20005323A Datasheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005323A-html.html
background image

 2014 Microchip Technology Inc.

DS20005323A-page 1

HV9910C

Features

• Switch mode controller for single switch LED drivers
• Enhanced drop-in replacement to the HV9910B
• Open loop peak current controller
• Internal 15 to 450V linear regulator
• Constant frequency or constant off-time operation
• Linear and PWM dimming capability
• Requires few external components for operation
• Over-temperature protection

Applications

• DC/DC or AC/DC LED driver applications
• RGB back-lighting LED driver
• Back lighting of flat panel displays
• General purpose constant current source
• Signage and decorative LED lighting
• Chargers

Description

HV9910C is an open-loop, current-mode control, LED
driver IC. This IC can be programmed to operate in
either a constant frequency or constant off-time mode.
It includes a 15 – 450V linear regulator which allows it
to work with a wide range of input voltages without the
need for an external low voltage supply. HV9910C
includes a TTL-compatible, PWM-dimming input that
can accept an external control signal with a duty ratio
of 0 – 100% and a frequency of up to a few kilohertz. It
also includes a 0 – 250mV linear-dimming input which
can be used for linear dimming of the LED current.
Unlike the HV9910B, the HV9910C is equipped with
built-in thermal-shutdown protection.
HV9910C is ideally suited for buck LED drivers. Since
the HV9910C operates in open-loop current mode con-
trol, the controller achieves good output current regula-
tion without the need for any loop compensation. Also,
being an open-loop controller, PWM-dimming
response is limited only by the rate of rise of the induc-
tor current, enabling a very fast rise and fall times of the
LED current. HV9910C requires only three external
components (apart from the power stage) to produce a
controlled LED current. This makes HV9910C an ideal
solution for low-cost LED drivers. 

Universal High-Brightness LED Driver

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005323A-html.html
background image

HV9910C

DS20005323A-page 2

 2014 Microchip Technology Inc.

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and
enhanced as new volumes and updates are introduced. 
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via
E-mail at 

docerrors@microchip.com

. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.
The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision
of silicon and revision of document to which it applies.
To determine if an errata sheet exists for a particular device, please check with one of the following:
• Microchip’s Worldwide Web site; 

http://www.microchip.com

• Your local Microchip sales office (see last page)
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are
using.

Customer Notification System

Register on our web site at 

www.microchip.com

 to receive the most current information on all of our products.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005323A-html.html
background image

 2014 Microchip Technology Inc.

DS20005323A-page 3

HV9910C

Pin Diagram

Typical Application Circuit 

8-Lead SOIC

16-Lead SOIC

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

8

7

6

5

1

2

3

4

VIN

CS

GND

GATE

RT

LD

VDD

PWMD

VIN

NC

NC

CS

GND

NC

NC

GATE

NC

NC

RT

LD

VDD

NC

NC

PWMD

C

DD

R

OSC

R

CS

L1

Q1

D1

C

O

C

IN

HV9910C

VIN

GATE

CS

VDD

LD

PWMD

RT

GND

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005323A-html.html
background image

HV9910C

DS20005323A-page 4

 2014 Microchip Technology Inc.

1.0

 ELECTRICAL 
CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS 

V

IN

 to GND ...................................................... -0.5V to +470V

V

DD

 to GND.......................................................................12V

CS, LD, PWMD, GATE...........................-0.3V to (V

DD

 + 0.3V)

Junction temperature ....................................-40°C to +125°C
Storage temperature .....................................-65°C to +150°C
Continuous power dissipation (T

A

 = +25°C)

8-lead SOIC ...............................................650 mW
16-lead SOIC ...........................................1300 mW
8-lead SOIC with heat slug ......................1300 mW

Note: Stresses above those listed under “Absolute Maximum
Ratings” may cause permanent damage to the device. This is
a stress rating only and functional operation of the device at
those or any other conditions, above those indicated in the
operational listings of this specification, is not implied. Expo-
sure to maximum rating conditions for extended periods may
affect device reliability.

1.1

ELECTRICAL SPECIFICATIONS

TABLE 1-1:

ELECTRICAL CHARACTERISTICS  (SHEET 1 OF 2)

1

Symbol

Parameter

Note

Min

Typ

Max

Units Conditions

Input

V

INDC

Input DC supply voltage 
range

2

3

15

-

450

V

DC input voltage

I

IN(MAX)

Supply current

-

-

0.8

1.5

mA

Pin PWMD to V

DD

, no capaci-

tance at GATE

I

INSD

Shut-down mode supply 
current

-

-

0.5

1.0

mA

Pin PWMD to GND

Internal Regulator

V

DD

Internally regulated voltage

-

7.25

7.50

7.75

V

V

IN

 = 15V, I

DD(ext)

 = 0, 

PWMD = V

DD

, 500pF at GATE; 

R

OSC

 = 249kΩ

∆V

DD

, line Line regulation of V

DD

-

0

-

1.0

V

V

IN

 = 15 - 450V, I

DD(ext)

 = 0, 

PWMD = V

DD

, 500pF at GATE; 

R

OSC

 = 249kΩ

∆V

DD

, load Load regulation of V

DD

-

0

-

0.1

V

I

DD(ext)

 = 0 - 1.0mA, 

PWMD = V

DD

, 500pF at GATE; 

ROSC = 249kΩ

UVLO

V

DD 

under voltage lockout 

threshold

3

6.45

6.70

6.95

V

V

DD

 rising

∆UVLO

V

DD

 under voltage lockout 

hysteresis

-

-

500

-

mV

V

DD

 falling

I

IN(MAX)

Maximum regulator current

4

5.0

-

-

mA

V

DD

 = UVLO - ∆UVLO

PWM Dimming 

V

EN(lo)

PWMD input low voltage

3

-

-

1.0

V

V

IN

 = 15 - 450V

V

EN(hi)

PWMD input high voltage

3

2.4

-

-

V

V

IN

 = 15 - 450V

R

EN

Internal pull-down resis-
tance at PWMD

-

50

100

150

kΩ

V

PWMD

 = 5.0V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005323A-html.html
background image

 2014 Microchip Technology Inc.

DS20005323A-page 5

HV9910C

Current Sense Comparator

V

CS

Current sense pull-in thresh-
old voltage

-

225

250

275

mV

-40°C < T

A

 < +125°C

V

OFFSET

Offset voltage for LD com-
parator

3

-12

-

+12

mV

T

BLANK

Current sense blanking 
interval

-

150

215

280

ns

0 < T

A

 < +85°C, V

LD

 = V

DD

V

CS

 = V

CS,TH

 + 50mV after 

T

BLANK

-

145

215

315

-40 < T

A

 < +125°C, V

LD

 = V

DD

V

CS

 = V

CS,TH

 + 50mV after 

T

BLANK

t

DELAY

Delay to output

-

-

80

150

ns

V

IN

 = 15V, VLD = 0.15, 

V

CS

 = 0 to 0.22V after t

BLANK

Oscillator

f

OSC

Oscillator frequency

-

20

25

30

kHz

R

OSC

 = 1.00MΩ

-

80

100

120

R

OSC

 = 249kΩ

Gate Driver

I

SOURCE

Maximum GATE sourcing 
current

-

0.165

-

-

A

V

GATE

 = 0V

I

SINK

Maximum GATE sinking cur-
rent

-

0.165

-

-

A

V

GATE

 = V

DD

t

RISE

GATE output rise time

4

-

30

50

ns

C

GATE

 = 500pF

t

FALL

GATE output fall time

4

-

30

50

ns

C

GATE

 = 500pF

Over-Temperature Protection

T

SD

Shut-down temperature

-

128

-

150

°C

∆T

SD

Hysteresis

-

10

-

30

°C

I

SD

T

SD

-mode V

IN

 current

-

-

-

350

μA

1

Specifications are T

A

 = 25°C, V

IN

 = 15V unless otherwise noted.

2

Also limited by package-power dissipation limit; Whichever is lower.

3

Applies over the full operating ambient temperature range of -40°C < T

A

 < +125°C.

4

For design guidance only.

TABLE 1-1:

ELECTRICAL CHARACTERISTICS (CONTINUED) (SHEET 2 OF 2)

1

Symbol

Parameter

Note

Min

Typ

Max

Units Conditions

TABLE 1-2:

THERMAL RESISTANCE

Package

θja

8-Lead SOIC

101°C/W

16-Lead SOIC

83°C/W

8-Lead SOIC (with heat slug)

84°C/W

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005323A-html.html
background image

HV9910C

DS20005323A-page 6

 2014 Microchip Technology Inc.

2.0

 

PIN DESCRIPTION

The descriptions of the pins are listed in 

Table 2-1

.

TABLE 2-1:

PIN DESCRIPTION

Pin #

Function

Description

8-Lead SOIC 16-Lead SOIC

1

1

VIN

Input of an 15 - 450V linear regulator.

2

4

CS

Current sense pin used to sense the FET current by means of an 
external sense resistor. When this pin exceeds the lower of either 
the internal 250mV or the voltage at the LD pin, the GATE output 
goes low.

3

5

GND

Ground return for all internal circuitry. Must be electrically con-
nected to the power ground.

4

8

GATE

Output GATE driver for an external N-channel power MOSFET.

5

9

PWMD

TTL-compatible, PWM-dimming input of the IC. When this pin is 
pulled to GND or left open, the GATE driver is turned off. When the 
pin is pulled high, the GATE driver operates normally.

6

12

VDD

Power supply pin for all internal circuits. It must be bypassed with a 
low ESR capacitor to GND (≥0.1μF).

7

13

LD

Linear-dimming input and sets the current sense threshold as long 
as the voltage at the pin is less than 250mV (typ).

8

14

RT

Sets the oscillator frequency. When a resistor is connected 
between RT and GND, the HV9910C operates in constant fre-
quency mode. When the resistor is connected between RT and 
GATE, the IC operates in constant off-time mode.

-

2, 3, 6, 7, 10, 

11, 15, 16

NC

No connection

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005323A-html.html
background image

 2014 Microchip Technology Inc.

DS20005323A-page 7

HV9910C

3.0

APPLICATION INFORMATION

HV9910C is optimized to drive buck LED drivers using
open-loop, peak-current mode control. This method of
control enables fairly accurate LED current control
without the need for high side current sensing or the
design of any closed loop controllers. The IC uses very
few external components and enables both Linear and
PWM-dimming of the LED current. 

A resistor connected to the RT pin programs the fre-
quency of operation (or the off-time). The oscillator pro-
duces pulses at regular intervals. These pulses set the
SR flip-flop in the HV9910C which causes the GATE
driver to turn on. The same pulses also start the blank-
ing timer, which inhibits the reset input of the SR flip flop
and prevents false turn-offs due to the turn-on spike.
When the FET turns on, the current through the induc-
tor starts ramping up. This current flows through the
external sense resistor, R

CS

, and produces a ramp volt-

age at the CS pin. The comparators are constantly
comparing the CS pin voltage to both the voltage at the
LD pin and the internal 250mV. Once the blanking timer
is complete, the output of these comparators is allowed
to reset the flip-flop. When the output of either one of
the two comparators goes high, the flip-flop is reset and
the GATE output goes low. The GATE goes low until
the SR flip-flop is set by the oscillator. Assuming a 30%
ripple in the inductor, the current sense resistor R

CS

can be set using:

Constant frequency peak current mode control has an
inherent disadvantage – at duty cycles greater than
0.5, the control scheme goes into subharmonic oscilla-
tions. To prevent this, an artificial slope is typically
added to the current sense waveform. This slope com-
pensation scheme will affect the accuracy of the LED
current in the present form. However, a constant off-
time peak current control scheme does not have this
problem and can easily operate at duty cycles greater
than 0.5. This control scheme also gives inherent input
voltage rejection, making the LED current almost
insensitive to input voltage variations. However, this
scheme leads to variable frequency operation and the
frequency range depends greatly on the input and out-
put voltage variation. Using HV9910C, it is easy to
switch between the two modes of operation by chang-
ing one connection (see 

Section 3.3 “Oscillator”

).

3.1

Input Voltage Regulator

HV9910C can be powered directly from its V

IN

 pin and

can work from 15 - 450VDC at its V

IN 

pin. When a volt-

age is applied at the V

IN

 pin, HV9910C maintains a

constant 7.5V at the V

DD

 pin. This voltage is used to

power the IC and any external-resistor dividers needed

to control the IC. The V

DD

 pin must be bypassed by a

low-ESR capacitor to provide a low impedance path for
the high frequency current of the output GATE driver.

HV9910C can also be operated by supplying a voltage
at the V

DD

 pin greater than the internally regulated volt-

age. This will turn off the internal linear regulator of the
IC and the HV9910C will operate directly off the voltage
supplied at the V

DD

 pin. This external voltage at the

V

DD

 pin should not exceed 12V.

Although the V

IN

 pin of the HV9910C is rated up to

450V, the actual maximum voltage that can be applied
is limited by the power dissipation in the IC. For exam-
ple, if an 8-lead SOIC HV9910C (junction to ambient
thermal resistance R

θj-a

 = 101°C/W) draws about I

IN

 =

2.0mA from the V

IN

 pin, and has a maximum allowable

temperature rise of the junction temperature limited to
∆T = 75°C, the maximum voltage at the V

IN

 pin would

be:

In these cases, to operate HV9910C from higher input
voltages, a Zener diode can be added in series with the
V

IN

 pin to divert some of the power loss from HV9910C

to the Zener diode. In the above example, using a 100V
Zener diode will allow the circuit to easily work up to
450V.

The input current drawn from the V

IN

 pin is a sum of the

1.5mA (maximum) current drawn by the internal circuit
and the current drawn by the GATE driver. The GATE
driver depends on the switching frequency and the
GATE charge of the external FET.

In the above equation, f

s

 is the switching frequency and

Q

g

 is the GATE charge of the external FET, which can

be obtained from the data sheet of the FET.

3.2

Current Sense

The current sense input of HV9910C goes to the non-
inverting inputs of two comparators. The inverting ter-
minal of one comparator is tied to an internal 250mV
reference, whereas the inverting terminal of the other
comparator is connected to the LD pin. The outputs of
both these comparators are fed into an OR GATE and

R

CS

0.25V orV

LD

1.15 I

LED

------------------------------------

=

Note:

The Zener diode will increase the mini-
mum input voltage required to turn on the
HV9910C to 115V.

V

IN MAX

T

R

ja

-----------

1

I

IN

------

75

C

101

C W

---------------------------

1

2mA

-------------

371V

=

=

=

I

IN

1.5mA Q

g

f

s

+

=

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005323A-html.html
background image

HV9910C

DS20005323A-page 8

 2014 Microchip Technology Inc.

the output of the OR GATE is fed into the reset pin of
the flip-flop. Thus, the comparator which has the lowest
voltage at the inverting terminal determines when the
GATE output is turned off.

The outputs of the comparators also include a 150-
280ns blanking time which prevents spurious turn-offs
of the external FET due to the turn-on spike normally
present in peak-current mode control. In rare cases,
this internal blanking might not be enough to filter out
the turn-on spike. In these instances, an external RC fil-
ter needs to be added between the external sense
resistor (RCS) and the CS pin.

Please note that the comparators are fast (with a typi-
cal 80ns response time). A proper layout minimizing
external inductances will prevent false triggering of
these comparators.

3.3

Oscillator

The oscillator in HV9910C is controlled by a single
resistor connected at the RT pin. The equation govern-
ing the oscillator time period T

osc

 is given by:

If the resistor is connected between RT and GND,
HV9910C operates in a constant frequency mode and
the above equation determines the time period. If the
resistor is connected between RT and GATE,
HV9910C operates in a constant off-time mode and the
above equation determines the off-time.

3.4

Gate Output

The gate output of the HV9910C is used to drive an
external FET. It is recommended that the GATE charge
of the external FET be less than 25nC for switching fre-
quencies ≤ 100kHz and less than 15nC for switching
frequencies > 100kHz.

3.5

Linear Dimming

The Linear Dimming pin is used to control the LED cur-
rent. There are two cases when it may be necessary to
use the Linear Dimming pin.

1.

In some cases, when using the internal 250mV,
it may not be possible to find the exact R

CS

value required to obtain the LED current. In
these cases, an external voltage divider from the
V

DD

 pin can be connected to the LD pin to obtain

a voltage (less than 250mV) corresponding to
the desired voltage across RCS.

2.

Linear dimming may be desired to adjust the
current level to reduce the intensity of the LEDs.
In these cases, an external 0-250mV voltage

can be connected to the LD pin to adjust the
LED current during operation.

To use the internal 250mV, the LD pin can be con-
nected to V

DD

.

3.6

PWM Dimming

PWM Dimming can be achieved by driving the PWMD
pin with a low frequency square wave signal. When the
PWM signal is zero, the GATE driver is turned off; when
the PWMD signal if high, the GATE driver is enabled.
The PWMD signal does not turn off the other parts of
the IC, therefore, the response of HV9910C to the
PWMD signal is almost instantaneous. The rate of rise
and fall of the LED current is thus determined solely by
the rise and fall times of the inductor current.

To disable PWM Dimming and enable the HV9910C
permanently, connect the PWMD pin to V

DD

.

3.7

Over-Temperature Protection

The auto-recoverable thermal shutdown at 140°C (typ.)
junction temperature with 20°C hysteresis is featured
to avoid thermal runaway. When the junction tempera-
ture reaches T

SD

 = 140°C (typ.), HV9910C enters a low

power consumption shut-down mode with I

IN

 <350µA. 

T

OSC

s

R

OSC

k

25

---------------------------

=

Note:

Although the LD pin can be pulled to GND,
the output current will not go to zero. This
is due to the presence of a minimum on-
time, which is equal to the sum of the
blanking time and the delay to output time,
or about 450ns. This minimum on-time
causes the FET to be on for a minimum of
450ns, and thus the LED current when LD
= GND is not zero. This current is also
dependent on the input voltage, induc-
tance value, forward voltage of the LEDs,
and circuit parasitics. To get zero LED cur-
rent, the PWMD pin has to be used.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005323A-html.html
background image

 2014 Microchip Technology Inc.

DS20005323A-page 9

HV9910C

FIGURE 3-1:

INTERNAL BLOCK DIAGRAM 

POR

250mV

VDD

GATE

VIN

LD

CS

GND                     RT                                           PWMD

S

R

Q

Blanking

+

-

+

-

+

-

1.25V
Bandgap
Reference

OTP

Oscillator

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005323A-html.html
background image

HV9910C

DS20005323A-page 10

 2014 Microchip Technology Inc.

4.0

PACKAGING INFORMATION

4.1

Package Marking Information

16-Lead SOIC 

8-Lead SOIC 

 

 

X = Product Code
YY = Year Sealed
WW = Week Sealed
NNN = Traceability Code
e# = JEDEC Symbol
● = Pin 1 Indicator
Note: The JEDEC environmental marking symbols (e#) illustrated are
examples only, and might not reflect the actual value for the listed
package code.

Maker
Microchip Technology Inc.
Datasheet PDF Download