21425C.book

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21425C-html.html
background image

 2001-2012 Microchip Technology Inc.

DS21425C-page 1

TC4467/TC4468/TC4469

Features

• High Peak Output Current: 1.2 A

• Wide Operating Range:

- 4.5 V to 18 V

• Symmetrical Rise/Fall Times: 25 nsec

• Short, Equal Delay Times: 75 nsec

• Latch-proof. Will Withstand 500 mA Inductive 

Kickback

• 3 Input Logic Choices:

- AND / NAND / AND + Inv

• ESD Protection on All Pins: 2 kV

Applications

• General Purpose CMOS Logic Buffer

• Driving All Four MOSFETs in an H-Bridge

• Direct Small Motor Driver

• Relay or Peripheral Drivers

• CCD Driver

• Pin-Switching Network Driver

Package Types

General Description

The TC4467/TC4468/TC4469 devices are a family of
four-output CMOS buffers/MOSFET drivers with 1.2 A
peak drive capability.  Unlike other MOSFET drivers,
these devices have two inputs for each output. The
inputs are configured as logic gates: NAND (TC4467),
AND (TC4468) and AND/INV (TC4469).

The TC4467/TC4468/TC4469 drivers can continuously
source up to 250 mA into ground referenced loads.
These devices are ideal for direct driving low current
motors or driving MOSFETs in a H-bridge configuration
for higher current motor drive (see Section 5.0 for
details).  Having the logic gates onboard the driver can
help to reduce component count in many designs.

The TC4467/TC4468/TC4469 devices are very robust
and highly latch-up resistant.  They can tolerate up to
5 V of noise spiking on the ground line and can handle
up to 0.5 A of reverse current on the driver outputs.

The TC4467/4468/4469 devices are available in
commercial, industrial and military temperature ranges.

1

2

3

4

5

6

7

8

16

13

12

11

10

9

1A

1B

2A

2B

3A

3B

GND

GND

V

DD

1Y

2Y

3Y

4Y

4B

4A

V

DD

15

14

TC4467
TC4468
TC4469

16-Pin SOIC (Wide)

1

2

3

4

5

6

7

14

13

12

11

10

9

8

1A

1B

2A

2B

3A

3B

GND

V

DD

1Y

2Y

3Y

4Y

4B

4A

TC4467
TC4468
TC4469

14-Pin PDIP/CERDIP

Logic-Input CMOS Quad Drivers

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21425C-html.html
background image

TC4467/TC4468/TC4469

DS21425C-page 2

 2001-2012 Microchip Technology Inc.

Logic Diagrams

TC4468

TC4467

Output

TC446X

V

DD

14

7

1Y

13

1
2

1B

1A

2Y

12

3

4

2B

2A

3Y

11

5
6

3B

3A

4Y

10

8
9

4B

4A

GND

TC4469

14

7

1Y

13

1
2

1B

1A

2Y

12

3
4

2B

2A

3Y

11

5
6

3B

3A

4Y

10

8
9

4B

4A

14

7

1Y

13

1
2

1B

1A

2Y

12

3
4

2B

2A

3Y

11

5
6

3B

3A

4Y

10

8
9

4B

4A

GND

V

DD

V

DD

V

DD

6

GND

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21425C-html.html
background image

 2001-2012 Microchip Technology Inc.

DS21425C-page 3

TC4467/TC4468/TC4469

1.0

ELECTRICAL 
CHARACTERISTICS

Absolute Maximum Ratings†

Supply Voltage ...............................................................+20 V

Input Voltage ............................. (GND – 5 V) to (V

DD

 + 0.3 V)

Package Power Dissipation: (T

A

 

70°C)

        PDIP...................................................................800 mW
        CERDIP .............................................................840 mW
        SOIC ..................................................................760 mW

Package Thermal Resistance:
        CERDIP R

J-A

...................................................100°C/W

        CERDIP R

J-C

.....................................................23°C/W

        PDIP R

J-A

..........................................................80°C/W

        PDIP R

J-C

..........................................................35°C/W

        SOIC R

J-A

..........................................................95°C/W

        SOIC R

J-C

..........................................................28°C/W

Operating Temperature Range:
        C Version ................................................... 0°C to +70°C
        E Version.................................................-40°C to +85°C
        M Version ..............................................-55°C to +125°C
Maximum Chip Temperature ....................................... +150°C

Storage Temperature Range .........................-65°C to +150°C

†Notice: Stresses above those listed under "Maximum
Ratings" may cause permanent damage to the device. This is
a stress rating only and functional operation of the device at
those or any other conditions above those indicated in the
operation listings of this specification is not implied. Exposure
to maximum rating conditions for extended periods may affect
device reliability.

ELECTRICAL SPECIFICATIONS

Electrical Characteristics: Unless otherwise noted, T

A

 = +25°C, with 4.5 V 

V

DD

18 V.

Parameters

Sym

Min

Typ

Max

Units

Conditions

Input

Logic 1, High Input Voltage

V

IH

2.4

V

DD

V

Note 3

Logic 0, Low Input Voltage

V

IL

0.8

V

Note 3

Input Current

I

IN

-1.0

+1.0

µA

0 V

V

IN

V

DD

Output

High Output Voltage

V

OH

V

DD

 – 0.025

V

I

LOAD

 = 100 µA (Note 1)

Low Output Voltage

V

OL

0.15

V

I

LOAD

 = 10 mA (Note 1)

Output Resistance

R

O

10

15

I

OUT

 = 10 mA, V

DD

 = 18 V

Peak Output Current

I

PK

1.2

A

Continuous Output Current

I

DC

300

mA

Single Output

500

Total Package

Latch-Up Protection Withstand 
Reverse Current

I

500

mA

4.5 V

V

DD 

16 V

Switching Time (Note 1)

Rise Time

t

R

15

25

nsec

Figure 4-1

Fall Time

t

F

15

25

nsec

Figure 4-1

Delay Time

t

D1

40

75

nsec

Figure 4-1

Delay Time

t

D2

40

75

nsec

Figure 4-1

Power Supply

Power Supply Current

I

S

1.5

4

mA

Power Supply Voltage

V

DD

4.5

18

V

Note 2

Note

1:

Totem pole outputs should not be paralleled because the propagation delay differences from one to the other could cause one driver to 
drive high a few nanoseconds before another. The resulting current spike, although short, may decrease the life of the device. Switching 
times are ensured by design.

2:

When driving all four outputs simultaneously in the same direction, V

DD

 will be limited to 16 V. This reduces the chance that internal dv/dt 

will cause high-power dissipation in the device.

3:

The input threshold has approximately 50 mV of hysteresis centered at approximately 1.5 V. Input rise times should be kept below 5 µsec 
to avoid high internal peak currents during input transitions. Static input levels should also be maintained above the maximum, or below 
the minimum, input levels specified in the "Electrical Characteristics" to avoid increased power dissipation in the device.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21425C-html.html
background image

TC4467/TC4468/TC4469

DS21425C-page 4

 2001-2012 Microchip Technology Inc.

ELECTRICAL SPECIFICATIONS (OPERATING TEMPERATURES)

TRUTH TABLE

Electrical Characteristics: Unless otherwise noted, over operating temperature range with 4.5 V 

V

DD

18 V.

Parameters

Sym

Min

Typ

Max

Units

Conditions

Input

Logic 1, High Input Voltage

V

IH

2.4

V

Note 3

Logic 0, Low Input Voltage

V

IL

0.8

V

Note 3

Input Current

I

IN

-10

10

µA

0 V

V

IN

V

DD

Output

High Output Voltage

V

OH

V

DD

 – 0.025

V

I

LOAD

 = 100 µA (Note 1)

Low Output Voltage

V

OL

0.30

V

I

LOAD

 = 10 mA (Note 1)

Output Resistance

R

O

20

30

I

OUT

 = 10 mA, V

DD

 = 18 V

Peak Output Current

I

PK

1.2

A

Continuous Output Current

I

DC

300

mA

Single Output

500

Total Package

Latch-Up Protection Withstand 
Reverse Current

I

500

mA

4.5 V

V

DD 

16 V

Switching Time (Note 1)

Rise Time

t

R

15

50

nsec

Figure 4-1

Fall Time

t

F

15

50

nsec

Figure 4-1

Delay Time

t

D1

40

100

nsec

Figure 4-1

Delay Time

t

D2

40

100

nsec

Figure 4-1

Power Supply

Power Supply Current

I

S

8

mA

Power Supply Voltage

V

DD

4.5

18

V

Note 2

Note

1:

Totem pole outputs should not be paralleled because the propagation delay differences from one to the other could cause one driver to 
drive high a few nanoseconds before another. The resulting current spike, although short, may decrease the life of the device. Switching 
times are ensured by design.

2:

When driving all four outputs simultaneously in the same direction, V

DD

 will be limited to 16 V. This reduces the chance that internal dv/dt 

will cause high-power dissipation in the device.

3:

The input threshold has approximately 50 mV of hysteresis centered at approximately 1.5 V. Input rise times should be kept below 5 µsec 
to avoid high internal peak currents during input transitions. Static input levels should also be maintained above the maximum, or below 
the minimum, input levels specified in the "Electrical Characteristics" to avoid increased power dissipation in the device.

Part No.

TC4467 NAND

TC4468 AND

TC4469 AND/INV

Inputs  A

H

H

L

L

H

H

L

L

H

H

L

L

Inputs  B

H

L

H

L

H

L

H

L

H

L

H

L

Outputs  TC446X

L

H

H

H

H

L

L

L

L

H

L

L

Legend: H = High

L = Low

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21425C-html.html
background image

 2001-2012 Microchip Technology Inc.

DS21425C-page 5

TC4467/TC4468/TC4469

2.0

TYPICAL PERFORMANCE CURVES

Note:

T

A

 = +25°C, with 4.5 V 

V

DD

18 V.

FIGURE 2-1:

Rise Time vs. Supply 

Voltage.

FIGURE 2-2:

Rise Time vs. Capacitive 

Load.

FIGURE 2-3:

Rise/Fall Times vs. 

Temperature.

FIGURE 2-4:

Fall Time vs. Supply 

Voltage.

FIGURE 2-5:

Fall Time vs. Capacitive 

Load.

FIGURE 2-6:

Propagation Delay Time vs. 

Supply Voltage.

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein are
not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

140

120

100

80

60

40

20

0

3

5

7

9

11

13

15

17

19

2200 pF

0 p

p

1600 pF

1000 pF

470 pF

100 pF

t

R

IS

E

(nsec

)

V

SUPPLY

 (V)

140

120

100

80

60

40

20

0

100

1000

10,000

10 V

15 V

V

V

V

5 V

t

R

IS

E

(nsec

)

C

LOAD

 (pF)

0

-50

TIME 

(nsec

)

5

10

15

20

25

-25

0

25

50

75

100

125

t

FALL

t

RISE

V

SUPPLY

 = 17.5 V

C

LOAD

 = 470 pF

TEMPERATURE (

°

C)

140

120

100

80

60

40

20

0

3

5

7

9

11

13

15

17

19

p

100 pF

470 pF

1000 pF

1500 pF

2200 pF

t

FALL

(nsec

)

V

SUPPLY

 (V)

140

120

100

80

60

40

20

0

100

0

0

1000

10,000

V

V

V

5 V

10 V

15 V

t

FALL

(nsec

)

C

LOAD

 (pF)

0

4

D

ELAY TIME 

(nsec

)

20

40

60

80

8

12

14

16

18

6

10

V

SUPPLY

 (V)

tt

D1

t

D2

C

C

LOAD

470 pF

 = 4

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21425C-html.html
background image

TC4467/TC4468/TC4469

DS21425C-page 6

 2001-2012 Microchip Technology Inc.

2.0

TYPICAL PERFORMANCE CURVES (CONTINUED)

Note:

T

A

 = +25°C, with 4.5 V 

V

DD

18 V.

FIGURE 2-7:

Input Amplitude vs. Delay 

Times.

FIGURE 2-8:

Quiescent Supply Current 

vs. Supply Voltage.

FIGURE 2-9:

High-State Output 

Resistance.

FIGURE 2-10:

Propagation Delay Times 

vs. Temperatures.

FIGURE 2-11:

Quiescent Supply Current 

vs. Temperature.

FIGURE 2-12:

Low-State Output 

Resistance.

140

120

100

80

60

40

20

0

1

9

10

D

ELAY TIME 

(nsec

)

2

3

4

5

6

7

8

INPUT FALLING

INPUT RISING

V

DRIVE

 (V)

t

D1

t

D2

V

DD

V

= 12 V

0

4

0.5

1.0

1.5

2.0

2.5

6

8

10

12

14

16

18

OUTPUTS = 1

OUTPUTS = 0

V

SUPPLY

 (V)

I

Q

UIESCENT

(mA

)

0

4

6

8

10

12

14

16

18

V

SUPPLY

(V)

5

10

15

20

25

30

35

R

D

S

(ON

)

(

Ω

)

T

J

  = +150

°

C

T

J

  = +25

°

C

70

20

100

120

D

ELAY TIME 

(nsec

)

-40

-20

0

20

40

60

80

30

40

50

60

-60

°

C)

V

DD

 = 17.5 V

 = 470 pF

V

IN

t

D1

t

D2

3.5

0

100

120

-40

-20

0

20

40

60

80

3.0

2.5

2.0

1.5

1.0

0.5

OUTPUTS = 1

OUTPUTS = 0

-60

I

Q

UIESCENT

 (mA)

T

JUNCTION

 

(

°

C)

V

V

DD

 = 17.5 V

0

4

6

8

10

12

14

16

18

5

10

15

20

25

30

35

V

SUPPLY

(V)

R

D

S

(ON

)

(

Ω

)

T

J

  = +150

°

C

T

J

  = +25

°

C

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21425C-html.html
background image

 2001-2012 Microchip Technology Inc.

DS21425C-page 7

TC4467/TC4468/TC4469

2.0

TYPICAL PERFORMANCE CURVES (CONTINUED)

Note:

(Load on single output only).

FIGURE 2-13:

Supply Current vs. 

Capacitive Load.

FIGURE 2-14:

Supply Current vs. 

Capacitive Load.

FIGURE 2-15:

Supply Current vs. 

Capacitive Load.

FIGURE 2-16:

Supply Current vs. 

Frequency.

FIGURE 2-17:

Supply Current vs. 

Frequency.

FIGURE 2-18:

Supply Current vs. 

Frequency.

60

0

100

1000

10,000

50

40

30

20

10

2 MH

Hz

1 MHz

1 MHz

1 MH

50

00 kHz

200 kHz

20 kHz

I

SU

PPL

Y

(mA

)

C

LOAD

 (pF)

V

DD

 = 18 V

60

0

100

1000

10,000

50

40

30

20

10

2 MHz

2 MHz

1 MHz

500 kHz

200 kHz

20 kHz

C

LOAD

 (pF)

I

SU

PPLY

(mA

)

V

DD

V

= 12 V

60

50

40

30

20

10

0

100

1000

10,000

1 MHz

500 kHz
200 kHz
20 kHz

2 MHz

I

SU

PPLY

(mA

)

C

LOAD

 (pF)

V

V

DD

V

 = 6 V

60

0

100

1000

FREQUENCY (kHz)

50

40

30

20

10

2200 pF

1

1000 pF

p

100 pF

10

10,000

V

DD

 = 18 V

I

SU

PPLY

(mA

)

60

0

10

100

FREQUENCY (kHz)

50

40

30

20

10

1000

2200 pF

p

p

1000 pF

100 pF

10,000

I

SU

PPLY

(mA

)

V

DD

V

= 12 V

60

0

10

1000

100

FREQUENCY (kHz)

50

40

30

20

10

2200 pF

1000 pF

100 pF

10,000

I

SU

PPLY

(mA

)

V

V

DD

 = 6 V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21425C-html.html
background image

TC4467/TC4468/TC4469

DS21425C-page 8

 2001-2012 Microchip Technology Inc.

3.0

PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1:

PIN FUNCTION TABLE

14-Pin PDIP, 

CERDIP

16-Pin SOIC 

(Wide)

Description

Symbol

Symbol

1A

1A

Input A for Driver 1, TTL/CMOS Compatible Input

1B

1B

Input B for Driver 1, TTL/CMOS Compatible Input

2A

2A

Input A for Driver 2, TTL/CMOS Compatible Input

2B

2B

Input B for Driver 2, TTL/CMOS Compatible Input

3A

3A

Input A for Driver 3, TTL/CMOS Compatible Input

3B

3B

Input B for Driver 3, TTL/CMOS Compatible Input

GND

GND

Ground

GND

Ground

4A

4A

Input A for Driver 4, TTL/CMOS Compatible Input

4B

4B

Input B for Driver 4, TTL/CMOS Compatible Input

4Y

4Y

Output for Driver 4, CMOS Push-Pull Output

3Y

3Y

Output for Driver 3, CMOS Push-Pull Output

2Y

2Y

Output for Driver 2, CMOS Push-Pull Output

1Y

1Y

Output for Driver 1, CMOS Push-Pull Output

V

DD

V

DD

Supply Input, 4.5 V to 18 V

V

DD

Supply Input, 4.5 V to 18 V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21425C-html.html
background image

 2001-2012 Microchip Technology Inc.

DS21425C-page 9

TC4467/TC4468/TC4469

4.0

DETAILED DESCRIPTION

4.1

Supply Bypassing

Large currents are required to charge and discharge
large capacitive loads quickly. For example, charging a
1000 pF load to 18 V in 25 nsec requires 0.72 A from
the device's power supply.

To ensure low supply impedance over a wide frequency
range, a 1 µF film capacitor in parallel with one or two
low-inductance, 0.1 µF ceramic disk capacitors with
short lead lengths (<0.5 in.) normally provide adequate
bypassing.

4.2

Grounding

The TC4467 and TC4469 contain inverting drivers.
Potential drops developed in common ground
impedances from input to output will appear as
negative feedback and degrade switching speed
characteristics. Instead, individual ground returns for
input and output circuits, or a ground plane, should be
used.

4.3

Input Stage

The input voltage level changes the no-load or
quiescent supply current. The N-channel MOSFET
input stage transistor drives a 2.5 mA current source
load. With logic “0” outputs, maximum quiescent supply
current is 4 mA. Logic “1” output level signals reduce
quiescent current to 1.4 mA, maximum. Unused driver
inputs must be connected to V

DD

 or V

SS

. Minimum

power dissipation occurs for logic “1” outputs.

The drivers are designed with 50 mV of hysteresis,
which provides clean transitions and minimizes output
stage current spiking when changing states. Input volt-
age thresholds are approximately 1.5 V, making any
voltage greater than 1.5 V, up to V

DD

,

 

a logic “1” input.

Input current is less than 1 µA over this range.

4.4

Power Dissipation

The supply current versus frequency and supply
current versus capacitive load characteristic curves will
aid in determining power dissipation calculations.
Microchip Technology's CMOS drivers have greatly
reduced quiescent DC power consumption.

Input signal duty cycle, power supply voltage and load
type influence package power dissipation. Given power
dissipation and package thermal resistance, the maxi-
mum ambient operating temperature is easily
calculated. The 14-pin plastic package junction-to-
ambient thermal resistance is 83.3°C/W. At +70°C, the
package is rated at 800 mW maximum dissipation.
Maximum allowable chip temperature is +150°C.

Three components make up total package power
dissipation:

1.

Load-caused dissipation (P

L

).

2.

Quiescent power (P

Q

).

3.

Transition power (P

T

).

A capacitive-load-caused dissipation (driving MOSFET
gates), is a direct function of frequency, capacitive load
and supply voltage. The power dissipation is:

EQUATION

A resistive-load-caused dissipation for ground-
referenced loads is a function of duty cycle, load
current and load voltage. The power dissipation is:

EQUATION

P

L

fCV

S

2

=

V

S

Supply Voltage

=

C

Capacitive  Load

=

f

Switching Frequency

=

P

L

D V

S

V

L

I

L

=

I

L

Load Current

=

D

Duty  Cycle

=

V

S

Supply Voltage

=

V

L

Load Voltage

=

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21425C-html.html
background image

TC4467/TC4468/TC4469

DS21425C-page 10

 2001-2012 Microchip Technology Inc.

A resistive-load-caused dissipation for supply-
referenced loads is a function of duty cycle, load
current and output voltage. The power dissipation is

EQUATION

Quiescent power dissipation depends on input signal
duty cycle. Logic HIGH outputs result in a lower power
dissipation mode, with only 0.6 mA total current drain
(all devices driven). Logic LOW outputs raise the
current to 4 mA maximum. The quiescent power
dissipation is:

EQUATION

Transition power dissipation arises in the complimen-
tary configuration (TC446X) because the output stage
N-channel and P-channel MOS transistors are ON
simultaneously for a very short period when the output
changes. The transition power dissipation is
approximately:

EQUATION

Package power dissipation is the sum of load,
quiescent and transition power dissipations. An
example shows the relative magnitude for each term:

Maximum operating temperature is:

EQUATION

FIGURE 4-1:

Switching Time Test Circuit.

P

L

DV

O

I

L

=

I

L

Load Current

=

V

O

Device Output Voltage

=

D

Duty Cycle

=

P

Q

V

S

D I

H

 

1

D

I

L

+

=

I

L

Quiescent Current with all outputs HIGH

=

I

H

Quiescent Current with all outputs LOW

=

D

Duty Cycle

=

V

S

Supply Voltage

=

(4 mA max.)

(0.6 mA max.)

Note:

Ambient operating temperature should not
exceed +85°C for "EJD" device or +125°C
for "MJD" device.

P

T

fV

s

10

10

9

=

V

S

15 V

=

C

1000 pF Capacitive Load

=

D

50%

=

f

200 kHz

=

P

D

Package Power Dissipation

=

P

L

P

Q

P

T

+

+

=

45mW

35mW

30mW

+

+

=

110mW

=

T

J

J A

P

D

141

C

=

JA

Junction-to-ambient thernal resistance

=

T

J

Maximum allowable junction temperature

=

 (+150

(83.3

C/W) 14-pin plastic package

V

OUT

470 pF

1B

1A

2B

2A

3B

3A

4B

4A

1 µF  Film

0.1 µF Ceramic

90%

10%

10%

10%

90%

+5 V

Input 

(A, B)

V

DD

Output

0 V

0V

90%

1
2

3
4

5
6

8
9

7

10

11

12

13

14

V

DD

t

R

t

D1

t

F

t

D2

Input: 100 kHz,

 

square wave, 
t

RISE

 = t

FALL

 

 10 nsec

 
 

Maker
Microchip Technology Inc.
Datasheet PDF Download