21433c.book

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21433c-html.html
background image

© 2007 Microchip Technology Inc.

DS21433C-page 1

TC530/TC534

Features

• Precision (up to 17-Bits) A/D Converter
• 3-Wire Serial Port
• Flexible: User Can Trade Off Conversion Speed 

For Resolution

• Single Supply Operation
• -5V Output Pin
• 4 Input, Differential Analog MUX (TC530)
• Automatic Input Polarity and Overrange Detection
• Low Operating Current: 5mA Max
• Wide Analog Input Range: ±4.2V Max
• Cost Effective

Applications

• Precision Analog Signal Processor
• Precision Sensor Interface
• High Accuracy DC Measurements

General Description

The TC530/TC534 are serial analog data acquisition
subsystems ideal for high precision measurements (up
to 17-bits plus sign). The TC534 consists of a dual
slope integrating    A/D converter, negative power
supply generator and 3 wire serial interface port. The
TC530 is identical to the TC534, but adds a four
channel differential input multiplexer. Key A/D
converter operating parameters (Auto Zero and Inte-
gration time) are programmable, allowing the user to
trade conversion time for resolution. 
Data conversion is initiated when the RESET input is
brought low. After conversion, data is loaded into the
output shift register and EOC is asserted, indicating
new data is available. The converted data (plus Over-
range and polarity bits) is held in the output shift
register until read by the processor or until the next
conversion is completed, allowing the user to access
data at any time.
The TC530/TC534 timebase can be derived from an
external crystal of 2MHz (max) or from an external fre-
quency source. The TC530/TC534 requires a single 5V
power supply and features a -5V, 10mA output which
can be used to supply negative bias to other
components in the system.

Typical Application

A0 A1

OSC

IN

R/W

D

IN

D

OUT

D

CLK

OSC

OUT

OSC

RESET

CAP+ CAP–

C

AZ

TC530
TC534

C

REF

R

INT

C

INT

TC534

(Only)

(TC530 Only)

DC-TO-DC

Converter

State

 Machine

Serial Port

Negative

Supply Output

Oscillator

(

÷

 4)

Dual Slope A/D Converter

.01 µF

0.01 µF

Optional

Power-On

Reset Cap

100 k

Ω

+5V

DIF.

MUX

(TC534 

Only)

A

B

CMPTR

BUF

INT

C

AZ

ACOM

V

DD

V

DD

V

DD

V

DD

V

SS

MCP1525

V

REF-

V

REF+

V

IN-

V

IN+

EOC

CH2+

CH3+

CH1+

CH4+

CH4-

CH3-

CH2-

CH1-

IN+

IN-

C

REF-

C

REF+

5V Precision Data Acquisition Subsystems

Obsolete Device

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21433c-html.html
background image

TC530/TC534

DS21433C-page 2

© 2007 Microchip Technology Inc.

Package Types

1
2

3
4

20

19
18

5
6

7
8

17

23

22

21

9

10

11

12

24

25

26

27

28

TC530CPI 

TC530COI

16

15

13

14

V

SS

C

REF-

C

REF+

V

REF-

V

REF+

C

INT

C

AZ

BUF

ACOM

OSC

OUT

V

IN-

V

IN+

DGND

N/C

V

CCD

V

DD

D

OUT

D

CLK

CAP-

AGND

RESET

N/C

OSC

CAP+

OSC

IN

D

IN

R/W

EOC

28-Pin SOIC 

28-Pin PDIP

TC534CPL

1

2

3

4
5

6

7
8
9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37
36

35

34
33

32

31

30

29

 

28

27

26

25

24

23

22

21

40-Pin PDIP

V

CDD

V

DD

OS

C

OUT

CAP-

CAP+

OSC

IN

D

OUT

D

CL

K

D

IN

CH

2+

CH

3+

CH

1+

DG

N

D

AGND

A1

A0

27

26

25

24

23

7

8

9

10

11

N/C

N/C

12 13 14 15 16 17 18 19 20 21 22

38 37 36 35 34

N/

C

39

40

41

42

43

44

28

29

30

31

32

33

6

5

4

3

2

1

BUF

C

AZ

V

SS

C

IN

T

N/

C

N/

C

N/C

OSC

RESET

N/C

N/C

N/C

EOC

N/C

R/W

TC534CKW

44-Pin MQFP

CH4+

CH4-

CH3-

CH2-

CH1-

C

REF-

C

REF+

V

REF-

V

REF+

ACOM

V

SS

C

REF-

C

REF+

V

REF-

V

REF+

C

INT

C

AZ

BUF

ACOM

A0

CH4-

CH3-

DGND

A1

CH2-

CH1-

CH4+

CH3+
CH2+

CH1+

V

CCD

V

DD

D

OUT

D

CLK

CAP-

AGND

RESET

N/C

OSC

CAP+

OSC

IN

D

IN

R/W

EOC

OSC

OUT

N/C

N/C

N/C

N/C

N/C

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21433c-html.html
background image

© 2007 Microchip Technology Inc.

DS21433C-page 3

TC530/TC534

1.0

ELECTRICAL 
CHARACTERISTICS

Absolute Maximum Ratings †

Supply Voltage  ......................................................+6V
Analog Input Voltage (V

IN

+

 

or V

IN

-).............V

DD

 to V

SS

 

Logic Input Voltage......... (V

DD

 + 0.3V) to (GND - 0.3V)

Ambient Operating Temperature Range:

PDIP Package (C) ............................... 0°C to +70°C
SOIC Package (C)............................... 0°C to +70°C
MQFP Package (C) ............................. 0°C to +70°C

Storage Temperature Range.............. -65°C to +150°C

† Stresses above those listed under "Absolute Maximum Rat-
ings" may cause permanent damage to the device. These are
stress ratings only and functional operation of the device at
these or any other conditions above those indicated in the
operation sections of the specifications is not implied. Expo-
sure to Absolute Maximum Rating conditions for extended
periods may affect device reliability.

 ELECTRICAL SPECIFICATIONS

Electrical Characteristics: Unless otherwise specifier, V

DD

 = V

CCD

, C

AZ

 = C

REF

 = 0.47 µF

Parameter

Symbol

T

A

 = +25°C

T

A

 = 0°C to +70°C

Unit

Conditions

Min

Typ

Max

 Min

Typ

Max

Analog Power Supply 
Voltage

V

DD

4.5

 5.0

5.5

4.5

 —

 5.5

V

Digital Power Supply Voltage

V

CCD

4.5

5.0

5.5

4.5 —

5.5

V

Total Power Dissipation

P

D

 

25

— 

mW

V

DD

 = V

CCD 

= 5V

Supply Current (V

S

 + P

IN

)

I

S

1.8

2.5

— 

3.0

mA

Supply Current (V

CCD

 P

IN

)

I

CCD

1.5

— 

1.7

mA

F

OSC 

= 1 MHz

Analog
Resolution

R

 —

±17

±17

Bits

Note 1

Zero Scale Error with Auto 
Zero Phase

ZSE

 —

0.5

— 

0.005  

0.012

 % F.S.

End Point Linearity

ENL

0.015

0.030

— 

0.015  0.045

F.S. Note 1 and 

Note 2

Max. Deviation from Best 
Straight Line Fit

NL

0.008

0.015

— —

F.S. Note 1 and 

Note 2

Zero Scale Temperature
Coefficient

ZS

TC

1

2

µV/°C

Rollover Error

SYE

 .012

— 

.03

% F.S. Note 3

Full Scale Temperature 
Coefficient

FS

TC

 

 

— 

10

 

ppm/°

C

Ext. V

REF

T.C. = 0 ppm/°C

Input Current

I

IN

6

pA

V

IN 

= 0V

Common-Mode Voltage 
Range

V

CMR

V

SS 

+ 1.5

V

DD

 - 1.5   V

SS

 + 1.5

V

DD

 - 1.5

V

Integrator Output Swing

V

INT

V

SS

 + 0.9

V

DD

 - 0.9   V

SS

 + 0.9

V

DD

 - 0.9

V

Analog Input Signal Range

V

IN

V

SS

 + 1.5

V

DD 

-1.5

  V

SS

 + 1.5

V

DD

  - 1.5

V

Voltage Reference Range 

V

REF

V

SS 

+ 1

V

DD

 - 1

  V

DD

 + 1

V

DD

  - 1

V

Zero Crossing Comparator 
Delay

T

D

2.0

 3.0

μs

Note 1: Integrate time 

≥ 66 ms. Auto Zero time ≥ 66 ms. V

INT

 (pk) = 4V.

2: End point linearity at ±1/4, ±1/2, and ±3/4. F.S. after full scale adjustment.
3: Rollover error is related to capacitor used for CINT. See 

Table 6-2

, Recommended Capacitor for C

INT

.

4: TC534 Only.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21433c-html.html
background image

TC530/TC534

DS21433C-page 4

© 2007 Microchip Technology Inc.

Serial Port Interface

Input Logic HIGH Level

V

IH

2.5

2.5

 —

 —

V

Input Logic LOW Level 

V

IL

0.8

 —

 0.8

V

Input Current (DI, DO, D

CLK

)

I

IN

 

10

 

 

µA

Logic LOW Output Voltage 
(EOC)

V

OL

0.2

0.3

 —

 0.35

V

 I

OUT 

= 250 µA

Rise and Fall Times
(EOC, DI, DO)

T

R

, T

F

 —

250

250 

ns

C

L

 = 10 pF

Crystal Frequency

F

XTL

 

2.0

 

 

2.0

MHz

External Frequency on 
OSC

IN

F

EXT

 

4.0

 

 

4.0

MHz

Read Setup Time

T

RS

 

1

 — 

1

µs

Read Delay Time 

T

RD

 250

250

ns

D

CLK

 to D

OUT 

Delay

T

DRS

450

450

ns 

D

CLK

 LOW Pulse Width

T

PWL

 150

 — 

150

ns

 

D

CLK

 HIGH Pulse Width

T

PWH

150

150

ns

Data Ready Delay

T

DR

200

200

ns

Output Resistance

R

OUT

 —

65

85

 —

 100

Ω

I

OUT

 = 10 mA

Oscillator Frequency

F

CLK

 —

100

 —

 —

kHz

C

OSC

 = 0

V

SS

 Output Current

I

OUT

 —

10

 —

 10

mA

Multiplexer

Maximum Input Voltage

V

IMMAX

 -2.5

2.5

-2.5

 —

2.5

V

Drain/Source ON 
Resistance

R

DSON

 

6

10

 

 

k

Ω

 ELECTRICAL SPECIFICATIONS (CONTINUED)

Electrical Characteristics: Unless otherwise specifier, V

DD

 = V

CCD

, C

AZ

 = C

REF

 = 0.47 µF

Parameter

Symbol

T

A

 = +25°C

T

A

 = 0°C to +70°C

Unit

Conditions

Min

Typ

Max

 Min

Typ

Max

Note 1: Integrate time 

≥ 66 ms. Auto Zero time ≥ 66 ms. V

INT

 (pk) = 4V.

2: End point linearity at ±1/4, ±1/2, and ±3/4. F.S. after full scale adjustment.
3: Rollover error is related to capacitor used for CINT. See 

Table 6-2

, Recommended Capacitor for C

INT

.

4: TC534 Only.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21433c-html.html
background image

© 2007 Microchip Technology Inc.

DS21433C-page 5

TC530/TC534

2.0

TYPICAL PERFORMANCE CURVES

FIGURE 2-1:

Output Voltage vs. Load 

Current.

FIGURE 2-2:

Output Ripple vs. Load 

Current.

FIGURE 2-3:

Oscillator Frequency vs. 

Capacitance.

FIGURE 2-4:

Output Voltage vs. Output 

Current.

FIGURE 2-5:

Output Source Resistance 

vs. Temperature.

FIGURE 2-6:

Oscillator Frequency vs. 

Temperature.

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range), and therefore outside the warranted range.

LOAD CURRENT (mA)

-5

-4

-3

-2

-1

0

1

2

3

4

5

0

10

20

30

40

50

60

70

80

OUTPUT VOLTAGE (V)

Output Voltage vs. Load Current

T

A

 = 25

˚

C

V+ = 5V

Slope 60

Ω

LOAD CURRENT (mA)

0

3

4

5

6

1

2

7

8

9

10

0

25

50

75

100

125

150

175

200

OUTPUT RIPPLE (mV PK-PK)

Output Ripple vs. Load Current

V+ = 5V, T

A

 = 25˚C

Osc. Freq. = 100kHz

CAP = 1

μ

F

CAP = 10

μ

F

OSCILLATOR CAPACITANCE (pF)

100

10

1

1

10

100

1000

OSCILLATOR FREQUENCY (kHz)

Oscillator Frequency vs. Capacitance

T

A

 = +25˚C

V+ = 5V

OUTPUT CURRENT (mA)

0

6

8

10

4

2

14

16

18

12

20

-0

-1

-3

-2

-4

-5

-7

-6

-8

Output Voltage vs. Output Current

T

A

 = 25˚C

OUTPUT VOLTAGE (V)

TEMPERATURE (˚C)

70

80

90

100

60

50

40

-50

0

25

-25

50

75

100

OUTPUT SOURCE RESISTANCE (

Ω

)

Output Source Resistance vs. Temperature

V+ = 5V
I

OUT

 = 10mA

TEMPERATURE (˚C)

125

150

100

75

50

-50

0

25

-25

50

75

125

100

 OSCILLATOR FREQUENCY (kHz)

Oscillator Frequency vs. Temperature

V+ = 5V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21433c-html.html
background image

TC530/TC534

DS21433C-page 6

© 2007 Microchip Technology Inc.

3.0

PIN DESCRIPTIONS

The descriptions of the pins are listed in 

Table 3-1

.  

TABLE 3-1:

PIN FUNCTION TABLE

Pin Number

(TC530)

28-Pin PDIP

Pin Number

(TC530)

28-Pin SOIC

Pin Number

(TC534)

40-Pin PDIP

 Pin 

Number

(TC534)

44-Pin 

MQFP

Sym

Description

1

1

1

40

V

SS

Analog output. Negative power supply converter output and 
reservoir capacitor connection. This output can be used to 
provide negative bias to other devices in the system.

2

2

2

41

C

INT

Analog output. Integrator capacitor connection and 
integrator output.

3

3

3

42

C

AZ

Analog input. Auto Zero capacitor connection.

4

4

4

43

BUF

Analog output. Integrator capacitor connection and voltage 
buffer output. 

5

5

5

2

ACOM

Analog input. This pin is ground for all of the analog 
switches in the A/D converter. It is grounded for most 
applications. ACOM and the input common pin (V

IN

- or 

CHX-) should be within the common mode range, CMR.

6

6

6

3

C

REF

-

Analog Input. Reference cap negative connection.

7

7

7

4

C

REF

+

Analog Input. Reference cap positive connection.

8

8

8

5

V

REF

-

Analog Input. External voltage reference negative 
connection.

9

9

9

6

V

REF

+

Analog Input. External voltage reference positive 
connection.

10

7

CH4-

Analog Input. Multiplexer channel 4 negative differential 

11

8

CH3-

Analog Input. Multiplexer channel 3 negative differential 

12

9

CH2-

Analog Input. Multiplexer channel 2 negative differential 

13

10

CH1-

Analog Input. Multiplexer channel 1 negative differential 

14

11

CH4+

Analog Input. Multiplexer channel 4 positive differential 

15

12

CH3+

Analog Input. Multiplexer channel 3 positive differential 

16

13

CH2+

Analog Input. Multiplexer channel 2 positive differential 

17

14

CH1+

Analog Input. Multiplexer channel 1 positive differential 

10

10

V

N

-

Analog Input. Negative differential analog voltage input.

11

11

V

IN

+

Analog Input. Positive differential analog voltage input.

12

12

18

15

DGND

Analog Input. Ground connection for serial port circuit.

19

16

A1

Logic Level Input. Multiplexer address MSB.

20

17

A0

Logic Level Input. Multiplexer address LSB.

14

14

21

18

OSC

OUT

Analog Input. Timebase for state machine. This pin 
connects to one side of an AT-cut crystal having an effective 
series resistance of 100

Ω (typ) and a parallel capacitance 

of 20 pF. If an external frequency source is used to clock 
the TC530/TC534 this pin must be left floating.

15

15

22

19

OSC

IN

Analog Input. This pin connects to the other side of the 
crystal described in OSC

OUT

 above. The TC530/TC534 

may also be clocked from an external frequency source 
connected to this pin. The external frequency source must 
be a pulse waveform with a minimum 30% duty cycle and 
rise and fall times 15nsec (Max). If an external frequency 
source is used, OSC

OUT

 ) must be left floating. A maximum 

operating frequency of 2 MHz (crystal) or 4 MHz (external 
clock source) is permitted.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21433c-html.html
background image

© 2007 Microchip Technology Inc.

DS21433C-page 7

TC530/TC534

16

16

23

20

D

OUT

Logic Level Output. Serial port data output pin. This pin is 
enabled only when R/W is high.

17

17

24

21

D

CLK

Logic Input, Positive and Negative Edge Triggered. Serial 
port clock. When R/W is high, serial data is clocked out of 
the TC530/TC534A (on D

OUT

) at each high-to-low transition 

of D

CLK

. A/D initialization data (LOAD VALUE) is clocked 

into the TC530/TC534 (on D

IN

) at each low-to-high 

transition of D

CLK

. A maximum serial port D

CLK

 frequency 

of 3 MHz is permitted.

18

18

25

22

D

IN

Logic Level Input. Serial port input pin. The A/D converter 
integration time (T

INT

) and Auto Zero time (T

AZ

) values are 

determined by the LOAD VALUE byte clocked into this pin. 
This initialization must take place at power up, and can be 
rewritten (or modified and rewritten) at any time. The LOAD 
VALUE is clocked into D

IN

 MSB first.

19

19

26

23

R/W

Logic Level Input. This pin must be brought low to perform a 
write to the serial port (e.g. initialize the A/D converter). The 
D

OUT

 pin of the serial port is enabled only when this pin is 

high.

20

20

27

24

EOC

Open Drain Output. End-of-Conversion (EOC) is asserted 
any time the TC530/TC534 is in the AZ phase of 
conversion. This occurs when either the TC530/TC534 
initiates a normal AZ phase or when RESET is pulled high. 
EOC is returned high when the TC530/TC534 exits AZ. 
Since EOC is driven low immediately following completion 
of a conversion cycle, it can be used as a DATA READY 
processor interrupt. 

21

21

30

28

RESET

Logic Level Input. It is necessary to force the TC530/TC534 
into the Auto Zero phase when power is initially applied. 
This is accomplished by momentarily taking RESET high. 
Using an I/O port line from the microprocessor or by 
applying an external system reset signal or by connecting a 
0.01 µF capacitor from the RESET input to V

DD

. Conver-

sions are performed continuously as long as RESET is low 
and conversion is halted when RESET is high. RESET may 
therefore be used in a complex system to momentarily 
suspend conversion (for example, while the address lines 
of an input multiplexer are changing state). In this case, 
RESET should be pulled high only when the EOC is LOW 
to avoid excessively long integrator discharge times which 
could result in erroneous conversion. (See Applications 
Section).

22

22

32

30

V

CCD

Analog Input. Power supply connection for digital logic and 
serial port. Proper power-up sequencing is critical, see the 
Applications section.

23

23

34

32

OSC

Input. The negative power supply converter normally runs 
at a frequency of 100 kHz. This frequency can be slowed 
down to reduce quiescent current by connecting an external 
capacitor between this pin and V

+

DD.

 

See Section 2.0 “Typical Performance Curves”, Typical 
Characteristics.

25

25

37

35

V

DD

Analog Input. Power supply connection for the A/D analog 
section and DC-DC converter. Proper power-up sequencing 
is critical, (See the Applications section).

TABLE 3-1:

PIN FUNCTION TABLE (CONTINUED)

Pin Number

(TC530)

28-Pin PDIP

Pin Number

(TC530)

28-Pin SOIC

Pin Number

(TC534)

40-Pin PDIP

 Pin 

Number

(TC534)

44-Pin 

MQFP

Sym

Description

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21433c-html.html
background image

TC530/TC534

DS21433C-page 8

© 2007 Microchip Technology Inc.

26

26

38

36

CAP+

Analog Input. Storage capacitor positive connection for the 
DC/DC converter.

27

27

39

37

AGND

Analog Input. Ground connection for DC/DC converter.

28

28

40

38

CAP-

Analog Input. Storage capacitor negative connection for the 
DC/DC converter.

13, 24

13, 24

28, 29, 31, 

33, 35, 36

1, 25, 26, 

27, 29, 31, 
33, 34, 39, 

44

N/C

No connect. Do not connect any signal to these pins.

TABLE 3-1:

PIN FUNCTION TABLE (CONTINUED)

Pin Number

(TC530)

28-Pin PDIP

Pin Number

(TC530)

28-Pin SOIC

Pin Number

(TC534)

40-Pin PDIP

 Pin 

Number

(TC534)

44-Pin 

MQFP

Sym

Description

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21433c-html.html
background image

© 2007 Microchip Technology Inc.

DS21433C-page 9

TC530/TC534

4.0

DETAILED DESCRIPTION

4.1

Dual Slope Integrating Converter

The TC530/TC534 dual slope converter operates by
integrating the input signal for a fixed time period, then
applying an opposite polarity reference voltage while
timing the period (counting clocks pulses) for the
integrator output to cross 0V (deintegrating). The
resulting count is read as conversion data. 
A simple mathematical expression that describes dual
slope conversion is:

EQUATION 4-1:

EQUATION 4-2:

from which:

EQUATION 4-3:

And therefore:

EQUATION 4-4:

Inspection of 

Equation 4-4

 shows dual slope converter

accuracy is unrelated to integrating resistor and
capacitor values, as long as they are stable throughout
the measurement cycle. This measurement technique
is inherently ratiometric (i.e., the ratio between the T

INT

and T

DEINT

 times is equal to the ratio between V

IN

 and

V

REF

).

Another inherent benefit is noise immunity. Input noise
spikes are integrated, or averaged to zero, during the
integration period. The integrating converter has a noise
immunity with an attenuation rate of at least -20 dB per
decade. Interference signals with frequencies at integral
multiples of the integration period are, for the most part,
completely removed. For this reason, the integration

period of the converter is often established to reject
50/60 Hz line noise. The ability to reject such noise is
shown by the plot of 

Figure 4-1

.

In addition to the two phases required for dual slope
measurement (Integrate and De-integrate), the
TC530/TC534 performs two additional adjustments to
minimize measurement error due to system offset volt-
ages. The resulting four internal operations (conver-
sion phases) performed each measurement cycle are:
Auto Zero (AZ), Integrator Output Zero (IZ), Input
Integrate (INT) and Reference De-integrate (DINT).
The AZ and IZ phases compensate for system offset
errors and the INT and DINT phases perform the actual
A/D conversion.

FIGURE 4-1:

Integrating Converter 

Normal Mode Rejection.

4.2

Auto Zero Phase (AZ)

This phase compensates for errors due to buffer,
integrator and comparator offset voltages. During this
phase, an internal feedback loop forces a
compensating error voltage on auto zero capacitor
(C

AZ

). The duration of the AZ phase is programmable

via the serial port (see Section 5.1.1 “AZ and INT
Phase Duration”
, AZ and INT Phase Duration).

Integrate Voltage = De-integrate Voltage

1

R

INT

C

INT

------------------------ T

INT

0

V

IN

T

( )dT

1

R

INT

C

INT

------------------------ T

DEINT

0

V

REF

=

(V

IN

)

 (R

INT

)(C

INT

)

[

 (T

INT

= (V

REF

)

]

 (R

INT

)(C

INT

)

[

 (T

DEINT

]

V

IN

 = V

REF

 

[ ]

 T

INT

 T

DEINT

 

Where:

V

REF

=

Reference Voltage

T

INT

=

Integrate Time

T

DEINT

=

Reference Voltage De-integrate 
Time

30

20

10

0

0.1/T

1/T

10/T

Input Frequency

Normal Mode Rejection (dB)

 T = Measurement

       Period

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21433c-html.html
background image

TC530/TC534

DS21433C-page 10

© 2007 Microchip Technology Inc.

FIGURE 4-2:

Serial Port Timing.

FIGURE 4-3:

A/D Converter Timing.

T

RD

T

RS

T

DRS

T

PWL

R/W

Read Timing

Read Format

Write Format

Write Timing

Write Default Timing

EOC

D

OUT

D

CLK

R/W

EOC

D

OUT

D

CLK

EOC

SGN MSB

LSB

OVR

T

LS

T

DLS

T

PWL

R/W

D

IN

D

CLK

T

LDL

T

LDS

D

IN

R/W

D

OUT

D

CLK

MSB

LSB

For Polled vs. Interrupt Operation and Write Value Modified Cycle Use TC520A Data Sheet (DS21431).

R/W

EOC

T

DR

AZ

Updated Data

Ready

Updated Data

Ready

INT

DINT

IZ

AZ

Conversion

Phase

Data to Serial

Port Transmit

Register

Maker
Microchip Technology Inc.
Datasheet PDF Download