21364C.book

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21364C-html.html
background image

 2002-2012 Microchip Technology Inc.

DS21364C-page 1

TC1188/TC1189

Features

• Input Voltage Range: 2.7 V to 6.0 V
• 120 mA Output Current
• Low Supply Current: 50 µA, (typical)
• Low Dropout Voltage: 110 mV, (typical at 100 mA)
• Fast Turn-On from Shutdown: 140 µsec (typical)
• Low Output Noise
• Over-Current and Over-Temperature Protection
• Low Power Shutdown Mode
• Auto Discharge of Output Capacitor (TC1189)

Applications

• Battery Powered Systems
• Portable Computers
• Medical Instruments
• Cellular, Cordless Phones
• PDAs
• Pagers

Package Type

General Description

The TC1188 and TC1189 are fixed output, low dropout
linear regulators that operate from a 2.7V to 6.0V input
voltage source. The output is capable of delivering up
to 120 mA while consuming only 50 µA of quiescent
current. The low dropout voltage, 120 mV, make the
TC1188 and TC1189 good choices for battery powered
applications. Integrated over-current and over-temper-
ature protection features provide for a fault tolerant
solution.
The TC1189 includes an output voltage auto discharge
feature. When shutdown, the TC1189 will automatically
discharge the output voltage using an internal N-Chan-
nel MOSFET switch.
Fixed output voltage options for the TC1188/TC1189
are: 1.80V, 2.80V, 2.84V and 3.15V. Both the TC1188
and TC1189 are available in SOT23-5 packages.

Typical Application Circuit

GND

SHDN GND

5

1

4

2

3

TC1188
TC1189

5-Pin SOT-23A

NOTE:

 5-Pin SOT-23A is equivalent to the EIAJ (SC-74A)

V

IN

V

OUT

V

OUT

V

IN

Output

GND

SHDN

TC1188
TC1189

+

1 µF

C

OUT

GND

Voltage

1 µF

C

IN

Battery

MAX8863/64 Pin Compatible, Low Dropout, 

120 mA Linear Regulators

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21364C-html.html
background image

TC1188/TC1189

DS21364C-page 2

 2002-2012 Microchip Technology Inc.

1.0

ELECTRICAL 
CHARACTERISTICS

Absolute Maximum Ratings*

Input Voltage .........................................................6.5V
Output Short-Circuit Duration.............................Infinite
Output Voltage........................... (-0.3V) to (V

IN

 + 0.3V)

Maximum Voltage On Any Pin.... (-0.3V) to (V

IN

 +0.3V)

Continuous Power Dissipation (T

A

 = +70°C)

      SOT-23-5 (derate 7.1 mW/°C above +70°C)
       ..................................................................571 mW
Operating Temperature Range...............-40°C to 85°C
Storage Temperature..........................-65°C to +160°C
Lead Temperature (Soldering, 10 Sec.) ........... +300°C

*Notice: *Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to
the device. These are stress ratings only and functional
operation of the device at these or any other conditions
above those indicated in the operation sections of the
specifications is not implied. Exposure to Absolute
Maximum Rating conditions for extended periods may
affect device reliability.

DC SPECIFICATIONS

Electrical Characteristics:

 V

IN

 = +3.6V, GND = 0V, T

A

 = T

MIN

 to T

MAX

, unless otherwise noted. Typical values are at T

A

 = +25°C. 

(Note 1)

Parameters

Symbol

Min

Typ

Max

Units

Conditions

Input Voltage

V

IN

V

OUT

+0.5V

2.7


6.0
6.0

V

V

OUT

 

 2.5V

V

OUT

 = 1.8V (Note 2)

Output Voltage

V

OUT

3.05

3.15

3.25

V

0 mA 

I

OUT

50 mA

T

2.75

2.84

2.93

V

0 mA 

I

OUT

50 mA

S

2.70

2.80

2.88

V

0 mA 

I

OUT

50 mA

R

1.745

1.80

1.85

V

0 mA 

I

OUT

50 mA

Q

Maximum Output Current

I

OUT

120

mA

Current Limit

I

LIM

280

mA

Note 3

Input Current

I

IN

50

90

µA

I

OUT

 = 0

Dropout Voltage

1.1

mV

I

OUT

 = 1 mA

55

120

mV

I

OUT

 = 50 mA

110

240

mV

I

OUT

 = 100 mA (Note 4)

Line Regulation

V

LNR

-0.10

0.001

0.10

%/V

V

IN

 = V

OUT

0.5V to 6.0V

%/V

I

OUT

 = 1 mA

Load Regulation

V

LDR

0.01

0.040

%/mA I

OUT

 = 0 mA to 50 mA

Output Voltage Noise

350

µV

RMS

10 Hz to 1 MHz, C

OUT

 = 1

Μ

F

220

µV

RMS

10 Hz to 1 MHz C

OUT

 = 100

Μ

F

Wake Up Time

(from Shutdown Mode)

t

WK

10

µsec

V

IN

 = 3.6V

C

IN

 = 1 µF, C

OUT

 = 1 µF

I

L

 = 30 mA, (See Figure 3-1)

Setting Time

(from Shutdown Mode)

t

S

140

µsec

V

IN

 = 3.6V

C

IN

 = 1 µF, C

OUT

 = 1 µF

I

L

 = 30 mA, (See Figure 3-1)

Note

1:

Limits are 100% production tested at T

A

 = +25°C. Limits over the operating temperature range are ensured through cor-

relation using Statistical Quality Control (SQC) methods.

2:

Validated by line regulation test.

3:

Not tested. For design purposes, the current limit should be considered 150 mA minimum to 410 mA maximum.

4:

The dropout voltage is defined as (V

IN

 – V

OUT

) when V

OUT

 is 100 mV below the value of V

OUT

 for 

V

IN

 = V

OUT

 +2V.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21364C-html.html
background image

 2002-2012 Microchip Technology Inc.

DS21364C-page 3

TC1188/TC1189

Shutdown:

SHDN Input Threshold

V

IH

2.0

V

V

IL

0.4

V

SHDN Input Bias Current

I

shdn

0.1

100

nA

V

SHDN

 = V

IN

, T

A

 = +25°C, T

A

 = T

MAX

50

nA

V

SHDN

 = V

IN

, T

A

 = +25°C, T

A

 = T

MAX

Shutdown Supply Current

I

qshdn

0.002

1

A

V

OUT

 = 0V, T

A

 = +25°C, T

A

 = T

MAX

0.02

A

V

OUT

 = 0V, T

A

 = +25°C, T

A

 = T

MAX

Shutdown to Output Discharge 
Delay (TC1189)

1

msec

C

OUT

 = 1

F, no load at 10% of V

OUT

Thermal Protection

Thermal Shutdown Temperature

T

SHDN

170

°C

Thermal Shutdown Hysteresis

T

SHDN

20

°C

DC SPECIFICATIONS (CONTINUED)

Electrical Characteristics:

 V

IN

 = +3.6V, GND = 0V, T

A

 = T

MIN

 to T

MAX

, unless otherwise noted. Typical values are at T

A

 = +25°C. 

(Note 1)

Parameters

Symbol

Min

Typ

Max

Units

Conditions

Note

1:

Limits are 100% production tested at T

A

 = +25°C. Limits over the operating temperature range are ensured through cor-

relation using Statistical Quality Control (SQC) methods.

2:

Validated by line regulation test.

3:

Not tested. For design purposes, the current limit should be considered 150 mA minimum to 410 mA maximum.

4:

The dropout voltage is defined as (V

IN

 – V

OUT

) when V

OUT

 is 100 mV below the value of V

OUT

 for 

V

IN

 = V

OUT

 +2V.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21364C-html.html
background image

TC1188/TC1189

DS21364C-page 4

 2002-2012 Microchip Technology Inc.

2.0

TYPICAL PERFORMANCE CURVES

FIGURE 2-1:

Line Regulation vs. 

Temperature. (TC1188)

FIGURE 2-2:

Output Voltage vs. 

Temperature. (TC1188)

FIGURE 2-3:

Load Regulation vs. 

Temperature. (TC1188)

FIGURE 2-4:

Load Regulation vs. 

Temperature. (TC1188)

FIGURE 2-5:

Dropout Voltage vs. 

Temperature. (TC1188)

FIGURE 2-6:

Output Noise vs. Frequency. 

(TC1188)

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein are
not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

0.10

0.08

0.06

0.04

0.00

–0.02

–0.04

–0.06

–0.08

–0.10

0.02

–40

°

C

0

°

C

25

°

C

70

°

C

85

°

C

TEMPERATURE (

°

C)

LINE REGULATION (%)

Line Reg. @ 3.50 V 
to 5.50V(%)

2.930

2.910

2.890

2.870

2.850

2.830

2.810

2.790

2.770

2.750

–40

°

C

0

°

C

25

°

C

70

°

C

85

°

C

TEMPERATURE (

°

C)

V

OUT

 (V)

V

OUT

 - SET/1.0mA

@ 3.5V (V)

0.040

0.035

0.030

0.025

0.020

0.015

0.010

0.005

0.000

–40

°

C

0

°

C

25

°

C

70

°

C

85

°

C

TEMPERATURE (

°

C)

LOAD REGULATION (%)

Load Reg. 0 to 50mA (%)

0.040

0.035

0.030

0.025

0.020

0.015

0.010

0.005

0.000

–40

°

C

0

°

C

25

°

C

70

°

C

85

°

C

TEMPERATURE (

°

C)

LOAD REGULATION (%)

Load Reg. 0 to 50mA (%)

Load Reg. 0 to 100mA (%)

0.120

0.100

0.080

0.060

0.040

0.020

0.000

–40

°

C

0

°

C

25

°

C

70

°

C

85

°

C

TEMPERATURE (

°

C)

(V)

50mA, Dropout V (V)

FREQUENCY (kHz)

 Noise (

μ

V/

HZ)

10.0

1.0

0.01

0.01

1

10

100

1000

0.1

0.0

R

LOAD

 = 50μΩ

C

OUT

 = 1

μF

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21364C-html.html
background image

 2002-2012 Microchip Technology Inc.

DS21364C-page 5

TC1188/TC1189

FIGURE 2-7:

Power Supply Rejection 

Ratio vs. Frequency. (TC1188)

FIGURE 2-8:

TC1189 Shutdown Transient 

Response.

FIGURE 2-9:

TC1189 Shutdown Transient 

Response.

FIGURE 2-10:

TC1189 Line Response.

FIGURE 2-11:

Wake-Up Response Time.

FREQUENCY (kHz)

 (dB)

10

100 1K

10K

1M

10M

100K

C

OUT

 = 1

μF

-10

-20

-30

-40

-60

-70

-50

-80

-90

-100

V

OUT

 = 2.84V

R

LOAD

 = 50Ω

100mV p-p 

CH2 GND

CH1 GND

200

μsec/Div

SHDN

SHDN = 0V

V

OUT

 = 0.5V/DIV

T = 25

°

 

C

IN

 = 1

μF

C

L

 =1

μF

R

L

 =

 ∞ 

CH2 GND

CH1 GND

CH1

CH2

200

μsec/Div

C

IN

 = 1

μF

C

OUT

 =1

μF

R

L

 =

 100Ω

V

IN

 = 3.5V

T

T

XSHDN = 3V

Turn On 
Time = 150

μS

No Overshoot

V

OUT

 = 2.7V

XSHDN = 0V

V

OUT

 = 0V

CH2 GND

CH2 

CH1 GND

CH1

100

μsec/Div

C

IN

 = C

OUT 

= 1

μF, R

L

 = 470

Ω, XSHDN = 3.5V

T

T

V

OUT

AC

 20

μV/DIV

V

IN

 = 4.5V

V

IN

 = 3.5V

TIME (100

μs/Div)

OUTPUT, SHUTDOWN  VOLTAGE (V)

SHDN

VOUT

0V

2.8V

0V

3V

V

IN

 = 3.6V

I

LOAD

 = 30mA

C

IN 

=

 

1

μF

C

LOAD

 = 1

μF

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21364C-html.html
background image

TC1188/TC1189

DS21364C-page 6

 2002-2012 Microchip Technology Inc.

3.0

PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1:

PIN FUNCTION TABLE

3.1

Detailed Description

The TC1188/TC1189 devices are fixed output, low
dropout linear regulators. Utilizing CMOS construction,
the internal quiescent current consumed by the regula-
tor is minimized when compared to older bipolar low
dropout regulators.
The LDO output voltage is sensed at the non-inverting
pin of the internal error amplifier. The internal voltage
reference is sensed at the inverting pin of the internal
error amplifier. The error amplifier adjusts the gate
source voltage of the internal P-channel pass device
until the divided down output voltage matches the inter-
nal reference voltage. When it does, the LDO output
voltage is in regulation.
The SHDN, when pulled low, is used to turn off the P-
Channel MOSFET and lower the internal quiescent
current to less than 1 µA maximum. For normal opera-
tion, the SHDN pin is pulled to a high level. (> 2.0V).
The TC1189 incorporates an internal N-Channel MOS-
FET, which is used to discharge the output capacitor
when shutdown. The TC1188 does not have the inter-
nal N-Channel MOSFET, therefore, when the device is
shutdown, the output voltage will decrease at a rate
which is dependant on the load current.

3.2

Turn-On Response

The turn-on response is defined as two separate
response categories: Wake-Up Time (t

WK

) and Settling

Time (t

S

).

The TC1188/TC1189 have fast wake-up times (10 µsec
typical) when released from shutdown. See Figure 3-1
for the wake-up time, designated as t

WK

. The wake-up

time is defined as the time it takes for the output to rise
to 2% of the V

OUT

 value after being released from shut-

down.
The total turn on response is defined as the Settling
Time (t

S

) (Figure 3-1). Settling Time (inclusive with t

WK

)

is defined as the condition when the output is within 2%
of its fully enabled value (140 µsec typical) when

released from shutdown. The settling time of the output
voltage is dependent on load conditions and output
capacitance on V

OUT

 (RC response).

FIGURE 3-1:

Wake-Up Response Time.

3.3

Internal P-Channel Pass 
Transistor

The Internal P-Channel MOSFET is operated in the lin-
ear region to regulate the LDO output voltage. The
RDSon of the P-Channel MOSFET is approximately
1.1

 making the LDO able to regulate with little input

to output voltage differential, "Low Dropout". Another
benefit of using CMOS construction is that the P-Chan-
nel MOSFET is a voltage controlled device, so it
doesn't consume a fraction of the bias current required
of bipolar PNP LDOs.

Symbol

Description

SHDN

Active Low Shutdown Input. When the SHDN input is low (< 0.2V), the quiscent current for the 
TC1188/TC1189 is reduced to  0.1 nA. When the input voltage to the SHDN pin is high (> 2.0V) the 
output of the TC1188/TC1189 is enabled. For the TC1189 only, the output capacitor is discharged by 
an internal switch when the SHDN is low.

GND

Ground. Connect to ground.

V

IN

Unregulated Input Voltage. The input voltage can range from 2.7V to 6.0V.

V

OUT

Regulator Output. Sources up to 120 mA. Bypass with a 1 µF, <1

typical ESR capacitor to GND.

GND

Connect to GND.

V

IH

t

S

t

WK

V

OUT

98%

2%

V

IL

SHDN

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21364C-html.html
background image

 2002-2012 Microchip Technology Inc.

DS21364C-page 7

TC1188/TC1189

FIGURE 3-2:

Functional Block Diagram.

3.4

Shutdown

The SHDN input is used to turn off the LDO P-Channel
pass MOSFET and internal bias. When shutdown, the
typical quiescent current consumed by the LDO is
0.1 nA. A logic low (< 0.4V) at the SHDN input will
cause the device to operate in the shutdown mode. A
logic high (> 2.0V) at the SHDN input will cause the
device to operate in the normal mode.

3.5

Current Limit

The LDO output current is monitored internal to the
TC1188/TC1189. The internal current sense will limit
the LDO output current to a typical value of 280 mA.
The current limit can range from approximately 50 mA
to 410 mA from device to device. The internal current
limit protects the device from a continuous output short
circuit.

3.6

Thermal Overload Protection

Integrated thermal protection circuitry shuts the
TC1188/TC1189 off when the internal die temperature
exceeds approximately 170°C. The regulator output
remains off until the internal die temperature drops to
approximately 150°C.

3.7

Operating Region and Power 
Dissipation

The internal power dissipation to the LDO is primarily
determined by the input voltage, output voltage and
output current. The following equation is used to
approximate the worst case for power dissipation:

EQUATION

The maximum power dissipation is a function of the
maximum ambient temperature, T

A(MAX)

, the maximum

junction temperature, T

J(MAX)

, and the package thermal

resistance from junction to air, 

JA

. The 5-Pin SOT23A

package has a 

JA

 of approximately 220°C/Watt.

EQUATION

Bandgap

Reference

MOS Driver 

W

ith

 I

LIMIT

Thermal

Sensor

Shutdown

Logic

Error

+

V

IN

SHDN

GND

V

OUT

PMOS Pass

GND

N

(TC1189 Only)

Amplifier

Transistor

P

D

 = V

IN(MAX)

 - V

OUT(MIN)

 x I

LOAD(MAX)

Where:

P

D

 = Worst case internal power dissipation.

V

IN

(

MAX

)

 = Maximum input voltage.

V

OUT

(

MIN

)

 = Minimum output voltage.

I

LOAD

(

MAX

)

 = Maximum output current.

P

D

 = (T

J(MAX)

 - T

A(MAX)

)/

JA

Where all terms are previously defined.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21364C-html.html
background image

TC1188/TC1189

DS21364C-page 8

 2002-2012 Microchip Technology Inc.

EXAMPLE 3-1:

The previously defined power dissipation equations
can be used to ensure that the regulator thermal
operation is within limits.
Given:

V

IN(MAX)

 = 3.0V +10%

V

OUT(MAX)

 = 2.7V - 2.5%

I

LOAD(MAX)

 = 40

M

A

T

J(MAX)

 = 125°C

T

A(MAX)

 = 55°C

Find:

1.

Actual power dissipation.

2.

Maximum allowable dissipation.

Actual power dissipation:

Maximum allowable power dissipation:

In this example, the TC1188/TC1189 dissipates a max-
imum of 26.7 mW below the allowable limit of 318 mW.
In a similar manner, the power dissipation equation, as
a function of V

IN

, V

OUT

 and I

LOAD, 

along with the power

dissipation equation, as a function of maximum junction
temperature, maximum ambient temperature and junc-
tion to air thermal resistance, can be used to calculate
maximum current and/or maximum input voltage limits.

4.0

APPLICATIONS INFORMATION

4.1

Input Capacitor

A 1 µF (or larger) capacitor is recommended to bypass
the LDO input and lower input impedance for circuit
stability when operating from batteries or high imped-
ance sources. The input capacitor can be ceramic, tan-
talum or aluminum electrolytic. For applications that
require low noise and input power supply rejection, low
effective series resistance (ESR) ceramic capacitors
are recommended over higher ESR electrolytic capac-
itors. Larger value input capacitors can be used to
improve circuit performance.

4.2

Output Capacitor

A 1 µF (minimum) capacitor is required from V

OUT

 to

ground to ensure circuit stability. The output capacitor
should have an ESR greater than 0.1 ohms and less
than 2 ohm. Tantalum or aluminum electrolytic capaci-
tors are recommended. Since many aluminum electro-
lytic capacitors freeze at approximately -30°C, solid
tantalums are recommended for applications operating
below 25°C.

P

D

 = V

IN(MAX)

 - V

OUT(MIN)

 x I

LOAD(MAX)

P

D

 = ((3.0 * 1.1) - (2.7 * 0.975)) * 40 mA

P

D

 = 26.7 mWatts

P

D

 = (T

J(MAX)

 - T

A(MAX)

)/

JA

P

D(MAX)

 = (125 - 55) / 220

P

D(MAX)

 = 318 mWatts.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21364C-html.html
background image

 2002-2012 Microchip Technology Inc.

DS21364C-page 9

TC1188/TC1189

5.0

PACKAGING INFORMATION

5.1

Package Marking Information

2

4

5

3

1



Part Number

(V)

Code

TC1188-XECT

1.80

G4

TC1188-XECT

2.80

G3

TC1188-XECT

2.84

G2

TC1188-XECT

3.15

G1

TC1189-XECT

1.80

H4

TC1189-XECT

2.80

H3

TC1189-XECT

2.84

H2

TC1189-XECT

3.15

H1

Legend:

XX...X

Customer-specific information

Y

Year code (last digit of calendar year)

YY

Year code (last 2 digits of calendar year)

WW

Week code (week of January 1 is week ‘01’)

NNN

Alphanumeric traceability code

  

Pb-free JEDEC designator for Matte Tin (Sn)

*

This package is Pb-free. The Pb-free JEDEC designator (     )
can be found on the outer packaging for this package.

Note

:

In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.

3

e

3

e

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21364C-html.html
background image

TC1188/TC1189

DS21364C-page 10

 2002-2012 Microchip Technology Inc.

5-Lead Plastic Small Outline Transistor (OT) (SOT23)

10

5

0

10

5

0

Mold Draft Angle Bottom

10

5

0

10

5

0

Mold Draft Angle Top

0.50

0.43

0.35

.020

.017

.014

B

Lead Width

0.20

0.15

0.09

.008

.006

.004

c

Lead Thickness

10

5

0

10

5

0

Foot Angle

0.55

0.45

0.35

.022

.018

.014

L

Foot Length

3.10

2.95

2.80

.122

.116

.110

D

Overall Length

1.75

1.63

1.50

.069

.064

.059

E1

Molded Package Width

3.00

2.80

2.60

.118

.110

.102

E

Overall Width

0.15

0.08

0.00

.006

.003

.000

A1

Standoff §

1.30

1.10

0.90

.051

.043

.035

A2

Molded Package Thickness

1.45

1.18

0.90

.057

.046

.035

A

Overall Height

1.90

.075

p1

Outside lead pitch (basic)

0.95

.038

p

Pitch

5

5

n

Number of Pins

MAX

NOM

MIN

MAX

NOM

MIN

Dimension Limits

MILLIMETERS

INCHES*

Units

1

p

D

B

n

E

E1

L

c

A2

A

A1

p1

* Controlling Parameter

Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 
.010” (0.254mm) per side.
JEDEC Equivalent: MO-178
Drawing No. C04-091

§ Significant Characteristic

Note:

For the most current package drawings, please see the Microchip Packaging Specification located
at http://www.microchip.com/packaging

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21364C-html.html
background image

 2002-2012 Microchip Technology Inc.

DS21364C-page 1

TC1188/TC1189

Features

• Input Voltage Range: 2.7 V to 6.0 V
• 120 mA Output Current
• Low Supply Current: 50 µA, (typical)
• Low Dropout Voltage: 110 mV, (typical at 100 mA)
• Fast Turn-On from Shutdown: 140 µsec (typical)
• Low Output Noise
• Over-Current and Over-Temperature Protection
• Low Power Shutdown Mode
• Auto Discharge of Output Capacitor (TC1189)

Applications

• Battery Powered Systems
• Portable Computers
• Medical Instruments
• Cellular, Cordless Phones
• PDAs
• Pagers

Package Type

General Description

The TC1188 and TC1189 are fixed output, low dropout
linear regulators that operate from a 2.7V to 6.0V input
voltage source. The output is capable of delivering up
to 120 mA while consuming only 50 µA of quiescent
current. The low dropout voltage, 120 mV, make the
TC1188 and TC1189 good choices for battery powered
applications. Integrated over-current and over-temper-
ature protection features provide for a fault tolerant
solution.
The TC1189 includes an output voltage auto discharge
feature. When shutdown, the TC1189 will automatically
discharge the output voltage using an internal N-Chan-
nel MOSFET switch.
Fixed output voltage options for the TC1188/TC1189
are: 1.80V, 2.80V, 2.84V and 3.15V. Both the TC1188
and TC1189 are available in SOT23-5 packages.

Typical Application Circuit

GND

SHDN GND

5

1

4

2

3

TC1188
TC1189

5-Pin SOT-23A

NOTE:

 5-Pin SOT-23A is equivalent to the EIAJ (SC-74A)

V

IN

V

OUT

V

OUT

V

IN

Output

GND

SHDN

TC1188
TC1189

+

1 µF

C

OUT

GND

Voltage

1 µF

C

IN

Battery

MAX8863/64 Pin Compatible, Low Dropout, 

120 mA Linear Regulators

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21364C-html.html
background image

TC1188/TC1189

DS21364C-page 2

 2002-2012 Microchip Technology Inc.

1.0

ELECTRICAL 
CHARACTERISTICS

Absolute Maximum Ratings*

Input Voltage .........................................................6.5V
Output Short-Circuit Duration.............................Infinite
Output Voltage........................... (-0.3V) to (V

IN

 + 0.3V)

Maximum Voltage On Any Pin.... (-0.3V) to (V

IN

 +0.3V)

Continuous Power Dissipation (T

A

 = +70°C)

      SOT-23-5 (derate 7.1 mW/°C above +70°C)
       ..................................................................571 mW
Operating Temperature Range...............-40°C to 85°C
Storage Temperature..........................-65°C to +160°C
Lead Temperature (Soldering, 10 Sec.) ........... +300°C

*Notice: *Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to
the device. These are stress ratings only and functional
operation of the device at these or any other conditions
above those indicated in the operation sections of the
specifications is not implied. Exposure to Absolute
Maximum Rating conditions for extended periods may
affect device reliability.

DC SPECIFICATIONS

Electrical Characteristics:

 V

IN

 = +3.6V, GND = 0V, T

A

 = T

MIN

 to T

MAX

, unless otherwise noted. Typical values are at T

A

 = +25°C. 

(Note 1)

Parameters

Symbol

Min

Typ

Max

Units

Conditions

Input Voltage

V

IN

V

OUT

+0.5V

2.7


6.0
6.0

V

V

OUT

 

 2.5V

V

OUT

 = 1.8V (Note 2)

Output Voltage

V

OUT

3.05

3.15

3.25

V

0 mA 

I

OUT

50 mA

T

2.75

2.84

2.93

V

0 mA 

I

OUT

50 mA

S

2.70

2.80

2.88

V

0 mA 

I

OUT

50 mA

R

1.745

1.80

1.85

V

0 mA 

I

OUT

50 mA

Q

Maximum Output Current

I

OUT

120

mA

Current Limit

I

LIM

280

mA

Note 3

Input Current

I

IN

50

90

µA

I

OUT

 = 0

Dropout Voltage

1.1

mV

I

OUT

 = 1 mA

55

120

mV

I

OUT

 = 50 mA

110

240

mV

I

OUT

 = 100 mA (Note 4)

Line Regulation

V

LNR

-0.10

0.001

0.10

%/V

V

IN

 = V

OUT

0.5V to 6.0V

%/V

I

OUT

 = 1 mA

Load Regulation

V

LDR

0.01

0.040

%/mA I

OUT

 = 0 mA to 50 mA

Output Voltage Noise

350

µV

RMS

10 Hz to 1 MHz, C

OUT

 = 1

Μ

F

220

µV

RMS

10 Hz to 1 MHz C

OUT

 = 100

Μ

F

Wake Up Time

(from Shutdown Mode)

t

WK

10

µsec

V

IN

 = 3.6V

C

IN

 = 1 µF, C

OUT

 = 1 µF

I

L

 = 30 mA, (See Figure 3-1)

Setting Time

(from Shutdown Mode)

t

S

140

µsec

V

IN

 = 3.6V

C

IN

 = 1 µF, C

OUT

 = 1 µF

I

L

 = 30 mA, (See Figure 3-1)

Note

1:

Limits are 100% production tested at T

A

 = +25°C. Limits over the operating temperature range are ensured through cor-

relation using Statistical Quality Control (SQC) methods.

2:

Validated by line regulation test.

3:

Not tested. For design purposes, the current limit should be considered 150 mA minimum to 410 mA maximum.

4:

The dropout voltage is defined as (V

IN

 – V

OUT

) when V

OUT

 is 100 mV below the value of V

OUT

 for 

V

IN

 = V

OUT

 +2V.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21364C-html.html
background image

 2002-2012 Microchip Technology Inc.

DS21364C-page 3

TC1188/TC1189

Shutdown:

SHDN Input Threshold

V

IH

2.0

V

V

IL

0.4

V

SHDN Input Bias Current

I

shdn

0.1

100

nA

V

SHDN

 = V

IN

, T

A

 = +25°C, T

A

 = T

MAX

50

nA

V

SHDN

 = V

IN

, T

A

 = +25°C, T

A

 = T

MAX

Shutdown Supply Current

I

qshdn

0.002

1

A

V

OUT

 = 0V, T

A

 = +25°C, T

A

 = T

MAX

0.02

A

V

OUT

 = 0V, T

A

 = +25°C, T

A

 = T

MAX

Shutdown to Output Discharge 
Delay (TC1189)

1

msec

C

OUT

 = 1

F, no load at 10% of V

OUT

Thermal Protection

Thermal Shutdown Temperature

T

SHDN

170

°C

Thermal Shutdown Hysteresis

T

SHDN

20

°C

DC SPECIFICATIONS (CONTINUED)

Electrical Characteristics:

 V

IN

 = +3.6V, GND = 0V, T

A

 = T

MIN

 to T

MAX

, unless otherwise noted. Typical values are at T

A

 = +25°C. 

(Note 1)

Parameters

Symbol

Min

Typ

Max

Units

Conditions

Note

1:

Limits are 100% production tested at T

A

 = +25°C. Limits over the operating temperature range are ensured through cor-

relation using Statistical Quality Control (SQC) methods.

2:

Validated by line regulation test.

3:

Not tested. For design purposes, the current limit should be considered 150 mA minimum to 410 mA maximum.

4:

The dropout voltage is defined as (V

IN

 – V

OUT

) when V

OUT

 is 100 mV below the value of V

OUT

 for 

V

IN

 = V

OUT

 +2V.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21364C-html.html
background image

TC1188/TC1189

DS21364C-page 4

 2002-2012 Microchip Technology Inc.

2.0

TYPICAL PERFORMANCE CURVES

FIGURE 2-1:

Line Regulation vs. 

Temperature. (TC1188)

FIGURE 2-2:

Output Voltage vs. 

Temperature. (TC1188)

FIGURE 2-3:

Load Regulation vs. 

Temperature. (TC1188)

FIGURE 2-4:

Load Regulation vs. 

Temperature. (TC1188)

FIGURE 2-5:

Dropout Voltage vs. 

Temperature. (TC1188)

FIGURE 2-6:

Output Noise vs. Frequency. 

(TC1188)

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein are
not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

0.10

0.08

0.06

0.04

0.00

–0.02

–0.04

–0.06

–0.08

–0.10

0.02

–40

°

C

0

°

C

25

°

C

70

°

C

85

°

C

TEMPERATURE (

°

C)

LINE REGULATION (%)

Line Reg. @ 3.50 V 
to 5.50V(%)

2.930

2.910

2.890

2.870

2.850

2.830

2.810

2.790

2.770

2.750

–40

°

C

0

°

C

25

°

C

70

°

C

85

°

C

TEMPERATURE (

°

C)

V

OUT

 (V)

V

OUT

 - SET/1.0mA

@ 3.5V (V)

0.040

0.035

0.030

0.025

0.020

0.015

0.010

0.005

0.000

–40

°

C

0

°

C

25

°

C

70

°

C

85

°

C

TEMPERATURE (

°

C)

LOAD REGULATION (%)

Load Reg. 0 to 50mA (%)

0.040

0.035

0.030

0.025

0.020

0.015

0.010

0.005

0.000

–40

°

C

0

°

C

25

°

C

70

°

C

85

°

C

TEMPERATURE (

°

C)

LOAD REGULATION (%)

Load Reg. 0 to 50mA (%)

Load Reg. 0 to 100mA (%)

0.120

0.100

0.080

0.060

0.040

0.020

0.000

–40

°

C

0

°

C

25

°

C

70

°

C

85

°

C

TEMPERATURE (

°

C)

(V)

50mA, Dropout V (V)

FREQUENCY (kHz)

 Noise (

μ

V/

HZ)

10.0

1.0

0.01

0.01

1

10

100

1000

0.1

0.0

R

LOAD

 = 50μΩ

C

OUT

 = 1

μF

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21364C-html.html
background image

 2002-2012 Microchip Technology Inc.

DS21364C-page 5

TC1188/TC1189

FIGURE 2-7:

Power Supply Rejection 

Ratio vs. Frequency. (TC1188)

FIGURE 2-8:

TC1189 Shutdown Transient 

Response.

FIGURE 2-9:

TC1189 Shutdown Transient 

Response.

FIGURE 2-10:

TC1189 Line Response.

FIGURE 2-11:

Wake-Up Response Time.

FREQUENCY (kHz)

 (dB)

10

100 1K

10K

1M

10M

100K

C

OUT

 = 1

μF

-10

-20

-30

-40

-60

-70

-50

-80

-90

-100

V

OUT

 = 2.84V

R

LOAD

 = 50Ω

100mV p-p 

CH2 GND

CH1 GND

200

μsec/Div

SHDN

SHDN = 0V

V

OUT

 = 0.5V/DIV

T = 25

°

 

C

IN

 = 1

μF

C

L

 =1

μF

R

L

 =

 ∞ 

CH2 GND

CH1 GND

CH1

CH2

200

μsec/Div

C

IN

 = 1

μF

C

OUT

 =1

μF

R

L

 =

 100Ω

V

IN

 = 3.5V

T

T

XSHDN = 3V

Turn On 
Time = 150

μS

No Overshoot

V

OUT

 = 2.7V

XSHDN = 0V

V

OUT

 = 0V

CH2 GND

CH2 

CH1 GND

CH1

100

μsec/Div

C

IN

 = C

OUT 

= 1

μF, R

L

 = 470

Ω, XSHDN = 3.5V

T

T

V

OUT

AC

 20

μV/DIV

V

IN

 = 4.5V

V

IN

 = 3.5V

TIME (100

μs/Div)

OUTPUT, SHUTDOWN  VOLTAGE (V)

SHDN

VOUT

0V

2.8V

0V

3V

V

IN

 = 3.6V

I

LOAD

 = 30mA

C

IN 

=

 

1

μF

C

LOAD

 = 1

μF

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21364C-html.html
background image

TC1188/TC1189

DS21364C-page 6

 2002-2012 Microchip Technology Inc.

3.0

PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1:

PIN FUNCTION TABLE

3.1

Detailed Description

The TC1188/TC1189 devices are fixed output, low
dropout linear regulators. Utilizing CMOS construction,
the internal quiescent current consumed by the regula-
tor is minimized when compared to older bipolar low
dropout regulators.
The LDO output voltage is sensed at the non-inverting
pin of the internal error amplifier. The internal voltage
reference is sensed at the inverting pin of the internal
error amplifier. The error amplifier adjusts the gate
source voltage of the internal P-channel pass device
until the divided down output voltage matches the inter-
nal reference voltage. When it does, the LDO output
voltage is in regulation.
The SHDN, when pulled low, is used to turn off the P-
Channel MOSFET and lower the internal quiescent
current to less than 1 µA maximum. For normal opera-
tion, the SHDN pin is pulled to a high level. (> 2.0V).
The TC1189 incorporates an internal N-Channel MOS-
FET, which is used to discharge the output capacitor
when shutdown. The TC1188 does not have the inter-
nal N-Channel MOSFET, therefore, when the device is
shutdown, the output voltage will decrease at a rate
which is dependant on the load current.

3.2

Turn-On Response

The turn-on response is defined as two separate
response categories: Wake-Up Time (t

WK

) and Settling

Time (t

S

).

The TC1188/TC1189 have fast wake-up times (10 µsec
typical) when released from shutdown. See Figure 3-1
for the wake-up time, designated as t

WK

. The wake-up

time is defined as the time it takes for the output to rise
to 2% of the V

OUT

 value after being released from shut-

down.
The total turn on response is defined as the Settling
Time (t

S

) (Figure 3-1). Settling Time (inclusive with t

WK

)

is defined as the condition when the output is within 2%
of its fully enabled value (140 µsec typical) when

released from shutdown. The settling time of the output
voltage is dependent on load conditions and output
capacitance on V

OUT

 (RC response).

FIGURE 3-1:

Wake-Up Response Time.

3.3

Internal P-Channel Pass 
Transistor

The Internal P-Channel MOSFET is operated in the lin-
ear region to regulate the LDO output voltage. The
RDSon of the P-Channel MOSFET is approximately
1.1

 making the LDO able to regulate with little input

to output voltage differential, "Low Dropout". Another
benefit of using CMOS construction is that the P-Chan-
nel MOSFET is a voltage controlled device, so it
doesn't consume a fraction of the bias current required
of bipolar PNP LDOs.

Symbol

Description

SHDN

Active Low Shutdown Input. When the SHDN input is low (< 0.2V), the quiscent current for the 
TC1188/TC1189 is reduced to  0.1 nA. When the input voltage to the SHDN pin is high (> 2.0V) the 
output of the TC1188/TC1189 is enabled. For the TC1189 only, the output capacitor is discharged by 
an internal switch when the SHDN is low.

GND

Ground. Connect to ground.

V

IN

Unregulated Input Voltage. The input voltage can range from 2.7V to 6.0V.

V

OUT

Regulator Output. Sources up to 120 mA. Bypass with a 1 µF, <1

typical ESR capacitor to GND.

GND

Connect to GND.

V

IH

t

S

t

WK

V

OUT

98%

2%

V

IL

SHDN

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21364C-html.html
background image

 2002-2012 Microchip Technology Inc.

DS21364C-page 7

TC1188/TC1189

FIGURE 3-2:

Functional Block Diagram.

3.4

Shutdown

The SHDN input is used to turn off the LDO P-Channel
pass MOSFET and internal bias. When shutdown, the
typical quiescent current consumed by the LDO is
0.1 nA. A logic low (< 0.4V) at the SHDN input will
cause the device to operate in the shutdown mode. A
logic high (> 2.0V) at the SHDN input will cause the
device to operate in the normal mode.

3.5

Current Limit

The LDO output current is monitored internal to the
TC1188/TC1189. The internal current sense will limit
the LDO output current to a typical value of 280 mA.
The current limit can range from approximately 50 mA
to 410 mA from device to device. The internal current
limit protects the device from a continuous output short
circuit.

3.6

Thermal Overload Protection

Integrated thermal protection circuitry shuts the
TC1188/TC1189 off when the internal die temperature
exceeds approximately 170°C. The regulator output
remains off until the internal die temperature drops to
approximately 150°C.

3.7

Operating Region and Power 
Dissipation

The internal power dissipation to the LDO is primarily
determined by the input voltage, output voltage and
output current. The following equation is used to
approximate the worst case for power dissipation:

EQUATION

The maximum power dissipation is a function of the
maximum ambient temperature, T

A(MAX)

, the maximum

junction temperature, T

J(MAX)

, and the package thermal

resistance from junction to air, 

JA

. The 5-Pin SOT23A

package has a 

JA

 of approximately 220°C/Watt.

EQUATION

Bandgap

Reference

MOS Driver 

W

ith

 I

LIMIT

Thermal

Sensor

Shutdown

Logic

Error

+

V

IN

SHDN

GND

V

OUT

PMOS Pass

GND

N

(TC1189 Only)

Amplifier

Transistor

P

D

 = V

IN(MAX)

 - V

OUT(MIN)

 x I

LOAD(MAX)

Where:

P

D

 = Worst case internal power dissipation.

V

IN

(

MAX

)

 = Maximum input voltage.

V

OUT

(

MIN

)

 = Minimum output voltage.

I

LOAD

(

MAX

)

 = Maximum output current.

P

D

 = (T

J(MAX)

 - T

A(MAX)

)/

JA

Where all terms are previously defined.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21364C-html.html
background image

TC1188/TC1189

DS21364C-page 8

 2002-2012 Microchip Technology Inc.

EXAMPLE 3-1:

The previously defined power dissipation equations
can be used to ensure that the regulator thermal
operation is within limits.
Given:

V

IN(MAX)

 = 3.0V +10%

V

OUT(MAX)

 = 2.7V - 2.5%

I

LOAD(MAX)

 = 40

M

A

T

J(MAX)

 = 125°C

T

A(MAX)

 = 55°C

Find:

1.

Actual power dissipation.

2.

Maximum allowable dissipation.

Actual power dissipation:

Maximum allowable power dissipation:

In this example, the TC1188/TC1189 dissipates a max-
imum of 26.7 mW below the allowable limit of 318 mW.
In a similar manner, the power dissipation equation, as
a function of V

IN

, V

OUT

 and I

LOAD, 

along with the power

dissipation equation, as a function of maximum junction
temperature, maximum ambient temperature and junc-
tion to air thermal resistance, can be used to calculate
maximum current and/or maximum input voltage limits.

4.0

APPLICATIONS INFORMATION

4.1

Input Capacitor

A 1 µF (or larger) capacitor is recommended to bypass
the LDO input and lower input impedance for circuit
stability when operating from batteries or high imped-
ance sources. The input capacitor can be ceramic, tan-
talum or aluminum electrolytic. For applications that
require low noise and input power supply rejection, low
effective series resistance (ESR) ceramic capacitors
are recommended over higher ESR electrolytic capac-
itors. Larger value input capacitors can be used to
improve circuit performance.

4.2

Output Capacitor

A 1 µF (minimum) capacitor is required from V

OUT

 to

ground to ensure circuit stability. The output capacitor
should have an ESR greater than 0.1 ohms and less
than 2 ohm. Tantalum or aluminum electrolytic capaci-
tors are recommended. Since many aluminum electro-
lytic capacitors freeze at approximately -30°C, solid
tantalums are recommended for applications operating
below 25°C.

P

D

 = V

IN(MAX)

 - V

OUT(MIN)

 x I

LOAD(MAX)

P

D

 = ((3.0 * 1.1) - (2.7 * 0.975)) * 40 mA

P

D

 = 26.7 mWatts

P

D

 = (T

J(MAX)

 - T

A(MAX)

)/

JA

P

D(MAX)

 = (125 - 55) / 220

P

D(MAX)

 = 318 mWatts.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21364C-html.html
background image

 2002-2012 Microchip Technology Inc.

DS21364C-page 9

TC1188/TC1189

5.0

PACKAGING INFORMATION

5.1

Package Marking Information

2

4

5

3

1



Part Number

(V)

Code

TC1188-XECT

1.80

G4

TC1188-XECT

2.80

G3

TC1188-XECT

2.84

G2

TC1188-XECT

3.15

G1

TC1189-XECT

1.80

H4

TC1189-XECT

2.80

H3

TC1189-XECT

2.84

H2

TC1189-XECT

3.15

H1

Legend:

XX...X

Customer-specific information

Y

Year code (last digit of calendar year)

YY

Year code (last 2 digits of calendar year)

WW

Week code (week of January 1 is week ‘01’)

NNN

Alphanumeric traceability code

  

Pb-free JEDEC designator for Matte Tin (Sn)

*

This package is Pb-free. The Pb-free JEDEC designator (     )
can be found on the outer packaging for this package.

Note

:

In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.

3

e

3

e

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21364C-html.html
background image

TC1188/TC1189

DS21364C-page 10

 2002-2012 Microchip Technology Inc.

5-Lead Plastic Small Outline Transistor (OT) (SOT23)

10

5

0

10

5

0

Mold Draft Angle Bottom

10

5

0

10

5

0

Mold Draft Angle Top

0.50

0.43

0.35

.020

.017

.014

B

Lead Width

0.20

0.15

0.09

.008

.006

.004

c

Lead Thickness

10

5

0

10

5

0

Foot Angle

0.55

0.45

0.35

.022

.018

.014

L

Foot Length

3.10

2.95

2.80

.122

.116

.110

D

Overall Length

1.75

1.63

1.50

.069

.064

.059

E1

Molded Package Width

3.00

2.80

2.60

.118

.110

.102

E

Overall Width

0.15

0.08

0.00

.006

.003

.000

A1

Standoff §

1.30

1.10

0.90

.051

.043

.035

A2

Molded Package Thickness

1.45

1.18

0.90

.057

.046

.035

A

Overall Height

1.90

.075

p1

Outside lead pitch (basic)

0.95

.038

p

Pitch

5

5

n

Number of Pins

MAX

NOM

MIN

MAX

NOM

MIN

Dimension Limits

MILLIMETERS

INCHES*

Units

1

p

D

B

n

E

E1

L

c

A2

A

A1

p1

* Controlling Parameter

Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 
.010” (0.254mm) per side.
JEDEC Equivalent: MO-178
Drawing No. C04-091

§ Significant Characteristic

Note:

For the most current package drawings, please see the Microchip Packaging Specification located
at http://www.microchip.com/packaging

Maker
Microchip Technology Inc.
Datasheet PDF Download