°C I

OUT

 = 0.5 mA, -30°C 

≤ 

T

≤ +

80°C

Long-Term Stability

0.5

%

T

A

 = +125°C, 1,000 Hours

Note

1:

V

OUT

(S): Preset value of output voltage; V

OUT

(A): Actual value of output voltage; V

DIF

: Definition of I/O voltage 

difference = {V

IN

1 – V

OUT

(A)}; V

OUT

(A): Output voltage when I

OUT

 is fixed and V

IN

 = V

OUT

(S) + 1.0V; V

IN

1: Input voltage 

when the output voltage is 98% V

OUT

(A).

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21435F-html.html
background image

©

 2005 Microchip Technology Inc.

DS21435F-page 5

TC55

TC55RP12: ELECTRICAL CHARACTERISTICS

TEMPERATURE CHARACTERISTICS

Electrical Specifications: Unless otherwise specified, V

OUT

(S) = 1.2V, T

A

 = +25°C (see Note 1).

Parameters

Sym

Min

Typ

Max

Units

Conditions

Output Voltage

V

OUT

(A)

1.176

1.200

1.224

V

I

OUT

 = 0.5 mA

V

IN

 = 2.2V

Maximum Output Current

I

OUT

MAX

50

mA

V

IN

 = 2.2V, V

OUT

(A) 

 1.08V

Load Regulation

Δ

V

OUT

30

mV

V

IN

 = 2.2V, 

1 mA 

 I

OUT

 

 30 mA

I/O Voltage Difference

V

DIF

300

mV

I

OUT

 = 0.5 mA

Current Consumption

I

SS

3.0

µA

V

IN

 = 2.2V

Voltage Regulation

 V

OUT

(A)•100 

Δ

V

IN

•V

OUT

(S)

0.25

%/V

I

OUT

 = 0.5 ,

2.2V 

≤ 

 I

OUT 

≤  

10.0V 

Input Voltage

V

IN

6.0

V

Temperature Coefficient of Output 
Voltage

Δ

V

OUT

(A)•10

6

V

OUT

(S)•

Δ

T

A

±100

ppm/°C I

OUT

 = 0.5 mA, -30°C 

≤ 

T

≤ +

80°C

Long-Term Stability

0.5

%

T

A

 = +125°C, 1,000 Hours

Note

1:

V

OUT

(S): Preset value of output voltage; V

OUT

(A): Actual value of output voltage; V

DIF

: Definition of I/O voltage 

difference = {V

IN

1 – V

OUT

(A)}; V

OUT

(A): Output voltage when I

OUT

 is fixed and V

IN

 = V

OUT

(S) + 1.0V; V

IN

1: Input voltage 

when the output voltage is 98% V

OUT

(A).

Electrical Specifications: Unless otherwise specified, V

OUT

(S) = 5.0V, T

A

 = +25°C.

Parameters

Sym

Min

Typ

Max

Units

Conditions

Temperature Ranges

Specified Temperature Range (E)

T

A

-40

+85

ºC

Storage Temperature Range

T

A

-65

+150

ºC

Package Thermal Resistances

Thermal Resistance, 3L-SOT-23A

θ

JA

359

ºC/W

Thermal Resistance, 3L-SOT-89

θ

JA

110

ºC/W

When mounted on 1 square 
inch of copper

Thermal Resistance, 3L-TO-92

θ

JA

131.9

ºC/W

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21435F-html.html
background image

TC55

DS21435F-page 6

©

 2005 Microchip Technology Inc.

2.0

TYPICAL PERFORMANCE CURVES

Notes: Unless otherwise specified, V

OUT

(S) = 3.0V, 5.0V, T

A

 = +25°C, C

IN

 = 1 µF Tantalum, C

OUT

 = 1 µF Tantalum.

FIGURE 2-1:

Output Voltage vs. Output 

Current (TC55RP3002).

FIGURE 2-2:

Output Voltage vs. Input 

Voltage (TC55RP3002).

FIGURE 2-3:

Output Voltage vs. Input 

Voltage (TC55RP3002).

FIGURE 2-4:

Dropout Voltage vs. Output 

Current (TC55RP3002).

FIGURE 2-5:

Output Voltage vs. 

Operating Temperature (TC55RP3002).

FIGURE 2-6:

Supply Current vs. Input 

Voltage (TC55RP3002).

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

2.9

2.8

2.7

20

40

60

0

160

OUTPUT CURRENT I

OUT

 (mA)

3.0

3.1

OUTPUT VOLTAGE  V

OUT

 

(V)

80

°C

80 100 120 140

25

°C

-30

°C

 

V

IN

 = 4.0V

T

OPR

 = 25

°C

INPUT VOLTAGE V

IN

 (V) 

2.8

2.6

2.4

2.2

3.0

3.5

2.5

3.0

3.2

OUTPUT VOLTAGE  V

OUT

 

(V)

I

OUT

 = 1 mA

10 mA

40 mA

T

OPR

 = 25

°C

INPUT VOLTAGE V

IN

 (V) 

OUTPUT VOLTAGE  V

OUT

 

(V)

3.01

3.00

2.99

2.98

2.96

2.97

2.95

5

6

7

8

9

10

3

4

3.03

3.02

3.05

3.04

I

OUT

 = 1 mA

0.8

0.6

0.4

0.2

0.0

-0.2

20 40

60

0

160

OUTPUT CURRENT I

OUT

 (mA)

1.4

1.2

1.0

2.0

1.8

1.6

DROPOUT VOLTAGE  V

DIF

 

(V)

80 100 120 140

25

°C

-30

°C

80

°C

OPERATING TEMPERATURE (

°C)

3.02

3.00

2.98

2.96

2.94

2.92

2.90

-40

-20

0

20

40

60

80

100

3.06

3.04

3.10

3.08

OUTPUT VOLTAGE  V

OUT

 

(V)

I

OUT

 = 10 mA

40 mA

 

V

IN

 = 4.0V

INPUT VOLTAGE V

IN

 (V)

1.1

1.0

0.9

0.8

0.7

0.6

0.5

3

4

5

6

7

8

9

10

1.3

1.2

1.5

1.4

SUPPLY CURRENT I

SS

 (

μ

A)

T

OPR

 = 25

°

C

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21435F-html.html
background image

©

 2005 Microchip Technology Inc.

DS21435F-page 7

TC55

Note: Unless otherwise indicated, V

OUT

(S) = 3.0V, 5.0V, T

A

 = +25°C, C

IN

 = 1 µF Tantalum, C

OUT

 = 1 µF Tantalum.

FIGURE 2-7:

Supply Current vs. 

Operating Temperature (TC55RP3002).

FIGURE 2-8:

Load Transient Response 

(TC55RP3002).

FIGURE 2-9:

Output Voltage vs. Output 

Current (TC55RP5002).

FIGURE 2-10:

Output Voltage vs. Input 

Voltage (TC55RP5002).

FIGURE 2-11:

Output Voltage vs. Input 

Voltage (TC55RP5002).

FIGURE 2-12:

Dropout Voltage vs. Output 

Current (TC55RP5002).

0.9

0.8

0.7

0.6

0.5

-20

0

20

-40

OPERATING TEMPERATURE (

°C)

1.2

1.1

1.0

1.5

1.4

1.8

40

60

80 100

SUPPLY CURRENT I

SS

 (

μ

A)

 

V

IN

 = 4.0V

TIME (2 msec/div)

4

3

2

1

0

40 mA

1 mA

5

200

160

120

80

40

0

OUTPUT VOLTAGE  V

OUT

 

(V)

OUTPUT CURRENT  I

OUT

 

(mA)

Output Current

Output Voltage

OUTPUT CURRENT I

OUT

 (mA)

4.9

4.8

4.7

40

80

0

200

160

5.0

5.1

OUTPUT VOLTAGE  V

OUT

 

(V)

120

80

°C

25

°C

-30

°C

 

V

IN

 = 6.0V

INPUT VOLTAGE V

IN

 (V) 

T

OPR

 = 25

°C

4.8

4.6

4.4

4.2

5.0

5.5

4.5

5.0

5.2

OUTPUT VOLTAGE  V

OUT

 

(V)

I

OUT

 = 1 mA

10 mA

40 mA

INPUT VOLTAGE V

IN

 (V) 

T

OPR

 = 25

°C

5.01

5.00

4.99

4.97

4.98

4.95

4.98

6

7

8

9

10

5

5.03

5.02

5.04

5.05

OUTPUT VOLTAGE  V

OUT

 

(V)

IOUT = 1 mA

OUTPUT CURRENT I

OUT

 (mA)

DROPOUT VOLTAGE  V

DIF

 

(V)

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

40

80

0

200

160

1.4

1.2

2.0

1.8

1.6

120

-30

°C

25

°C

80

°C

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21435F-html.html
background image

TC55

DS21435F-page 8

©

 2005 Microchip Technology Inc.

Note: Unless otherwise indicated, V

OUT

(S) = 3.0V, 5.0V, T

A

 = +25°C, C

IN

 = 1 µF Tantalum, C

OUT

 = 1 µF Tantalum.

FIGURE 2-13:

Output Voltage vs. 

Operating Temperature (TC55RP5002).

FIGURE 2-14:

Supply Current vs. Input 

Voltage (TC55RP5002).

FIGURE 2-15:

Supply Current vs. 

Operating Temperature (TC55RP5002).

FIGURE 2-16:

Input Transient Response, 

1 mA (TC55RP5002).

FIGURE 2-17:

Input Transient Response, 

10 mA (TC55RP5002).

FIGURE 2-18:

Load Transient Response 

(TC55RP5002).

OPERATING TEMPERATURE (

°C)

5.02

5.00

4.98

4.96

4.94

4.92

4.90

-40

-20

0

20

40

60

80

100

5.06

5.04

5.10

5.08

OUTPUT VOLTAGE  V

OUT

 

(V)

I

OUT

 = 10 mA

40 mA

 

V

IN

 = 6.0V

INPUT VOLTAGE V

IN

 (V)

5

6

7

8

9

10

1.6

1.4

1.3

1.2

1.1

1.0

0.5

1.8

1.7

2.0

1.9

SUPPLY CURRENT I

SS

 (

μ

A)

T

OPR

 = 25

°

C

1.4

1.3

1.2

1.1

1.0

-20

0

20

-40

OPERATING TEMPERATURE  (

°C)

1.7

1.6

1.5

2.0

1.9

1.8

40

60

80 100

SUPPLY CURRENT I

SS

 (

μ

A)

 

V

IN

 = 6.0V

TIME (msec)

7.0

6.5

6.0

5.5

5.0

5.0

4.5

4.0

-1

0

1

2

3

7.5

Input 
Voltage

Output 
Voltage

8.0

INPUT VOLTAGE  V

OUT

 

(V)

OUTPUT VOLTAGE  V

IN

 

(V)

 

I

OUT

 = 1 mA

TIME (msec)

7.0

6.5

6.0

5.5

5.0

4.5

4.0

-1

0

1

2

3

7.5

Input 
Voltage

Output 
Voltage

8.0

INPUT VOLTAGE  V

OUT

  

(V)

OUTPUT VOLTAGE  V

OUT

 

(V)

 

I

OUT

 = 10 mA

TIME (2 msec/div)

6

5

4

3

2

40 mA

1 mA

7

200

160

120

80

40

0

OUTPUT VOLTAGE  V

OUT

 

(V)

OUTPUT CURRENT  I

OUT

 

(mA)

Output Voltage

Output Current

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21435F-html.html
background image

©

 2005 Microchip Technology Inc.

DS21435F-page 9

TC55

3.0

PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1:

PIN FUNCTION TABLE

3.1

Ground Terminal (GND)

Regulator ground. Tie GND to the negative side of the
output and the negative side of the input capacitor.
Only the LDO bias current (1 µA typical) flows out of
this pin, there is no high current. The LDO output regu-
lation is referenced to this pin. Minimize voltage drops
between this pin and the minus side of the load.

3.2

Regulated Voltage Output (V

OUT

)

Connect V

OUT

 to the positive side of the load and the

positive terminal of the output capacitor. The positive
side of the output capacitor should be physically
located as close to the LDO V

OUT

 pin as is practical.

The current flowing out of this pin is equal to the DC
load current.

3.3

Unregulated Supply Input (V

IN

)

Connect the input supply voltage and the positive side
of the input capacitor to V

IN

. The input capacitor should

be physically located as close as is practical to V

IN

. The

current flow into this pin is equal to the DC load current,
plus the LDO bias current (1 µA typical.)

4.0

DETAILED DESCRIPTION

The TC55 is a low quiescent current, precision, fixed-
output voltage LDO. Unlike bipolar regulators, the
TC55 supply current does not increase proportionally
with load current.

4.1

Output Capacitor

A minimum of 1 µF output capacitor is required. The
output capacitor should have an effective series resis-
tance (esr) greater than 0.1

Ω

 and less than 5

Ω

, plus a

resonant frequency above 1 MHz. Larger output
capacitors can be used to improve supply noise rejec-
tion and transient response. Care should be taken
when increasing C

OUT

 to ensure that the input imped-

ance is not high enough to cause high input impedance
oscillation.

4.2

Input Capacitor

A 1 µF input capacitor is recommended for most
applications when the input impedance is on the order
of 10

Ω

. Larger input capacitance may be required for

stability when operating off of a battery input, or if there
is a large distance from the input source to the LDO.
When large values of output capacitance are used, the
input capacitance should be increased to prevent high
source impedance oscillations.

Pin No.

Symbol

Description

1

GND

Ground Terminal

2

V

OUT

Regulated Voltage Output

3

V

IN

Unregulated Supply Input

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21435F-html.html
background image

TC55

DS21435F-page 10

©

 2005 Microchip Technology Inc.

5.0

THERMAL CONSIDERATIONS

5.1

Power Dissipation

The amount of power dissipated internal to the low
dropout linear regulator is the sum of the power dissi-
pation within the linear pass device (P-Channel MOS-
FET) and the quiescent current required to bias the
internal reference and error amplifier. The internal lin-
ear pass device power dissipation is calculated by mul-
tiplying the voltage across the linear device by the
current through the device.

EQUATION

The internal power dissipation, as a result of the bias
current for the LDO internal reference and error
amplifier, is calculated by multiplying the ground or
quiescent current by the input voltage.

EQUATION

The total internal power dissipation is the sum of P

D

(Pass Device) and P

D

 (Bias).

EQUATION

For the TC55, the internal quiescent bias current is so
low (1 µA typical) that the P

D

 (Bias) term of the power

dissipation equation can be ignored. The maximum
power dissipation can be estimated by using the
maximum input voltage and the minimum output
voltage to obtain a maximum voltage differential
between input and output. The next step would be to
multiply the maximum voltage differential by the
maximum output current.

EQUATION

Given:

V

IN

= 3.3V to 4.1V

V

OUT

= 3.0 V ± 2%

I

OUT

= 1 mA to 100 mA

T

AMAX

= 55°C

P

MAX

= (4.1V – (3.0V x 0.98)) x 100 mA

P

MAX

= 116.0 milliwatts

To determine the junction temperature of the device, the
thermal resistance from junction-to-ambient must be
known. The 3-pin SOT-23 thermal resistance from junc-
tion-to-air (R

θ

JA

) is estimated to be approximately

359°C/W. The SOT-89 R

θ

JA

 is estimated to be approxi-

mately 110°C/W when mounted on 1 square inch of
copper. The TO-92 R

θ

JA

 is estimated to be 131.9°C/W.

The R

θ

JA

 will vary with physical layout, airflow and other

application-specific conditions.

The device junction temperature is determined by
calculating the junction temperature rise above
ambient, then adding the rise to the ambient
temperature.

EQUATION

P

D

 (Pass Device) = (V

IN

 – V

OUT

) x I

OUT

P

D

 (Bias) = V

IN

 x I

GND

P

TOTAL

 = P

D

 (Pass Device) + P

D

 (Bias)

P

D

 = (V

INMAX

 – V

OUTMIN

) x I

OUTMAX

Junction Temperature

T

J

 = P

DMAX

 x R

θ

JA

 + T

A

T

J

 = 116.0 milliwatts x 359°C/W + 55°C 

T

J

 = 96.6°C

SOT-23 Example:

SOT-89 Example:
T

J

 = 116.0 milliwatts x 110°C/W + 55°C 

T

J

 = 67.8°C

TO-92 Example:
T

J

 = 116.0 milliwatts x 131.9°C/W + 55°C 

T

J

 = 70.3°C

Maker
Microchip Technology Inc.
Datasheet PDF Download