21333C.book

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21333C-html.html
background image

 2003-2012 Microchip Technology Inc.

DS21333C-page 1

TC1302A/B

Features

• Dual Output LDO:

- V

OUT1

 = 1.5V to 3.3V @ 300 mA

- V

OUT2

 = 1.5V to 3.3V @ 150 mA

• Output Voltage (See Table 8-1)

• Low Dropout Voltage:

- V

OUT1

 = 104 mV @ 300 mA Typical

- V

OUT2

 = 150 mV @ 150 mA Typical

• Low Supply Current: 116 µA Typical

TC1302A/B with both output voltages available

• Reference Bypass Input for Low-Noise Operation

• Both Output Voltages Stable with a Minimum of 

1 µF Ceramic Output Capacitor

• Separate V

OUT1

 and V

OUT2

 SHDN pins 

(TC1302B)

• Power-Saving Shutdown Mode of Operation

• Wake-up from SHDN: 5.3 µs. Typical

• Small 8-pin DFN or MSOP Package Options

• Operating Junction Temperature Range:

- -40°C to +125°C

• Overtemperature and Overcurrent Protection

Applications

• Cellular/GSM/PHS Phones

• Battery-Operated Systems

• Hand-Held Medical Instruments

• Portable Computers/PDAs

• Linear Post-Regulators for SMPS

• Pagers

Related Literature

• AN765, “Using Microchip’s Micropower LDOs”, 

DS00765, Microchip Technology Inc., 2002

• AN766, “Pin-Compatible CMOS Upgrades to 

BiPolar LDOs”, DS00766, 
Microchip Technology Inc., 2002

• AN792, “A Method to Determine How Much 

Power a SOT23 Can Dissipate in an Application”, 
DS00792, Microchip Technology Inc., 2001

Description

The TC1302A/B combines two Low Dropout (LDO)
regulators into a single 8-pin MSOP or DFN package.
Both regulator outputs feature low dropout voltage,
104 mV @ 300 mA for V

OUT1

, 150 mV @ 150 mA for

V

OUT2

, low quiescent current consumption, 58 µA each

and a typical regulation accuracy of 0.5%. Several
fixed-output voltage combinations are available. A
reference bypass pin is available to further reduce
output noise and improve the power supply rejection
ratio of both LDOs.

The TC1302A/B is stable over all line and load
conditions, with a minimum of 1 µF of ceramic output
capacitance, and utilizes a unique compensation
scheme to provide fast dynamic response to sudden
line voltage and load current changes.

Additional features include an overcurrent limit and
overtemperature protection that combine to provide a
robust design for all load fault conditions.

Package Types

8-Pin DFN/MSOP

NC

SHDN2

Bypass

GND

NC

1

2

3

4

5

6

7

8

V

OUT2

V

IN

1

2

3

4

5

6

7

8

V

OUT1

TC1302A

NC

SHDN2

Bypass

GND

NC

V

OUT2

V

IN

V

OUT1

DFN8

MSOP8

NC

SHDN2

Bypass

GND

SHDN1

1

2

3

4

5

6

7

8

V

OUT2

V

IN

1

2

3

4

5

6

7

8

V

OUT1

TC1302B

NC

SHDN2

Bypass

GND

SHDN1

V

OUT2

V

IN

V

OUT1

DFN8

MSOP8

Low Quiescent Current Dual Output LDO

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21333C-html.html
background image

TC1302A/B

DS21333C-page 2

 2003-2012 Microchip Technology Inc.

Functional Block Diagrams

Typical Application Circuits

LDO #2 

150 mA

LDO #1 

300 mA

LDO #2 

150 mA

V

IN

V

OUT1

V

OUT2

Bandgap

Reference

SHDN2

GND

Bypass

TC1302A

 

 

TC1302B

V

IN

SHDN2

GND

Bypass

SHDN1

LDO #1 

300 mA

Bandgap

Reference

V

OUT1

V

OUT2

1.2V

1.2V

8

4

1

2

3

NC

GND

NC

BATTERY

C

OUT1

1 µF  Ceramic
X5R

C

IN

1 µF

TC1302A

C

OUT2

1 µF  Ceramic 
X5R

C

BYPASS

(Note)

 

10 nF Ceramic

Bypass

V

IN

7

2.7V

to

4.2V

V

OUT2

6

SHDN2

ON/OFF Control V

OUT2

2.8V @ 300 mA

2.6V @ 150 mA

5

V

OUT1

8

4

1

2

3

NC

GND

SHDN1

BATTERY

C

OUT1

1 µF  Ceramic
X5R

C

IN

1 µF

TC1302B

C

OUT2

1 µF  Ceramic 
X5R

Bypass

V

IN

7

2.7V

to

4.2V

V

OUT2

6

SHDN2

ON/OFF Control V

OUT2

2.8V @ 300 mA

2.6V @ 150 mA

5

ON/OFF Control V

OUT1

Note: C

BYPASS

 is optional

V

OUT1

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21333C-html.html
background image

 2003-2012 Microchip Technology Inc.

DS21333C-page 3

TC1302A/B

1.0

ELECTRICAL 
CHARACTERISTICS

Absolute Maximum Ratings †

V

DD

...................................................................................6.5V

Maximum Voltage on Any Pin  ...... (V

SS

 – 0.3) to (V

IN

 + 0.3)V

Power Dissipation ..........................Internally Limited (Note 7)

Storage temperature .....................................-65°C to +150°C

Maximum Junction Temperature, T

J

........................... +150°C

Continuous Operating Temperature Range ..-40°C to +125°C

ESD protection on all pins, HBM, MM

4 kV, 400V

† Notice: Stresses above those listed under “Maximum Rat-
ings” may cause permanent damage to the device. This is a
stress rating only and functional operation of the device at
those or any other conditions above those indicated in the
operational listings of this specification is not implied. Expo-
sure to maximum rating conditions for extended periods may
affect device reliability.

DC CHARACTERISTICS

Electrical Specifications: Unless otherwise noted, V

IN

 = V

R

 +1V, I

OUT1

 =

 

I

OUT2 

= 100 µA, C

IN

 = 4.7 µF,

C

OUT1

 = C

OUT2

 = 1 µF, C

BYPASS

 = 10 nF, SHDN > V

IH

, T

A

 = +25°C.

Boldface type specifications apply for junction temperatures of -40°C to +125°C.

Parameters

Sym

Min

Typ

Max

Units

Conditions

Input Operating Voltage

V

IN

2.7

6.0

V

Note 1

Maximum Output Current

I

OUT1Max

300

mA

V

IN

 = 2.7V to 6.0V (Note 1)

Maximum Output Current

I

OUT2Max

150

mA

V

IN

 = 2.7V to 6.0V (Note 1)

Output Voltage Tolerance
(V

OUT1

 and V

OUT2

)

V

OUT

V

– 2.5

V

R

±0.5 V

+ 2.5

%

Note 2

Temperature Coefficient
(V

OUT1

 and V

OUT2

)

TCV

OUT

25

ppm/°C

Note 3

Line Regulation
(V

OUT1

 and V

OUT2

)

V

OUT

/

V

IN

0.02

0.2

%/V

(V

+ 1V) 

 V

IN

 

 6V

Load Regulation, V

OUT

 

 2.5V

(V

OUT1

 and V

OUT2

V

OUT

V

OUT

-1

0.1

+1

%

I

OUTX

 = 0.1 mA to I

OUTMax

,

 

(Note 4)

Load Regulation, V

OUT

 < 2.5V

(V

OUT1

 and V

OUT2

)

V

OUT

V

OUT

-1.5

0.1

+1.5

%

I

OUTX

 = 0.1 mA to I

OUTMax

,

 

(Note 4)

Thermal Regulation

V

OUT

/

P

D

0.04

%/W

Note 5

Dropout Voltage (Note 6)

V

OUT1

 > 2.7V

V

IN

 – V

OUT

104

180

mV

I

OUT1

 = 300 mA

V

OUT2

 > 2.6V

V

IN

 – V

OUT

150

250

mV

I

OUT2

 = 150 mA

Supply Current

TC1302A

I

IN(A)

103

180

µA

SHDN2 = V

IN

, I

OUT1 

= I

OUT2 

= 0 mA

TC1302B

I

IN(B)

114

180

µA

SHDN1 = SHDN2 = V

IN

,

I

OUT1

 = I

OUT2

 = 0 mA

Note

1:

The minimum V

IN

 has to meet two conditions: V

IN

 

 2.7V and V

IN

 

 V

R

 + V

DROPOUT

.

2:

V

R

 is defined as the higher of the two regulator nominal output voltages (V

OUT1

 or V

OUT2

).

3:

TCV

OUT

 = ((V

OUTmax

 - V

OUTmin

) * 10

6

)/(V

OUT

 * 

T).

4:

Regulation is measured at a constant junction temperature using low duty-cycle pulse testing. Load regulation is tested 
over a load range from 0.1 mA to the maximum specified output current. Changes in output voltage due to heating 
effects are covered by the thermal regulation specification.

5:

Thermal regulation is defined as the change in output voltage at a time t after a change in power dissipation is applied, 
excluding load or line regulation effects. Specifications are for a current pulse equal to I

LMAX

 at V

IN

 = 6V for t = 10 msec.

6:

Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its 
value measured at a 1V differential.

7:

The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction     
temperature and the thermal resistance from junction to air (i.e., T

A

, T

J

JA

). Exceeding the maximum allowable power 

dissipation causes the device to initiate thermal shutdown.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21333C-html.html
background image

TC1302A/B

DS21333C-page 4

 2003-2012 Microchip Technology Inc.

TEMPERATURE SPECIFICATIONS

Shutdown Supply Current 
TC1302A

I

IN_SHDNA

58

90

µA

SHDN2 = GND

Shutdown Supply Current 
TC1302B

I

IN_SHDNB

0.1

1

µA

SHDN1 = SHDN2 = GND

Power Supply Rejection Ratio

PSRR

58

dB

 100 Hz, I

OUT1

 = I

OUT2

 = 50 mA,

C

IN

 = 0 µF

Output Noise

eN

830

nV/(Hz)

½

  1 kHz,  I

OUT1

 = I

OUT2

 = 50 mA,

C

IN

 = 0 µF

Output Short Circuit Current (Average)

V

OUT1

I

OUTsc1

200

mA

R

LOAD1

 

 1

V

OUT2

I

OUTsc2

140

mA

R

LOAD2

 

 1

SHDN Input High Threshold

V

IH

45

%V

IN

V

IN

 = 2.7V to 6.0V

SHDN Input Low Threshold

V

IL

15

%V

IN

V

IN

 = 2.7V to 6.0V

Wake Up Time (From SHDN 
mode), (V

OUT2

)

t

WK

5.3

20

µs

V

IN

 = 5V, I

OUT1

 = I

OUT2

 = 30 mA,

See Figure 5-1

Settling Time (From SHDN mode), 
(V

OUT2

)

t

S

50

µs

V

IN

 = 5V, I

OUT1

 = I

OUT2

 = 50 mA,

See Figure 5-2

Thermal Shutdown Die
Temperature

T

SD

150

°C

V

IN

 = 5V, I

OUT1

 = I

OUT2

 = 100 µA

Thermal Shutdown Hysteresis

T

HYS

10

°C

V

IN

 = 5V

Electrical Specifications: Unless otherwise indicated, all limits are specified for: V

IN

 = +2.7V to +6.0V.

Parameters

Sym

Min

Typ

Max

Units

Conditions

Temperature Ranges

Operating Junction Temperature Range

T

A

-40

+125

°C

Steady State

Storage Temperature Range

T

A

-65

+150

°C

Maximum Junction Temperature 

T

J

+150

°C

Transient

Thermal Package Resistances

Thermal Resistance, MSOP8

JA

208

°C/W

Typical 4-Layer Board

Thermal Resistance, DFN8

JA

41

°C/W

Typical 4-Layer Board with Vias

DC CHARACTERISTICS (Continued)

Electrical Specifications: Unless otherwise noted, V

IN

 = V

R

 +1V, I

OUT1

 =

 

I

OUT2 

= 100 µA, C

IN

 = 4.7 µF,

C

OUT1

 = C

OUT2

 = 1 µF, C

BYPASS

 = 10 nF, SHDN > V

IH

, T

A

 = +25°C.

Boldface type specifications apply for junction temperatures of -40°C to +125°C.

Parameters

Sym

Min

Typ

Max

Units

Conditions

Note

1:

The minimum V

IN

 has to meet two conditions: V

IN

 

 2.7V and V

IN

 

 V

R

 + V

DROPOUT

.

2:

V

R

 is defined as the higher of the two regulator nominal output voltages (V

OUT1

 or V

OUT2

).

3:

TCV

OUT

 = ((V

OUTmax

 - V

OUTmin

) * 10

6

)/(V

OUT

 * 

T).

4:

Regulation is measured at a constant junction temperature using low duty-cycle pulse testing. Load regulation is tested 
over a load range from 0.1 mA to the maximum specified output current. Changes in output voltage due to heating 
effects are covered by the thermal regulation specification.

5:

Thermal regulation is defined as the change in output voltage at a time t after a change in power dissipation is applied, 
excluding load or line regulation effects. Specifications are for a current pulse equal to I

LMAX

 at V

IN

 = 6V for t = 10 msec.

6:

Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its 
value measured at a 1V differential.

7:

The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction     
temperature and the thermal resistance from junction to air (i.e., T

A

, T

J

JA

). Exceeding the maximum allowable power 

dissipation causes the device to initiate thermal shutdown.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21333C-html.html
background image

 2003-2012 Microchip Technology Inc.

DS21333C-page 5

TC1302A/B

2.0

TYPICAL PERFORMANCE CURVES

Note: Unless otherwise indicated, 

V

IN

 = V

R

 +1V, I

OUT1

 =

 

I

OUT2 

= 100 µA, C

IN

 = 4.7 µF, C

OUT1 = 

C

OUT2

 = 1 µF (X5R or X7R),

C

BYPASS

 = 0 pF, SHDN1 = SHDN2 > V

IH

, T

A

 = +25°C.

FIGURE 2-1:

Quiescent Current vs. Input 

Voltage.

FIGURE 2-2:

SHDN Voltage Threshold 

vs. Input Voltage.

FIGURE 2-3:

Quiescent Current vs. 

Junction Temperature.

FIGURE 2-4:

Output Voltage vs. Input 

Voltage.

FIGURE 2-5:

Output Voltage vs. Input 

Voltage.

FIGURE 2-6:

Dropout Voltage vs. Output 

Current (V

OUT1

).

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

0

50

100

150

200

250

300

350

2.7 3.0 3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7 6.0

Input Voltage (V)

Quiescent C

u

rr

e

nt (µA

)

V

OUT2

 SHDN

V

OUT2

 Active

T

J

 = +25°C

I

OUT1

 = I

OUT2

 = 0 µA

V

OUT1

 Active

TC1302B

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

2.7

3

3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7

6

Input Voltage (V)

SH

D

N

 Thr

e

s

hol

(V

)

ON

OFF

40

50

60

70

80

90

100

110

120

130

140

-40 -25 -10

5

20 35 50 65

80 95 110 125

Junction Temperature (°C)

Quiescent C

u

rr

e

nt (µA

)

V

IN

 = 4.2V

I

OUT1

 = I

OUT2

 = 0 µA

V

OUT1

 Active

V

OUT2

 SHDN

V

OUT2

 Active

TC1302B

2.60

2.70

2.80

2.90

3.00

2.7

3

3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7

6

Input Voltage (V)

Output V

o

ltage (V

)

T

J

 = +25°C

I

OUT1

 = 100 mA

I

OUT2

 = 50 mA

V

OUT1

V

OUT2

2.50

2.55

2.60

2.65

2.70

2.75

2.80

2.85

2.90

2.7

3

3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7

6

Input Voltage (V)

Output V

o

ltage (V

)

T

J

 = +25°C

I

OUT1

 = 300 mA

I

OUT2

 = 100 mA

V

OUT1

V

OUT2

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

0

50

100

150

200

250

300

I

OUT1

 (mA)

D

ropout V

o

lt

age V

OUT

1

 (m

V

)

V

R1

 = 2.8V

V

R2

 = 2.6V

I

OUT2

 = 100 µA

T

J

 = - 40°C

T

J

 = +25°C

T

J

 = +125°C

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21333C-html.html
background image

TC1302A/B

DS21333C-page 6

 2003-2012 Microchip Technology Inc.

Note: Unless otherwise indicated, 

V

IN

 = V

R

 +1V, I

OUT1

 =

 

I

OUT2 

= 100 µA, C

IN

 = 4.7 µF, C

OUT1 = 

C

OUT2

 = 1 µF (X5R or X7R),

C

BYPASS

 = 0 pF, SHDN1 = SHDN2 > V

IH

, T

A

 = +25°C.

FIGURE 2-7:

Dropout Voltage vs. 

Junction Temperature (V

OUT1

).

FIGURE 2-8:

Dropout Voltage vs. Output 

Current (V

OUT2

).

FIGURE 2-9:

Dropout Voltage vs. 

Junction Temperature (V

OUT2

).

FIGURE 2-10:

V

OUT1

 and V

OUT2

 Load 

Regulation vs. Junction Temperature.

FIGURE 2-11:

V

OUT1

 and V

OUT2

 Line 

Regulation vs. Junction Temperature.

FIGURE 2-12:

V

OUT1

 vs. Junction 

Temperature.

0

20

40

60

80

100

120

140

-40 -25 -10

5

20 35 50 65 80 95 110 125

Junction Temperature (°C)

D

ropout V

o

lt

age V

OUT

1

 (m

V

)

V

R1

 = 2.8V

V

R2

 = 2.6V

I

OUT2

 = 100 µA

I

OUT1

 = 300 mA

I

OUT1

 = 100 mA

I

OUT1

 = 50 mA

0

20

40

60

80

100

120

140

160

180

0

30

60

90

120

150

I

OUT2

 (mA)

D

ropout V

o

lt

age,

 V

OUT

2

 

(m

v)

V

R1

 = 2.8V

V

R2

 = 2.6V

I

OUT1

 = 100 µA

T

J

 = +125°C

T

J

 = +25°C

T

J

 = - 40°C

0

20

40

60

80

100

120

140

160

180

-40 -25 -10

5

20 35 50 65 80 95 110 125

Junction Temperature (°C)

D

ropout V

o

lt

age V

OUT

2

 (m

V

)

V

R1

 = 2.8V

V

R2

 = 2.6V

I

OUT1

 = 100 µA

I

OUT2

 = 150 mA

I

OUT2

 = 50 mA

I

OUT2

 = 10 mA

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

-40 -25 -10

5

20

35

50

65

80

95 110 125

Junction Temperature (125°C)

Load Regulation (%

)

I

OUT2

 = 0.1 mA to 150 mA

I

OUT1

 = 0.1 mA to 300 mA

V

R1

 = 2.8V

V

R2

 = 2.6V

V

IN

 = 4.2

V

OUT2

V

OUT1

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

-40 -25 -10

5

20 35 50 65 80 95 110 125

Junction Temperature (°C)

Li

ne R

e

gul

ati

on (%

/V

)

V

IN

 = 3.8V to 6.0V

V

R1

 = 2.8V, I

OUT1

 = 100 µA

V

R2

 = 2.6V, I

OUT2

 = 100 µA

V

OUT1

V

OUT2

2.808

2.812

2.816

2.820

2.824

2.828

2.832

-40 -25 -10

5

20 35 50 65 80 95 110 125

Junction Temperature (°C)

Ou

tp

u

t Vo

lt

ag

e V

OU

T1

 (V)

V

IN

 = 4.2V

V

R1

 = 2.8V

V

R2

 = 2.6V, I

OUT2

 = 100 µA

I

OUT1

 = 300 mA

I

OUT1

 = 100 µA

I

OUT1

 = 100 mA

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21333C-html.html
background image

 2003-2012 Microchip Technology Inc.

DS21333C-page 7

TC1302A/B

Note: Unless otherwise indicated, 

V

IN

 = V

R

 +1V, I

OUT1

 =

 

I

OUT2 

= 100 µA, C

IN

 = 4.7 µF, C

OUT1 = 

C

OUT2

 = 1 µF (X5R or X7R),

C

BYPASS

 = 0 pF, SHDN1 = SHDN2 > V

IH

, T

A

 = +25°C.

FIGURE 2-13:

V

OUT1

 vs. Junction 

Temperature.

FIGURE 2-14:

V

OUT2

 vs. Junction 

Temperature.

FIGURE 2-15:

V

OUT2

 vs. Junction 

Temperature.

FIGURE 2-16:

Power Supply Rejection 

Ratio vs. Frequency (without bypass capacitor).

FIGURE 2-17:

Power Supply Rejection 

Ratio vs. Frequency (with bypass capacitor).

FIGURE 2-18:

V

OUT1

 and V

OUT2

 Noise vs. 

Frequency (without bypass capacitor).

2.808

2.816

2.824

2.832

2.840

2.848

2.856

-40 -25 -10

5

20

35

50

65

80 95 110 125

Junction Temperature (°C)

O

u

tput

 V

o

lt

age V

OU

T

1

 (V)

V

R1

 = 2.8V, I

OUT1

 = 300 mA

V

R2

 = 2.6V, I

OUT2

 = 100 µA

V

IN

 = 6.0V

V

IN

 = 4.2V

V

IN

 = 3.0V

2.615

2.620

2.625

2.630

2.635

2.640

2.645

-40 -25 -10

5

20

35

50

65

80 95 110 125

Junction Temperature (°C)

O

u

tput

 V

o

lt

age V

OU

T

2

 (V)

V

IN

 = 4.2V

V

R1

 = 2.8V, I

OUT1

 = 100 µA

V

R2

 = 2.6V

I

OUT2

 = 150 mA

I

OUT2

 = 100 µA

I

OUT2

 = 50 mA

2.624

2.628

2.632

2.636

2.640

2.644

-40 -25 -10

5

20 35 50 65 80 95 110 125

Junction Temperature (°C)

Output V

o

ltage V

OUT

2

 (V

)

V

R1

 = 2.8V, I

OUT1

 = 100 µA

V

R2

 = 2.6V, I

OUT2

 = 150 mA

V

IN

 = 6.0V

V

IN

 = 3.0V

V

IN

 = 4.2V

0.01

0.1

1

10

0.01

0.1

1

10

100

1000

Frequency (KHz)

NOISE (μV/

—Hz)

V

IN

 = 4.2V

V

R1

 = 2.8V

V

R2

=2.6V

I

OUT1

 = 150 mA

I

OUT2

 =  100 mA

C

BYPASS

 = 0 nF

V

OUT1

V

OUT2

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21333C-html.html
background image

TC1302A/B

DS21333C-page 8

 2003-2012 Microchip Technology Inc.

Note: Unless otherwise indicated, 

V

IN

 = V

R

 +1V, I

OUT1

 =

 

I

OUT2 

= 100 µA, C

IN

 = 4.7 µF, C

OUT1 = 

C

OUT2

 = 1 µF (X5R or X7R),

C

BYPASS

 = 0 pF, SHDN1 = SHDN2 > V

IH

, T

A

 = +25°C.

FIGURE 2-19:

V

OUT1

 and V

OUT2

 Noise vs. 

Frequency (with bypass capacitor).

FIGURE 2-20:

V

OUT1

 and V

OUT2

 Power-up 

from Shutdown TC1302B.

FIGURE 2-21:

V

OUT2

 Power-up from 

Shutdown Input TC1302A.

FIGURE 2-22:

V

OUT1

 and V

OUT2

 Power-up 

from Input Voltage TC1302B.

FIGURE 2-23:

Dynamic Line Response.

FIGURE 2-24:

300 mA Dynamic Load Step 

V

OUT1

.

0.001

0.01

0.1

1

10

0.01

0.1

1

10

100

1000

Frequency (KHz)

NOISE (μV/

—Hz)

V

IN

 = 4.2V

V

R1

 = 2.8V

V

R2

=2.6V

I

OUT1

 = 150 mA

I

OUT2

 =  100 mA

C

BYPASS

 = 10 nF

V

OUT1

V

OUT2

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21333C-html.html
background image

 2003-2012 Microchip Technology Inc.

DS21333C-page 9

TC1302A/B

Note: Unless otherwise indicated, 

V

IN

 = V

R

 +1V, I

OUT1

 =

 

I

OUT2 

= 100 µA, C

IN

 = 4.7 µF, C

OUT1 = 

C

OUT2

 = 1 µF (X5R or X7R),

C

BYPASS

 = 0 pF, SHDN1 = SHDN2 > V

IH

, T

A

 = +25°C.

FIGURE 2-25:

150 mA Dynamic Load Step 

V

OUT2

.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21333C-html.html
background image

TC1302A/B

DS21333C-page 10

 2003-2012 Microchip Technology Inc.

3.0

TC1302A PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1:

TC1302A PIN FUNCTION TABLE

3.1

Regulated Output Voltage #1 
(V

OUT1

)

Connect V

OUT1

 to the positive side of the V

OUT1

capacitor and load. Capable of 300 mA maximum
output current. V

OUT1

 output is available when V

IN

 is

available; there is no pin to turn it OFF. See TC1302B
if ON/OFF control of V

OUT1

 is desired.

3.2

Circuit Ground Pin (GND)

Connect GND to the negative side of the input and
output capacitor. Only the LDO internal circuitry bias
current flows out of this pin (200 µA maximum). 

3.3

Reference Bypass Input

By connecting an external 10 nF capacitor (typical) to
the Bypass Input, both outputs (V

OUT1

 and V

OUT2

) will

have less noise and improved Power Supply Ripple
Rejection (PSRR) performance. The LDO output
voltage start-up time will increase with the addition of
an external bypass capacitor. By leaving this pin
unconnected, the start-up time will be minimized. 

3.4

Output Voltage #2 Shutdown 
(SHDN2)

ON/OFF control is performed by connecting SHDN2 to
its proper level. When the input of this pin is connected
to a voltage less than 15% of V

IN

, V

OUT2

 will be OFF. If

this pin is connected to a voltage that is greater than
45% of V

IN

, V

OUT2

 will be turned ON.

3.5

Regulated Output Voltage #2 
(V

OUT2

)

Connect V

OUT2

 to the positive side of the V

OUT2

capacitor and load. This pin is capable of a maximum
output current of 150 mA. V

OUT2

 can be turned ON and

OFF using SHDN2.

3.6

Unregulated Input Voltage Pin 
(V

IN

)

Connect the unregulated input voltage source to V

IN

. If

the input voltage source is located more than several
inches away or is a battery, a typical input capacitance
of 1 µF to 4.7 µF is recommended.

Pin No.

Name

Function

1

NC

No connect.

2

V

OUT1

Regulated output voltage #1, capable of 300 mA.

3

GND

Circuit ground pin.

4

Bypass

Internal reference bypass pin. A 10 nF external capacitor can be used to further reduce 
output noise and improve PSRR performance.

5

SHDN2

Output #2 shutdown control input.

6

V

OUT2

Regulated output voltage #2, capable of 150 mA.

7

V

IN

Unregulated input voltage pin.

8

NC

No connect.

Maker
Microchip Technology Inc.
Datasheet PDF Download